Positron Annihilation in Metal Physics

R. Krause-Rehberg
Universität Halle, Inst. für Physik

- History
- Means of Positron Annihilation
- Applications in Metal Physics
Discovery of the Positron

- Positron was predicted in 1928 by Paul A.M. Dirac
- Discovery in 1932 in cloud chamber pictures by C.D. Anderson
- Positronium as bound state of e^- and e^+ lightest atom was predicted (1934) and discovered (1951)
- Annihilation in matter was studied beginning in the 40s
- Positrons can be obtained by
 - pair production from gamma radiation ($E_\gamma > 1022$ keV)
 - β^+ decay from isotopes (mostly ^{22}Na)
- First identification of a positron in a cloud chamber
- 5 mm lead plate
- Photo taken by C.D. Anderson
Electron structure of solids can be discovered

- during annihilation: conservation laws must be fulfilled (energy, momentum)
- positron cools down to thermal energies →
- energy of annihilating electron-positron pair = energy of electron
- electron momentum distribution can directly be measured

The Angular Distribution of Positron Annihilation Radiation

Robert Beringer and C. G. Montgomery

Sloane Physics Laboratory, Yale University, New Haven, Connecticut

(Received January 7, 1942)
2D – ACAR (Angular Correlation of Annihilation Radiation)

- now: two-dimensional (position-sensitive) detectors
- measurement of single crystals in different directions:
- reconstruction of Fermi surface possible

\[N_c(\Theta_x, \Theta_y) = A_c \int_{-\infty}^{\infty} \sigma(\Theta_x m_0 c, \Theta_y m_0 c, p_z) dp_z \]

- sophisticated device available at Univ. Delft
- intense positron source at reactor
- slow (moderated) positrons allow study of near-surface layers
2D-ACAR of Copper

Fermi surface of copper

(Berko, 1979)
Positrons are sensitive for Crystal Lattice Defects

- 1950...1960: in addition to ACAR -> different experimental techniques were developed
- Positron lifetime spectroscopy and Doppler broadening spectroscopy
- end of 60s: lifetime is sensitive to lattice imperfections
 - Brandt et al. (1968): vacancies in ionic crystals
 - Dekhtyar et al. (1969): plastically deformed semiconductors
 - MacKenzie et al. (1967): vacancies in thermal equilibrium in metals
- Positrons are localized (trapped) by open-volume defects

FIG. 1. Positron mean lifetimes in several metals as a function of temperature.
Vacancies in thermal Equilibrium

- Vacancy concentration in thermal equilibrium:
 - in metals $H^F \approx 1...4 \text{ eV} \Rightarrow$ at $T_{m \ [1v]} \approx 10^{-4}...-3 \text{ /atom}$
 - fits well to the sensitivity range of positron annihilation

\[C_{1v}(T) = \exp\left(\frac{S^F_{1v}}{k} \right) \exp\left(\frac{H^F_{1v}}{kT} \right) \]

Tungsten

$H^F = (4.0 \pm 0.3) \text{ eV}$

(Ziegler, 1979)
Determination of Vacancy Formation Enthalphy

THERMAL VACANCIES IN THE NOBLE METALS Cu, Ag, Au, AND IN Pt STUDIED BY POSITRON LIFETIME SPECTROSCOPY

H. E. Schaefer¹, W. Stuck¹, F. Banhart², and W. Bauer

¹Universität Stuttgart, Institut für Theoretische und Angewandte Physik, Pfaffenwaldring 57, D-7000 Stuttgart 80,
²Max-Planck-Institut für Metallforschung, Institut für Physik, Heisenbergstr. 1, D-7000 Stuttgart 80, Fed. Rep. of Germany

- Arrhenius-Plot delivers \(H_{1V} \)
- was performed for many alloys
Vacancies and carbon impurities in α-iron: Electron irradiation

A. Vehanen, P. Hautojaervi, J. Johansson, and J. Yli-Kauppila
Laboratory of Physics, Helsinki University of Technology, SF-02150 Espoo 15, Finland

P. Moser
Section de Physique du Solide, Département de Recherche Fondamentale,
Centre d’Etudes Nucléaires de Grenoble, 85 X, 38041 Grenoble Cédex, France

FIG. 1. Positron-lifetime spectra after source-background subtraction in electron-irradiated \(6 \times 10^{18} \text{ e}^-/\text{cm}^2\) high-purity iron at various stages of isochronal annealing. The dramatic occurrence of a long-lifetime component after 230 K annealing is clearly visible.

