Positron annihilation studies using the superconducting electron LINAC ELBE @ HZDR

R. Krause-Rehberg, A. Wagner

- ELBE = Electron LINAC with high Brilliance and low Emittance
- MePS = Mono-energetic Positron source
- GiPS = Gamma-induced Positron Source
- User-dedicated Positron Facilities in Germany (FRM-II & ELBE)
• electron beam repetition frequency 26/2^n MHz
• pulse width 5 ps
• 34 MeV, 1.6 mA cw mode → 54 kW
ELBE facilities

1.6mA, 40MeV CW electron accelerator

coherent IR-radiation
3 – 230 μm

coh. THz radiation
100 μm – 3 mm

neutron time of flight
E_n 0 – 10 MeV

ELBE electrons
10 – 34MeV

Bremsstrahlung
0 – 17 MeV
bulk sample positrons

pulsed, mono-energetic positrons
0.2 – 30 keV

22Na mono-energetic positrons
0.2 – 30 keV

electron laser interaction

GiPS

MePS

Thermo-ionic electron source at ELBE

- working principle of triode
- 250 kV DC voltage
- pulse length 500ps → 11cm
- energy 250 keV
- bunch charge up to 120 pC @ 13 MHz
- but cannot be larger, also not for reduced repetition time

→ I_{beam} up to 1.6 mA for 13 MHz
Superconducting LINAC – Beam Generation

thermal-ionic gun
- 250 kV DC
- 13 MHz pulsed grid

injection
- two RF bunch compressors, apertures, macro pulse generator

linac 1
- DE \sim17 MeV
- @ 10 MV/m CW

linac 2
- DE \sim 19 MeV
- @ 10 MV/m CW

Bunch length: 500 ps

Time structure:
- **beam**
 - (a) CW
 - (b) macro-pulsed

- 0...77 pC bunch train (480 Mio electrons)

- 0.1...36 ms pulse length
- 40 ms...1 s period
- 1E-4...0.9 duty cycle

- 1.5...10 ps bunches
- 4 ns...10 µs period

Helium Liquifier LINDE
- 200 W @ 1,8 K

Martin-Luther-Universität Halle
HZDR in house developed CW superconducting accelerators

Two 1.3 GHz 9-cell TESLA cavities inside a 1.8K helium vessel

250 keV, 1 mA, $\beta=0.74$

20 MeV \cdot 1 mA = 20 kW, $\beta \approx 1$

RF power input, fed by two 10 kW klystrons
Positrons from accelerators

- Bunch length can be adjusted according to lifetimes to be measured
- SC accelerators may provide CW mode - are very useful
EPOS (ELBE Positron Source)

MePS
Monoenergetic Positron Spectroscopy
- monoenergetic (slow) positrons
- pulsed system
- LT, CDBS, AMOC

Information Depth: 0...5 μm

CoPS
Conventional Positron Spectroscopy
- LT, CDBS, AMOC
- using 22Na foil sources
- He-cryostat
- automated system
- digital detector system (in future)

Information Depth: 10...200 μm

GiPS
Gamma-induced Positron Spectroscopy
- Positron generation by Bremsstrahlung
- Investigation of bulky samples (up to 10 cm³)
- all relevant positron techniques (LT, CDBS, AMOC)

Information Depth: 0.1 mm ... 2 cm
What is the optimum electron energy for positron generation?

- positron yield is strong function of electron energy
- however: mean positron energy increases strongly

![Graph showing positron yield and mean positron energy vs. electron energy](image)

\[Y \left[e^+ / 10^9 e^- \right] = 3.319 \times 10^{-4} \left(E_{e^-} [\text{MeV}] \right)^{3.327} \]

- mean positron energy is about 1/5 of electron energy for \(E_{e^-} > 100 \text{ MeV} \)
- moderation efficiency drops strongly at high \(e^+ \) energy
- there must be an optimum energy
- MC simulations required including moderation
What is the optimum electron energy for positron generation?

- Relative yield of positrons as a function of the incident electron energy.
- The yield of total positrons increases virtually continuously (closed squares).
- The number of thermalized positrons appears to approach saturation at about 60 MeV both for reflected moderation (filled circles) or transmitted moderation (open circles).

