Slow positron defect profiling with enhanced depth resolution

R. Krause-Rehberg¹, F. Börner¹, F. Redmann¹, W. Egger², G. Kögel², P. Sperr², W. Triftshäuser²

¹Martin-Luther-Universität Halle-Wittenberg, Germany ²Universität der Bundeswehr Munich, Germany

contact: krause@physik.uni-halle.de

Martin-Luther-Universität

Halle-Wittenberg

Ninth International Workshop on Slow Positron Beam Techniques for Solids and Surfaces

• Introduction

- Depth-resolution improvement by stepwise removal of sample surface
- Study of wedge-shaped samples by positron microbeam
- Conclusions

Depth-profiling by varying the positron energy

• conventional VEPAS positron implantation depth varied by accelerating voltage

magnetically guided positron beam system at Univ. Halle

Positron beam measurement with improved depth resolution

- mono-energetic positrons exhibit broad implantation profile
- the defect layers and interfaces deeper 1 µm are hardly visible
- no real depth profiling possible (often only step function)

Þ

- step-by-step removal of sample surface by sputtering or etching
- measurement at low e⁺ energy with high depth resolution
- optimum depth resolution depends on positron diffusion length $\rm L_{\scriptscriptstyle +}$
- E₊ must be large enough to avoid influence of surface

First test: study of defined layer structure

- test structure: a-Si/SiO₂/Si was stepwise removed by Ar⁺ sputtering
- Ar pressure of 10^{-6} Torr for 30 min takes \approx 100 nm away (I = 40 μ A)
- full S(E) curves measured and S at 2.5 keV plotted as function of sputter depth

Second example: twofold B:Si implantation

- twofold implantation B:Si (50 keV, 2.5 × 10¹⁵ cm⁻² and 300 keV, 5 × 10¹⁵ cm⁻²) creates double peak
- conventional S(E₊) measurement cannot distinguish between peaks

Defects in high-energy self-implanted Si 3/4 The R_p/2 effect

- after high-energy (3.5 MeV) self-implantation of Si (5 \cdot 10¹⁵ cm⁻²) and RTA annealing (900°C, 30s): two new gettering zones appear at R_p and R_p/2 (R_p = projected range of Si⁺)
- visible by SIMS profiling after intentional Cu contamination

- at R_p: gettering by interstitial-type dislocation loops (formed by excess interstitials during RTA)
- no defects visible by TEM at $R_p/2$
- What type are these defects?

Investigation of the R_p/2 effect by conventional VEPAS

- the defect layers are expected in a depth of 1.7 μm and 2.8 μm corresponding to E₊= 18 and 25 keV
- implantation profile too broad to discriminate between the two zones
- simulation of S(E) curve gives the same result for assumed blue and yellow defect profile (solid line in upper panel)
- furthermore: small effect only
- no conclusions about origin of R_p/2 effect possible

Getter centers after high-energy self-implantation in Si

- VEPAS with improved depth resolution show clearly open-volume defects at $\rm R_p/2$ and $\rm R_p$
- they must be different (see S-W-plot)
- "normal" behavior of W parameter at $\rm R_p$ but high value at $\rm R_p/2$: Cu decorates the vacancy-type defect

Doppler-coincidence and lifetime spectroscopy

- Doppler-coincidence spectroscopy shows the existence of Cu at the $R_p/2$ defect
- positron lifetime spectroscopy needed for determination of open volume size
 - $p_{L} (10^{-3} m_{0}c)$

- samples were chemically etched and positron lifetime was measured at Munich Slow-Positron Lifetime Beam System
- at R_p/2: τ_d=450 ps (vacancy cluster, n > 10)
- at R_p: τ_d=320 ps (open volume = divacancy)

Conclusions

- R_p/2: small vacancy clusters are getter centers
- R_p: positrons are trapped by defects at dislocation loops

Enhanced depth resolution by using the Munich Scanning Positron Microscope

Does polishing create deep defect profile?

- Si reference sample was evenly polished using the same machine (no wedge)
- polishing changed surface S parameter, but diffusion length was similar L₊ = 220 \pm 15 nm
- no visible influence of layer of polishing defects

First defect depth profile using Positron Microscopy

- 45 lifetime spectra: scan along wedge
- separation of 11 μ m between two measurements corresponds to depth difference of 155 nm (α = 0.81°)
- beam energy of 8 keV mean penetration depth is about 400 nm; represents optimum depth resolution
- no further improvement possible due to positron diffusion: $L_+(Si @ 300K) \approx 230 \text{ nm}$
- both regions well visible:
 - vacancy clusters with increasing density down to 2 μm (R_p/2 region)
 - in R_p region: lifetime τ₂ = 330 ps; corresponds to open volume of a divacancy; must be stabilized or being part of interstitial-type dislocation loops

SIMS profile of Cu

Conclusions

- optimum depth resolution of VEPAS is determined by L₊ (defect density)
- can be obtained by stepwise removal of surface (sputtering or etching)
- problem of sputtering: surface gets rough for large depth & preferential sputtering in compounds
- excellent possibility: wedge-shaped sample studied by e⁺ microbeam ideal depth resolution in large depth possible

This presentation can be found as pdf-file on our Website: http://www.ep3.uni-halle.de/positrons

