Probing defects in silicon with positrons

R. Krause-Rehberg

Defect detection in Silicon
- as-grown bulk Si
- low-T electron irradiation
- Implantation
- plastic deformation
• Si has changed the world ...

• very advanced technology
• wafers up to 300 mm single crystals
• very pure material possible (Ge even better, but ...)
• impurity level very low
• sensors can be integrated (T, p, ...)
• no dislocations in the whole big wafer
• perfect material – really no defects?

diamond lattice of Si
Defects in Silicon

Let us search ...

Defects seem to be important in Silicon

Positron can obviously be useful...
In as-grown state not so many... assuming $\mu=1\times10^{16}$ s$^{-1}$

$\Rightarrow [\text{Vac}] = 4\times10^{14}$ cm$^{-3}$

$\Rightarrow$ corresponds to $10^{-8}$

**Fig. 4.1.** Increase in the average positron lifetime with falling sample temperature in as-grown float-zone silicon (■). The results of a p-type boron-doped Si sample are shown for comparison (○). $\tau_b$ is the positron bulk lifetime. The data points were obtained from six measurements with $5\times10^6$ counts each (Gebauer et al. 1998a). The error bars correspond to the standard deviation of these measurements.
Participation in Avogadro project

• can just 1 vacancy in 100,000,000 atoms be of interest?
• The **Avogadro project** produces a ball of Si as prototype kilogram (93.6 mm diameter)
• Yes – required accuracy should be $1 \times 10^{-9}$
Okay, we generate some defects ....

- Low temperature electron irradiation $\Rightarrow$ point defects
  - monovacancies (Frenkel pairs)
  - the A-center (VO) and $V_xO_y$ clusters
  - the E-centers (dopant-vacancy complexes)
  - divacancies $\Rightarrow$ stable up to 550 K

- Proton irradiation and ion implantation $\Rightarrow$ vacancy cluster

- Plastic deformation at elevated temperatures
  - dislocation lines
  - vacancy clusters $\Rightarrow$ generated by jog dragging

Energy-level scheme in the bandgap of silicon for various charge states of monovacancies and divacancies, vacancy–phosphorus pairs ($E$ centers), and vacancy–oxygen pairs ($A$ centers) according to Mascher et al. (1989b).
Low-temperature electron irradiation

- irradiation with 2 MeV electrons at 4K: production of Frenkel pairs
- for FZ-Si things are still easy

Change in the average positron lifetime with annealing temperature in electron-irradiated undoped float-zone (FZ) silicon. The irradiation was carried out with 2-MeV electrons at 4 K (1×10^{18} cm^{-2} dose). The positron measurement was performed at 90 K (Polity et al. 1998a). $\tau_b$ is the bulk lifetime.
Cz-Silicon

- **Mono-vacancy**
- **Oxygen-related shallow positron trap**
- **Divacancies**

- Difference between FZ and Cz silicon: \([O] \approx 10^{15} \text{ cm}^{-3} \approx 10^{18} \text{ cm}^{-3}\)

- **V-O (A-center)** acts as shallow trap
- **Positron binding energy** \(E_b = 48 \pm 10 \text{ meV}\)

---

**Result of positron lifetime measurements in electron-irradiated Czochralski-grown (Cz) silicon (Polity et al. 1998a).**
Positron lifetime in float-zone (FZ) and Czochralski-grown (Cz) silicon irradiated with electrons at 4 K to a dose of $1 \times 10^{18}$ cm$^{-2}$ (Polity et al. 1998a).

- oxygen-related shallow positron trap
- weak effect in FZ-Si
IR can detect the evolution from VO to $V_xO_y$.
• VO anneals at about 350°C.
• $VO_2$ is formed from VO between 100...300°C and disappears above 500°C.

Infrared absorption spectra of electron-irradiated Czochralski-grown silicon after isochronal annealing at the temperatures indicated. The disappearance of the VO center and the formation of $VO_2$ and higher $V_xO_y$ complexes are monitored by the corresponding absorption bands (Ikari 1995).
Activation energies for vacancy migration, clustering and annealing in silicon

P G Coleman

Department of Physics, University of Bath, Bath BA2 7AY, UK

Abstract. A series of measurements have been performed at the University of Bath to study the evolution of vacancy-type structures in silicon. Isothermal annealing performed during positron beam-based Doppler broadening measurements have yielded activation energies for vacancy cluster formation and evaporation in silicon of approximately 2.5 and 3.7 eV, respectively. The clusters, which could predominantly be the stable hexavacancy, appear to form between 400-500°C, and anneal at ~ 600°C. A similar technique applied to low-temperature in situ measurements have yielded the migration energies for the silicon monovacancy and interstitial (of ~ 0.5 and 0.08 eV, respectively). Interesting observations of positronium formation at the surface of the samples studied during isothermal annealing are presented.
• an annealing stage is seen between 500...650°C for 50 keV Si-self-implantation

• isothermal annealings allow Arrhenius-plots to determine the activation energies

Figure 1. $S(E)$ for FZ Si implanted with 50 keV Si$^+$ ions at $5 \times 10^{13}$ cm$^{-2}$ and annealed at temperatures from 250 to 750°C [10].

