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Foreword

The interaction of electromagnetic (EM) radiation with molecular systems gives
rise to quantized transitions between the electronic, vibrational and rotational
molecular energy states which may be observed by UV/visible and infra-red ab-
sorption spectroscopies at frequencies above about 1 THz (1012 Hz). These quan-
tum spectroscopies for molecules in the gaseous, liquid and solid states form a
large part of physical chemistry and chemical physics. However, if one asks a fel-
low scientist “what happens when EM radiation in the range 10–6 to 1012 Hz is ap-
plied to those systems”the answer is usually tentative and incomplete,which shows
that a majority of scientists are unfamiliar with the dielectric dispersion and ab-
sorption phenomena that occur in this vast frequency range due to (i) dipole re-
laxation arising from the reorientational motions of molecular dipoles and (ii)
electrical conduction arising from the translational motions of electric charges
(ions, electrons). This is the domain of Broadband Dielectric Spectroscopy (BDS).

At frequencies below about 108 Hz a dielectric sample is regarded as a com-
plex electrical impedance Z*(ω), expressed in terms of the resistance R(ω) and
capacitance C(ω), which are frequency-dependent extensive properties (here ω
= 2πf/Hz where f is the measuring frequency). The intensive complex dielectric
quantities of dielectric permittivity ε*(ω), electrical modulus M*(ω), electrical
conductivity σ*(ω) and resistivity ρ*(ω) are immediately derivable from Z*(ω).
Researchers traditionally use these different quantities to express BDS data for
materials, which is a source of confusion when assessing the dielectric/electrical
properties of a given material reported in the literature. Dipole relaxation be-
haviour is normally represented in terms of ε* and electric conduction behav-
iour in terms of σ*, Z*, M* or ρ*.

Starting in the late nineteenth century, dielectric measurement techniques
were developed for materials such as molecular liquids and solids and moder-
ately-conducting materials such as electrolytes and semiconductors. Transient
current methods were used for very low frequencies (f < 1 Hz) and a.c. bridges
for power, audio, UHF and VHF frequencies (1 to 107 Hz). In the 1940s distrib-
uted circuit methods were introduced for microwave frequencies (108 to 1011 Hz)
and in the 1970s novel spectroscopic methods were developed for far infrared
frequencies (3×1011 to 3×1012 Hz). In the main, measurements were made point-
by-point at each frequency in the range of interest, which was difficult, and time-
consuming. This held back the use of dielectric spectroscopy as an investigative
physical technique at times when rapid advances were being made in the related
techniques of NMR, quasi-elastic light scattering and photon-correlation spec-
troscopy. Nevertheless extensive dielectric data for a host of organic and inor-
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ganic materials were obtained prior to the early 1980s using these methods.
Subsequently modern commercial impedance measuring devices for low fre-
quencies and commercial network analysers, time-domain reflectometers and
laser spectroscopies for high frequencies became available and were developed
for broadband dielectric studies of materials. Automatic measurement and pro-
cessing methods, made possible by on-line computers used in combination with
the new instruments, transformed dielectric measurements of materials. Now it
is possible to obtain accurate dielectric data quickly and efficiently over the en-
tire frequency range 10–6 to 1012 Hz and means that BDS has now taken its right-
ful place alongside other modern investigative techniques for studying the
structure and molecular dynamics of materials.

Debye (1927) established that dielectric relaxation, which is the dispersion of
the real permittivity (ε′) and the occurrence of dielectric absorption (ε′′) in the f-
domain for dipolar liquids and solids, was due to the reorientational motions of
the molecular dipoles. Many dielectric studies followed, especially those by Smyth
(Princeton) and Cole (Brown) that were started in the 1930s. Early areas of study
included dipolar liquids (e.g. chlorobenzene, polar solutes in non-polar solvents),
rotator-phase crystals (e.g. cyclohexanol, the polymorphs of ice), non-polar poly-
mers (e.g. polyethylene, polypropylene), polar polymers (e.g. polyacrylates, ny-
lons, polyamides). Knowledge of the low frequency permittivity allowed molecu-
lar dipole moments to be determined,which was useful for the elucidation of mol-
ecular structures prior to the use of modern spectroscopic techniques. The di-
electric loss spectra characterized the reorientational dynamics of molecules in
the different materials.Also dielectric studies were made for inorganic solids that
have ferroelectric properties (e.g. barium titanate) or are semi-conducting (e.g.
doped silicon,organic photoconductors and semi-conductors) which have impor-
tant applications in solid state devices. In parallel, extensive BDS data were ob-
tained for electrolytes, polyelectrolytes, organic and inorganic semi-conductors,
giving information on electrical conductivity and hence the mobilities of the ef-
fective charge carriers. More recently many BDS studies have been made for novel
polymers, glass-forming liquids, liquid crystals (e.g. alkylcyanobiphenyls), poly-
meric liquid crystals (e.g. polysiloxanes with mesogenic side chains), ferroelectric
organic materials (e.g. chiral alkylcyanobiphenyls and their polymeric deriva-
tives), electrolytes (e.g. KCl/H2O), molten salts (e.g. Ca-K/NO3) and polyelec-
trolytes (e.g. polyethylene oxide/salt solutions). Such researches were often moti-
vated by the applications of these materials in devices for modern technology. For
example (i) the dielectric anisotropy of the liquid crystal is the source of the opti-
cal switching process in liquid crystal displays while (ii) new thin-film solid-state
electrolytes are sought for battery applications.