SLOPOS-12 (Magnetic Island, Australia) talk of Sergey Chemerisov, Chemistry Division, Argonne National Laboratory
MePS: Monoenergetic Positron Source

Flux: $1.2 \cdot 10^6$ e$^+$/s on sample

- max 500 V/cm
- max 2.5 kV/cm

20 cm Pb + 3.2 m concrete shielding

SC-LINAC beam
- 30 MeV, 0.1 mA
- 1.625 MHz repetition rate
- 615 ns spacing

4 ns chopper
78 MHz buncher
Sample

2 keV magnetic transport system

30% HPGe detector for DBS
BaF$_2$ detector for PALS

post-accelerator
-1.5 ... +20 kV
Improvement of spectra quality

Low-k dielectric layers (500nm)
$E_e = 5$ keV

2011

Porous glass

2017

Measured by an analogue System using ORTEC modules
Porous polymer sample

Area: 25 Mio. counts in 8 min
≈ 50 000 counts/s
FWHM ≈ 196 ps
E⁺ = 8 keV
5 ps/ch
Electron beam power = 3.6 of 54 kW

Digitizer: ADQ14-DC for MTCA Form factor
Teledyne SPDevices
14 bit resolution, 2 GS/s, 1.2 GHz analogue bandwidth
1 CPU core = Maximum count rate ≈ 5×10⁴ /s
Possible count rate with hyper-threading is expected to be > 5E5 /s

Advantages of dPALS

Timing with 10⁻⁶ accuracy
Nothing to be adjusted/calibrated
Main advantage: 5 ps/ch possible even for 2 µs long spectra (for 14 bit-MCAs @ 2µs only 122 ps/ch)
AIDA-II at MePS Beamline

- AIDA = Apparatus for in-situ Defect Analysis
- Will be on top of MePS lab
- UHV system for surface analysis and treatment (ions, wide T-range, XPS, positron lifetime)
- Layer deposition
- Time schedule:
 - 2017: beam switch tested
 - April 2018: positron beam tests (resolution, intensity …)
 - End of 2018: setup finished
AIDA-II at MePS Beamline
AIDA-II at MePS Beamline

XPS analysis and PALS chamber
- Positrons are generated in the whole sample volume
- Up to 2cm diameter
- Volume of large samples are completely measured
- Useful for liquids, coarse powders, radioactive samples...
- In spite of scattered original gammas the Peak-to-BG is up to 10^{-5}
- One has to measure AMOC spectra in 12...24 h
GiPS: Gamma-induced Positron Spectroscopy

- Positrons are generated inside the sample
- Coincident measurement → no problem with scattered gammas from sample

$E_e = 16$ MeV

$I_e = 900$ μA

$f = 26$ MHz

$\sigma_t < 10$ ps

studies performed so far:
- animal tissue
- metals and alloys
- semiconductors
- (neutron-activated) reactor materials
- water, glycerol from 10°C to 100°C

- total count rate in GiPS spectrum: 12×10^6
- Extremely clean spectra
- FWHM ≈ 160 ps
- Peak-to-BG $> 10^5$

Example: Water at RT

- M. Butterling et al., Nucl. Instr. & Methods 2011, Volume 269, pp. 2623
• Neutron irradiated steel from reactor vessel steel shows 60Co activity
• Conventional lifetime takes up to 14 days in triple coincidence
• Due to HPGe coincidence at sharply 511 keV with BaF2 detector: high statistics and low background
User-dedicated intense Positron Sources in Germany

- Two intense positron sources available (positrons by pair production)
- **NEPOMUC** (NEutron induced POsitron Source MUniCh) at FRM-II
 - PLEPS (monoenergetic positron lifetime system)
 - PAES (Positron-induced Auger Electron Spectroscopy)
 - CDBS (Coincidence Doppler Broadening Spectroscopy)
 - SCM (Scanning Positron Microscope)
 - user beam line
- **EPOS** (ELBE Positron Source) at Helmholtz Center Dresden-Rossendorf
 - MePS (Mono-energetic Positron Spectroscopy)
 - GiPS (Gamma-induced Positron Spectroscopy)
 - CoPS (conventional setup using 22Na sources)

- at both sites: web-based application system for beam time
- Next date at ELBE is 9. April 2018 (contact me for help)
Conclusions

• A superconductive LINAC is an ideal positron source due to unique time structure
• Optimum electron energy is 40...60 MeV
• Electron beam repetition time can be adjusted according to positron lifetime (38 ns 1.3 µs)
• **MePS:**
 o 1 µs bunch length is possible without intensity losses: 5...10×10^4 cps possible now
 o Digital positron lifetime for high count rates available
• **GiPS:**
 o high-quality spectra possible for bulky, radioactive or liquid samples
 o All data measured as AMOC spectra

This presentation can be found soon as pdf-file on our Website:
http://positron.physik.uni-halle.de
Thanks to

Helmholtz-Zentrum Dresden-Rossendorf
M. Butterling, T. E. Cowan, E. Hirschmann, M.O. Liedke, K. Potzger, T.T. Trinh, W. Anwand

University Halle
A.G. Attalla, M. Elsayed, A. Ibrahim, M. John, M. Jungmann, A. Müller

http://positron.physik.uni-halle.de
The GiPS setup includes 8 Detectors (4 Ge and 4 BaF$_2$)
Digital positron lifetime measurement

- simple setup
- timing very accurate
- each detector for start & stop (double statistics)
Screenshot of two digitized anode pulses

Time difference = 2.65471 samples = 663.67 ps