Figure 10. $S(3.5 \text{ keV})$ vs annealing time for implanted epi Si at 350, 470 and 600°C. The solid lines through the points in are exponential fits. $S$ values are normalised to that for bulk Si (i.e., unity – as shown in the graphs). Adapted from [23].

two different slopes were found in Cz-Si and in epi-layers (two modifications of vacancy clusters)

- low-T value: 2.7 ± 0.7 eV  2.1 ± 0.2 eV  (probably transition V2 ⇌ V6)
- high-T value: 3.6 ± 0.3  3.9 ± 0.3 eV  (probably hexavacancies)
Magic numbers of vacancy clusters in Si

- Simulations really show that V6, V10 and V14 are “magic numbers”
- Stable vacancy clusters in Si
- Lifetime measurement would be useful

Fig. 2. Energy gained by adding a monovacancy to an aggregate of \((N - 1)\) vacancies in Silicon (upper part) and the corresponding positron lifetime (lower part) for unrelaxed structures. Theoretical positron lifetimes for \(V_6\), \(V_{10}\), and \(V_{14}\) are indicated.

T.E.M. Staab, M. Haugk, A. Sieck, Th. Frauenheim, H.S. Leipner

Magic number vacancy aggregates in Si and GaAs: Structure and positron lifetime studies
• Monovacancies anneal below RT – sample must be cooled during implantation and annealing
• He implantation of 20 keV was performed at 20 K ⇒ saturated trapping by V_1 at 130 nm depth
• two samples ⇒ undoped FZ-Si (very pure Si) and highly As-doped

\[
\begin{align*}
E_A &= 0.59 \pm 0.06 \text{ eV} & \Rightarrow & \text{annealing of } V_{Si^{-}}As \ E\text{-centers} \\
E_A &= 0.46 \pm 0.3 \text{ eV} & \Rightarrow & \text{disappearance of neutral } V1 \text{ by vacancy migration} \\
E_A &= 0.078 \pm 0.007 \text{ eV} & \Rightarrow & \text{disappearance of neutral } V1 \text{ by interstitial migration}
\end{align*}
\]

Defects in high-energy self-implanted Si: The Rp/2 effect

- after high-energy (3.5 MeV) self-implantation of Si (5x10^{15} cm^{-2}) and RTA annealing (900°C, 30s): two new gettering zones appear at Rp and Rp/2 ($R_p$ = projected range of Si$^+$)
- visible by SIMS profiling after intentional Cu contamination

![TEM image by P. Werner, MPI Halle](image)

- at $R_p$: gettering by interstitial-type dislocation loops $\Rightarrow$ formed by excess interstitials during RTA
- no defects visible by TEM at Rp/2
- What type are these defects?
- there was some debate:
  - interstitial type defects?
  - vacancy-type defects?
• the defect layers are expected in a depth of 1.7 mm and 2.8 mm corresponding to $E^+ = 18$ and 25 keV

• implantation profile too broad to discriminate between the two zones

• simulation of S(E) curve gives the same result for assumed blue and yellow defect profile (solid line in upper panel)

• furthermore: small effect only

• no conclusions about origin of $R_p/2$ effect possible
sample is wedge-shaped polished (0.5...2°)

layer of polishing defects must be thin compared to e+ implantation depth

best: chemo-mechanical polishing
First defect depth profile using Positron Microscopy

- 45 lifetime spectra: scan along wedge
- separation of 11 µm between two measurements corresponds to depth difference of 155 nm (α = 0.81°)
- beam energy of 8 keV: mean penetration depth is about 400 nm; represents optimum depth resolution
- no further improvement possible due to positron diffusion: \( L_p(Si @ 300K) \approx 230 \text{ nm} \)
- both regions well visible:
  - vacancy clusters with increasing density down to 2 µm (\( R_p/2 \) region)
  - in \( R_p \) region: lifetime \( \tau_2 = 330 \text{ ps} \); corresponds to open volume of a divacancy; must be stabilized or being part of interstitial-type dislocation loops
- excellent agreement with profile of gettered Cu

p-doped FZ-Silicon was plastically deformed at RT (deformation 16%) and 800°C (7%) with strong positron trapping observed. Two or three lifetime components are present, with a distinct component due to vacancy clusters.

Average positron lifetime measured for the samples deformed at $T_{\text{def}} = 800 \, ^\circ\text{C}$ (upper panel) and 20 °C (lower panel) as a function of the annealing temperature. The measurements have been carried out at different sample temperatures $T_{\text{meas}}$. The lines are drawn to guide the eye.

Defects in silicon plastically deformed at room temperature
phys. stat. sol. (a) 201, 9 (2004), 2021-2028
Deformation at 800°C and 20°C

Fig. 6 (online colour at: www.interscience.wiley.com)  Positron lifetime components and intensities for the sample deformed at 800 °C (a) and the sample deformed at 20 °C (b) as a function of the annealing temperature. For the high-temperature deformation, the lifetime $\tau_3$ disappears after annealing at 800 °C and only a two-component decomposition is possible for higher temperatures. The sample temperature during the measurement $T_{\text{meas}}$ was 300 K in (a) and 35 K in (b). The dashed line represents the mean value of the long-lived component at low annealing temperatures in the room-temperature-deformed sample.
two types of defects were found

- vacancy clusters \((n > 10)\) produced by jog dragging
- monovacancy-type defect linked to dislocation lines (stable up to \(1200^\circ\text{C}\))

Mechanism of the formation of vacancies by the dragging of non-glissile jogs along screw dislocations. Rows of vacancies are supposed to be unstable, and larger vacancy clusters are formed close to the edge-type jogs. The arrows indicate the direction of the non-conservative motion of the jogs.
Si is still a very useful playground for defect studies by positrons
in as-grown state positron can hardly detect something
after irradiation, implantation and deformation ⇒ Positron annihilation is a very useful tool
big differences for
  - FZ and Cz Silicon: vacancy-oxygen clusters V-O (A-center) and V_x-O_y
  - undoped and doped material: V_{Si}-dopant complexes (E-center)
Deformation generated not only dislocations but also vacancy clusters: jog dragging process

Talk available: http://positron.physik.uni-halle.de

Thanks for your attention!