News of the EPOS Project at the ELBE Radiation Source in the Research Center Dresden-Rossendorf

EPOS-Team & R. Krause-Rehberg

- Extended Concept of EPOS
- Progress of the mono-energetic Positron Beam (MePS)
- Gamma-induced Positron Spectroscopy (GiPS)
- Digital detector system
Extended Concept of EPOS (ELBE Positron Source)

MePS
Monoenergetic Positron Spectroscopy
- Cave 111b / Lab 111d
- monoenergetic (slow) positrons
- pulsed system
- LT, CDBS, AMOC
- Still under construction

CoPS
Conventional Positron Spectroscopy
- LT, CDBS, AMOC
- using 22Na foil sources
- He-cryostat
- automated system
- digital detector system

GiPS
Gamma-induced Positron Spectroscopy
- Cave 109 (nuclear physics)
- Positron generation by Bremsstrahlung
- Information in complete bulky sample (up to 100 cm3)
- all relevant positron techniques (LT, CDBS, AMOC)

Information Depth:
- MePS: 0…5 μm
- CoPS: 10…200 μm
- GiPS: 0.1 mm …5 cm
Ground plan of the ELBE hall

Accelerator Hall

Free Electron Laser (IR)

Neutron TOF Experiments

Positron Production

Bremsstrahlung

RF-generators

Experiment Control

Accelerator Electronics

GiPS

MePS

IR Laboratories

Martin-Luther-Universität Halle
Progress of Mono-energetic Positron Beam

- 40 MeV, 1 mA, 26 MHz repetition time in cw mode; lifetime, CDBS and AMOC with slow e^+
- Retain original time structure for simplicity and best time resolution
Electron-Positron Converter is finished
Still waiting for γ Quanta in Lab ...

- Problem: 10 x 2 steering coils must be adjusted
- automatic LabView program is looking for annihilation gamma at end of beam line
Test of Beam Guidance with an Electron Source
Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis

F.A. Selima,*, D.P. Wellsa, J.F. Harmona, J. Kwofiea, R. Spauldinga, G. Ericksonb, T. Roneyc

aIdaho Accelerator Center, Idaho State University, Campus Box 8263, Pocatello, ID 83209, USA
bBoise State University, Boise, ID 83725, USA
cIdaho National Engineering and Environmental Laboratory, Idaho Falls, ID 83415, USA

Received 16 April 2002; received in revised form 13 August 2002; accepted 20 August 2002
Advantages
- information depth 0.1 … 5 cm; whole sample
- ideal for bulky samples (NDT), liquids, gases, biological objects, coarse powder, dispersions …

Disadvantages of slow LINACs
- Use of “normal” LINAC with 200 Hz has the problem of high gamma flux in only very few bunches
- Count rate very low, thus no coincidence techniques applicable such as CDBS or AMOC
- Peak / BG ratio bad (1:1)
- no lifetime spectroscopy possible

All this disadvantages can be overcome by use of a superconducting LINAC with > 10 MHz
Bremsstrahlung Gamma Source of ELBE (FZ Dresden-Rossendorf)

- Pulsed gamma source using superconductive Linac ELBE
 - repetition frequency 26 MHz (or smaller by factor 2^n) in CW mode!
 - bunch length < 5 ps
 - up to 20 MeV (we used 16 MeV), no activation of samples by γ-n processes was found
 - average electron current 1 mA = 20 kW beam power; electron beam dump outside lab
 - thus gamma background at target position is very low (Ge detectors with 100% efficiency)
- Ideal for GiPS! Is now part of EPOS project – user dedicated positron source.
Setup extended by BaF$_2$ detectors for lifetime measurement

- 3 coincident setups were used: 2 AMOC and 1 CDBS spectrometer
- only coincident detection ensures high spectra quality

Problem
- all scattered quanta appear within positron lifetime – time coincidence alone does not reduce background at all
- but distance helps: for 2 x 511 keV quanta in coincidence the distance dependence is proportional to r^{-2}
- for arbitrary scattered gamma it is $\propto r^{-4}$

AMOC: Age-Momentum Correlation
CDBS: Concidence Doppler-Broadening Spectroscopy
The GiPS setup includes 6 Detectors (4 Ge and 2 BaF₂)
Single-channel Ge Spectrum of annealed Fe