- positron lifetime is very sensitive for vacancy-type defects
- here: lifetime increases after irradiation
- and further increase after first annealing: vacancy clustering
The positron lifetime spectroscopy

- positron wave-function can be localized in the attractive potential of a defect
- annihilation parameters change in the localized state
- e.g. positron lifetime increases in a vacancy
- lifetime is measured as time difference between appearance of 1.27 (start) and 0.51 MeV (stop) quanta
- defect identification and quantification possible
Positron lifetime spectroscopy

Positron lifetime: time between 1.27 MeV and 0.511 MeV quanta
• much simpler setup
• timing very accurate
• pulse-shape discrimination (suppress “bad pulses”)
• each detector for start & stop (double statistics)
screenshot of two digitized anode pulses

time difference = 2.65471 samples = 663.67 ps
Positron lifetime spectroscopy

- positron lifetime spectra consist of exponential decay components
- positron trapping in open-volume defects leads to long-lived components
- longer lifetime due to lower electron density
- analysis by non-linear fitting: lifetimes τ_i and intensities I_i

Count

\[
N(t) = \sum_{i=1}^{k+1} \frac{I_i}{\tau_i} \exp \left(-\frac{t}{\tau_i} \right)
\]

\[
\kappa_d = \mu C_d = \frac{I_2}{I_1} \left(\frac{1}{\tau_b} - \frac{1}{\tau_d} \right)
\]

positron lifetime spectrum:

trapping coefficient

trapping rate

defect concentration

As–grown Cz Si

Plastically deformed Si

$\tau_b = 218$ ps (bulk)

$\tau_2 = 320$ ps (divacancies)

$\tau_3 = 520$ ps (vacancy clusters)
Sensitivity limits of PAS for vacancy detection

- **lower sensitivity limit** e.g. for negatively charged divacancies in Si starts at about 10^{15} cm$^{-3}$
- **upper limit**: saturated positron trapping
- defect identification still possible
- Then: only lower limit for defect density can be given
Doppler Broadening Spectroscopy

1. Positron lifetime

2. Angular correlation

\[\Theta_{x,y} = \frac{p_{x,y}}{m_0 c} \]

3. Doppler broadening

0.511 MeV ± \(\Delta E \), \(\Delta E = \frac{p_z c}{2} \)
Measurement of Doppler Broadening

- electron momentum in propagation direction of 511 keV γ-ray leads to Doppler broadening of annihilation line
- can be detected by conventional energy-dispersive Ge detectors and standard electronics
Line Shape Parameters

S parameter:
\[S = \frac{A_s}{A_0} \]

W parameter:
\[W = \frac{A_w}{A_0} \]

W parameter mainly determined by annihilations of core electrons (chemical information)
Doppler Coincidence Spectroscopy

- coincident detection of second annihilation γ reduces background
- use of a second Ge detector improves energy resolution of system

Martin-Luther-Universität Halle
Doppler Coincidence Spectra

\[E_1 + E_2 = 2 \, m_0 \, c^2 = 1022 \, \text{keV} \]
Chemical sensitivity due to electrons at high momentum (core electrons)

- a single impurity atom aside a vacancy is detectable
- examples: \(V_{Ga} - Te_{As} \) in GaAs:Te

Martin-Luther-Universität Halle

High Sensitivity of CDBS for thin Layers

\[I_{\text{ratio}}(E) = (1 - \eta) + \eta \cdot \frac{I_{\text{Sn}}(E)}{I_{\text{Al}}(E)} \]

- Sn layers of different thickness under 200 nm Al
- even very thin layers are visible

C. Hugenschmidt et al. PRB 77 (2008) 092105
Defects in Iron after tensile strength and fatigue treatment

- We performed an extensive study of defects in mechanically damaged iron and steel.
- Positrons are very sensitive: detection of defects already in the Hooks range of the stress-strain experiment.
- Vacancy cluster and dislocations are detectable in both cases.