As the data-base for the broadband dielectric behaviour of different materi-
als increased, phenomenological and molecular theories for dipole relaxation
and charge conduction were developed. The molecular theories required the de-
duction of ε*(ω) or σ*(ω) from the field-induced perturbation of the field-free
reorientational and translational motions of molecular species. Such theories
become extremely difficult for complex motions, e.g. as for multi-site motions of
dipoles or ions in crystals or structured liquids. The situation changed com-
pletely when Kubo (1957), using linear response theory and time-dependent sta-
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tistical mechanics, showed that σ*(ω) was related, via Fourier transformation, to
the field-free mean-squared displacement of charges with time 〈ΔR2(t)〉 or to
their velocity correlation function 〈v(0)v(t)〉. For dielectric relaxation Glarum
(1961) and Cole (1965) related ε*(ω),via Fourier transformation, to the field-free
dipole moment correlation function 〈�(0)�(t)〉 with time. Thus Fourier inver-
sion of σ*(ω) or ε*(ω) gave direct determinations of these t-dependent molecu-
lar properties, which could in turn be fitted by chosen models for motions of
molecules or charges. Research texts dealing with dielectric data (mainly for
molecular liquids and solids) were published by Smyth (1955), Fröhlich (1958),
Hill, Vaughan, Price and Davies (1969) and Böttcher and Bordewijk (1978) and
for polymers by McCrum, Read and Williams (1967) and Runt and Fitzgerald
(eds) (1997). Obviously the wide range of materials studied in different fre-
quency bands for their dipole relaxation and conduction behaviour, the differ-
ing backgrounds of the researchers (physicists, chemists, materials scientists,
electrical engineers, chemical engineers, theorists) and the publication of the re-
searches in different journals of physics, physical chemistry/chemical physics,
electrical engineering, polymer science and materials science made it increas-
ingly difficult for scientists to monitor overall activities in dielectric spec-
troscopy. A great help to this effect have been the International Discussion
Meetings on Relaxations in Complex Systems organized by K.L. Ngai and his as-
sociates held in Crete (1990), Alicante (1993) and Vigo (1997), published as spe-
cial issues of J Non-Crystalline Solids, and that held in Crete (2001) where re-
searchers in different areas of dielectrics science have been brought together
along with a host of researchers that use related relaxation, scattering and spec-
troscopic techniques for the study of the dynamics of materials.

The stage has been reached where the foundations of broadband dielectric
spectroscopy are well-established in terms of the large body of literature for the
dielectric behaviour of dipolar materials and moderately-conducting elec-
trolyte systems, phenomenological and molecular theories that relate ε*(ω) and
σ*(ω) to empirical relaxation functions and to time-dependent molecular prop-
erties that give information on the reorientational and translational motions of
molecules and charges in molecular liquids and solids. In this book the editors
Friedrich Kremer and Andreas Schönhals have built on these foundations,
through their own contributions and those of other leading scientists, taking the
subject forward into those areas where BDS is making vital and new contribu-
tions to our understanding of the dynamics of complex systems. After a sum-
mary of the essentials of modern experimental techniques and dielectric theo-
ries (Chaps. 1–3) experimental data are shown over the entire frequency range
for glasses, supercooled liquids, amorphous polymers (Chaps. 4, 5, 7), (poly-
meric) liquid crystals (Chap. 10) and semi-conducting disordered materials
(Chap. 12) where multiple dipole relaxations are observed and are analysed in
terms of particular motional processes. BDS provides a powerful method for
studying the dynamics of molecules in confined spaces down to the mesoscopic
and molecular levels (Chap. 6). Since the capacitance of a dielectric sample is in-
versely proportional to its thickness, BDS is highly suitable for studies of ultra-
thin films, in contrast to NMR, light scattering and other spectroscopic tech-
niques. The effects of film thickness on molecular dynamics in ultra-thin poly-
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mer films are clearly demonstrated (Chap. 11) and provide severe tests of results
for glass-forming materials obtained from other physical techniques. In-
homogeneous media (Chap. 13) give rise to interfacial polarization in addition
to dipole relaxation and charge-conduction and this is particularly important in
multi-phase liquids and polymers, emulsions and biological systems. The com-
ponent structures of relaxation processes and the questions of dynamic hetero-
geneity in organic materials are further elucidated by the new, sophisticated
techniques of pulsed and non-resonant dielectric hole-burning (Chap. 14). BDS
studies provide evidence for the structure and molecular dynamics in all these
systems, evidence is obtained on the molecular dynamics which complements
that obtained using the related techniques of solvation dynamics (Chap. 15), dy-
namical mechanical spectroscopy (Chap. 16), multi-dimensional multi-nuclear
NMR (Chap. 17) and neutron scattering (Chap. 18). While dielectric relaxation
behaviour is usually studied over wide ranges of frequency and sample temper-
ature, the relaxation strength, relaxation time and its distribution are all affected
significantly by applied pressure. This ‘forgotten variable’ (G. Floudas, Chap. 8)
can be used to separate overlapping relaxations or induce crystallization – which
transforms the relaxation behaviour in crystallizable polymers. Modern tech-
niques allow broadband dielectric measurements to be made in real time for
polymerizing systems where a liquid mixture transforms to a glass or an elas-
tomer during reaction (Chap. 9). These studies monitor changes in molecular
dynamics during the polymerization reaction and demonstrate the role of dif-
fusion-control on reaction rate when a glass is formed.