- count rate about 20 kHz (200 kHz would be theoretically possible); total counts in example: 8x10^6
- about 50% of intensity in 511 peak of annihilation line
- decrease below 350 keV due to 5 mm Cu absorber plates in front of Ge detectors
- detection with analog electronics
Comparison annealed and deformed Fe

- expected behavior
- curve of deformed Fe is distinctly taller due to open-volume defects and thus increased fraction of annihilation with valence electrons (small energies – small Doppler shift)
Coincident lifetime spectrum: annealed Fe

- Here coincidence with Ge detector
- Spectrum is projection to the time scale of AMOC spectrum
- Count rate for AMOC spectrum = 320 /s
- One spectrum in 2h
- Time resolution = 210 ps
- BG/Peak = 1.7 x 10^-5
- 350 ps & 1.5 ns: annihilation at vacuum tube (polyethylene)
Residuals of fit show perfect fit

• analysis by LT 9.0 (J. Kansy)
Comparison: GiPS spectrum with conventional measurement

- same sample material – almost same statistics, similar time resolution
- conventional measurement with 22Na source 20 µCi (0.7 MBq) in sandwich geometry
- advantage of periodic positron source is obvious: background distinctly reduced
- result of spectra analysis is the same: 107 ps (bulk value for Fe; corresponds to literature)
Comparison annealed and deformed Fe

- two mechanically identical samples were prepared
- Fe annealed (1100°C; 2h in vacuum) and Fe (50% thickness reduction by cold rolling)
- spectra were easily decomposed
- expected results: annealed sample – one component 107 ps; deformed sample has 158 and 401 ps (dislocations and small vacancy clusters)
AMOC spectrum of annealed Fe

- AMOC: measurement of momentum of annihilating electron as function of positron age
- AMOC detection is not an extra gimmick, but is required to maintain quality of spectra
- only by coincident measurement of 511 keV annihilation line: suppression of scattered gamma (can be concluded from lifetime spectra)
Coincidence Doppler-Broadening Spectroscopy of Fe sample
• total count rate: \(5 \times 10^5\)
• no such visible deviations on \(t < t_0\) like for Fe (due to much smaller gamma scattering compared to Fe)
Amorphous Silica Glass

- round piece 1.5 cm thick, about 5 cm³
- lifetime spectrum: total count rate: 2×10^6
- same sample was measured conventionally in 1978 also in the same institute (former ZfK Rossendorf):

 151 ps - 523 ps - 1.57 ns (FWHM ≈ 350 ps)

G. Brauer et al., Appl. Phys. 16 (1978) 231

![Graph showing lifetime spectrum]

\[\tau_1 = 147 \text{ ps} / 25.6\% \]
\[\tau_2 = 522 \text{ ps} / 22.6\% \]
\[\tau_3 = 1.61 \text{ ns} / 51.8\% \]
Many advantages:

• Pulse shape discrimination
• Exact time base
• extremely simple setup: nothing to adjust
• Timing routines now available
• Online computation using a Linux cluster
Workshop on Digital Signal Processing in Nuclear Science

http://positron.physik.uni-halle.de/EPOS/

Open-source Project
http://positron.physik.uni-halle.de/EPOS/Software/
Conclusions

- new concept of EPOS project is now extended to use mono-energetic Positrons (MePS), Gamma-induced (GiPS) and conventional spectroscopy (CoPS)
- all spectrometers are equipped with LT, CDB, AMOC
- fully digital system (in the future)
- EPOS can cover sample thickness range from 10 nm to 10 cm (7 orders of magnitude)
- MePS still under construction
- GiPS has been tested successfully
 - GiPS only possible because of the unique properties of the ELBE Linac (cw mode of 26 MHz intense and extremely short electron bunches, < 5ps bunch length)
 - background suppression by coincident measurement of Lifetime and Doppler (AMOC)
 - surprisingly good spectra quality
 - coincidence between 2 BaF\textsubscript{2}: resolution improves by 24% (FWHM = 160 ps)
 - problem: heating / cooling of sample because in holder positrons are also generated

Talk available at http://positron.physik.uni-halle.de