Somieski et al., J. Physique IV 5, C1/127-134 (1995)
Laterally resolved measurement across Test sample

- Pure Fe sample
- strong damage already for strain < 100% of Hooke’s range -> technically most interesting range
- fraction zone can be predicted from positron measurements

Somieski et al., J. Physique IV 5, C1/127-134 (1995)
Vacancy clusters in semiconductors

- vacancy clusters were observed after neutron irradiation, ion implantation and plastic deformation
- due to large open volume (low electron density) → positron lifetime increases distinctly
- example: plastically deformed Ge
 - lifetime: $\tau = 525$ ps
- reason for void formation: jog dragging mechanism
- trapping rate of voids disappears during annealing experiment

Krause-Rehberg et al., 1993
• there are cluster configurations with a large energy gain
• „Magic Numbers“ with 6, 10 und 14 vacancies
• positron lifetime increases distinctly with cluster size
• for $n > 10$ saturation effect, i.e. size cannot be determined

Vacancy clustering during defect annealing

- electron irradiated Fe
- clustering in early stage can be observed
- very sensitive: formation of divacancies and small clusters ($n < 10$)

FIG. 2. Positron-lifetime parameters as a function of the isochronal annealing temperature in the low-dose electron-irradiated pure iron.

• plastic deformation in LN2
• only gradual annealing (opposite to electron irradiation)
• two defects:
 - small vacancy clusters \((n < 10)\) - annealing at RT
 - dislocations anneal at 600 K

Precipitation phenomena in Al alloys

- Homogenization at 550°C dissolves Cu in Al
- Quenching to RT: oversaturation of Cu
- Equilibrium cannot be obtained at RT (Θ-Phase: CuAl$_2$)
- Metastable particles are formed: Θ'' (Guinier-Preston-Zones) and Θ'
- Are fully coherent in the beginning
- Have extended strain field
- Obstacles for dislocation motion: hardness increases
- Transition to semi- or incoherent particles: stress field collapses
- Hardness decreases
Positron capture at Precipitates

(a) fully coherent
defect inside
semi-
or incoherent

GPZ in AlZn

(b) Mg-V-Paar in AlZnMg

(c) AlSi
Positron capture in GPZ in Al-Zn (6 at%)

- Quenching of Al-Zn (6at%) from \(\alpha \)-Phase: formation of fully coherent GPZ
- are free of defects (no vacancies, no dislocations)
- 1-dimensional ACAR curves
- Zn-content \(\eta \) of GPZ:
 \[
 N_{\text{AlZn}} = (1 - \eta) N_{\text{Al}} + \eta N_{\text{Zn}}
 \]
- Result: \(\eta = 70\% \)
- formation and dissolution of precipitations can be studied
Age-hardening of Al-Zn(15) at 100°C

- Aging at 100°C: Growth of GPZ
- start to get ellipsoidal
- strong hardness reduction
- positrons detecting dislocation at GPZ
- transition of fully coherent GPZ to semi-coherent α'_R-particles
- positron detect directly the first misfit dislocation around the precipitate

R. Krause et al., 1985
Moderation of Positrons

Mean implantation depth of un-moderated positrons from a isotope 22Na source ($1/e$): Si: 100µm

- broad β^+ positron emission spectrum
- deep implantation into solids
- not useful for study of defects in thin layers
- for defect depth profiling: moderation necessary
- monoenergetic positrons can be implanted to different depth
Moderation of Positrons

W (110) single crystal foil (negative workfunction)

fraction

annihilation \(\approx 13\% \)

monoenergetic positrons \(\approx 0.05\% \)

fast positrons \(\approx 87\% \)

moderation efficiency: \(\approx 10^{-4} \)

 positron source

fast e+
The Positron Beam System at Halle University

- spot diameter: 5mm
- time per single Doppler measurement: 20 min
- time per depth scan: 8 hours
The positron beam system at Halle University

- beam valve
- differential pumping
- sample chamber
- magnetic beam guidance system
- 22Na Source
Study of Lubrication Defects

- Study of defects after lubrication treatment
- Steel ball on Cu surface
- Effect of lubricant

Subsurface zones created under lubrication conditions studied by positron annihilation

J. Dryzek, E. Dryzek, F. Börner and R. Krause-Rehberg

* Institute of Nuclear Physics, ul. Radzikowskiego 152, 31-342 Kraków, Poland
* Universität Halle, Fachbereich Physik, D-06099 Halle/S, Germany

Received 11 August 2000; accepted 22 February 2001

Graphs showing positron implantation range (nm) vs. positron energy (keV) for different conditions.
Two intense positron sources available (positrons by pair production)

NEPOMUC (NEutron induced POsitron Source MUniCh) at FRM-II
- PLEPS (monoenergetic positron lifetime system)
- PAES (Positron-induced Auger Electron Spectroscopy)
- CDBS (Coincidence Doppler Broadening Spectroscopy)
- SCM (Scanning Positron Microscope)
- user beam line

EPOS (ELBE Positron Source) at Research Center Dresden-Rossendorf
- MePS (Mono-energetic Positron Spectroscopy)
- GiPS (Gamma-induced Positron Spectroscopy)
- CoPS (conventional setup using 22Na sources)

at both sites: web-based application system for beam time
Lateral Resolution with Scanning Positron Microscope

- lateral resolution 1...2 \(\mu \text{m} \)
- Positron lifetime spectroscopy
- lateral resolution principally limited by positron diffusion
 \((L_+ \approx 100\text{nm})\)

Munich Positron Scanning Microscope

W. Triftshäuser et al., NIM B 130 (1997) 265
SPM on top of cracked sample

Fatigue-Crack in Al 6013
Trapping at Mg / Si-clusters!

Only dislocations close to crack-tip!

\[c_{\text{disl}} = 4 \cdot 10^{11} (\tau - 220 \text{ ps})/(240 \text{ ps} - \tau) \text{ cm}^{-2} \]

W. Egger, G. Kögel, P. Sperr, W. Triftshäuser, J. Bär, S. Rödlink, H.-J. Gudladt
EPOS = ELBE Positron Source

- ELBE -> electron LINAC (40 MeV and up to 40 kW) in Research Center Dresden-Rossendorf
- EPOS -> collaboration of Univ. Halle with FZD
- EPOS will be the combination of a positron lifetime spectrometer, Doppler coincidence, and AMOC
- User-dedicated facility
- main features:
 - high-intensity bunched positron beam ($E_+ = 0.5\ldots30$ keV)
 - very good time resolution by using the unique primary time structure of ELBE
 - digital multi-detector array
 - fully remote control via internet by user
Ground plan of the ELBE hall

1: Diagnosestation, IR-Imaging und biologische IR Experimente
2: Femtosekundenlaser, THz-Spektroskopie, IR Pump-Probe Experimente
3: Zeitaufgelöste Halbleiter-Spektroskopie, THz-Spektroskopie
4: FTIR, biologische IR Experimente
5: Nahfeld und Pump-Probe IR Experimente
6: Radiochemie und Summenfrequenz-Erzeugung, photothermische Spektroskopie
Cave 111b

- electron beam line
- electron-positron converter
GiPS: Gamma-induced Positron Spectroscopy

- 3 coincident setups were used: 2 AMOC and 1 CDBS spectrometer
- only coincident detection ensures high spectra quality
The GiPS setup includes 6 Detectors (4 Ge and 2 BaF$_2$)
Example: Water at RT

- Total count rate in spectrum: 12×10^6

Applications of GiPS since begin of 2009

- neutron irradiated Fe-Cr alloys (highly activated up to 50 MBq 60Co)
- Reactor pressure vessel steel samples from Greifswald nuclear power station
- Iron samples after mechanical damage (LCMTR-ISCSA-CNRS, Frankreich)
- set of Zircony alloys (Collaboration Mumbai/India)
- porous glass (Chem. Department/Univ. Leipzig)
- biological samples
- liquids
Variety of applications in all fields of materials science:

- defect-depth profiles due to surface modifications (ion implantation; tribology)
- soft matter physics (open volume; interdiffusion; ...)
- porosimetry (e.g. low-k materials - highly porous dielectric layers)
- bulk defects in semiconductors, ceramics and metals
- epitaxial layers (growth defects, misfit defects at interface, ...)
- fast kinetics (e.g. precipitation processes in Al alloys; defect annealing; diffusion; ...)
- radiation resistance (e.g. space materials)
- many more ...

This presentation can be found as pdf-file on our Website:
http://positron.physik.uni-halle.de