Thus the editors and contributors show in this remarkable book that modern
BDS techniques, as applied to a wide range of amorphous, crystalline and liquid
crystalline systems,can give new and vital information on the reorientational and
translational motions of dipolar molecules or electric charges and how the char-
acteristics of these motions vary with temperature and pressure and with the
physical condition of the material (bulk or thin film,confined geometries,macro-
scopic orientation (e.g. for liquid crystals)). They show how the wide frequency
range of BDS may be utilised to obtain a detailed knowledge of individual mo-
tional processes whose time-scale may be in a range from picoseconds to kilo-
seconds and show further how this information complements that obtained for
the same materials using related relaxation, scattering and spectroscopic tech-
niques. A new researcher, or one from a related field of study, will find this ‘state-
of-the-art’ account of broadband dielectric spectroscopy to be invaluable since
inter alia it provides clear examples of the power of the technique to elucidate the
dynamics of condensed systems, many of which have applied interest. Most im-
portant of all, the information provided by the BDS researches described here
will stimulate new lines of research, not only into the applications of modern di-
electric techniques to new materials and to time-varying systems but also to the
development of further novel techniques that will test and extend the conclusions
reached presently from BDS, NMR, mechanical relaxation, light scattering, neu-
tron scattering, optical relaxation and related techniques concerning the detailed
nature of molecular dynamics in organic and inorganic materials.

Swansea, UK, July 2002 Prof. Dr. Graham Williams 



Preface

The interaction of electromagnetic waves with matter in the frequency regime
between 10–6 and 1012 Hz is the domain of broadband dielectric spectroscopy. In
this extraordinarily extended dynamic range, molecular and collective dipolar
fluctuations,charge transport and polarization effects at inner and outer bound-
aries take place, and determine the dielectric properties of the material under
study. Hence broadband dielectric spectroscopy enables us to gain a wealth of
information on the dynamics of bound (dipoles) and mobile charge carriers de-
pending on the details of the molecular system. In recent years novel dielectric
instrumentation has been developed which allows for automatic measurements
in nearly the entire range from ultra low frequencies up to the Far Infra Red.

It is intended that this book be more than a monograph at the leading edge of
research. Therefore in three introductory chapters written in the style of a text-
book, broadband dielectric spectroscopy is described in its theoretical founda-
tion, its experimental techniques, and in the way dielectric spectra have to be an-
alyzed. In the chapters 4–13, examples are described where the dielectric
method has made important contributions to modern scientific topics. This is,
of course, far from being a comprehensive overview and corresponds to the re-
search interests of the editors. In chapters 14 and 15, two novel experimental
techniques are introduced which are closely related to dielectric spectroscopy.
Special attention is given in chapters 16–18 to the comparison between dielec-
tric and other spectroscopic techniques such as mechanical, NMR, and neutron
scattering.

The editors would like to thank all the contributors to this volume for their ef-
ficient collaboration. Many chapters of the book were read by G. Williams who
made numerous suggestions from which the book benefited a great deal. The
patient help of Mrs. I. Grünwald in typing some of the manuscripts and manag-
ing the correspondence is thankfully acknowledged. The editors would also like
to thank Dr. M. Hertel and Springer Verlag for the competent cooperation.

July 2002 F. Kremer
A. Schönhals
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1 Theory of Dielectric Relaxation

A. Schönhals · F. Kremer

1.1
Introduction

The interaction of electromagnetic fields with matter is described by Maxwell’s
equations (Eqs. 1.1–1.4)

(1.1)

(1.2)

(1.3)

and

(1.4)

In this set of equations E and H describe the electric and magnetic field, D the
dielectric displacement, B the magnetic induction, j the current density and 
ρe the density of charges 1. For small electric field strengths D can be expressed
by

(1.5)

where ε0 is the dielectric permittivity of vacuum (ε0 = 8.854 × 10–12 As V–1 m–1).
ε* is the complex dielectric function or dielectric permittivity2. According to
Maxwell’s equations (Eqs. 1.1–1.4) ε* is time (or frequency) dependent if time
dependent processes take place within the sample. There can be different rea-
sons for this. Resonance phenomena are due to atomic or molecular vibrations
and can be analysed by optical spectroscopy. The discussion of these processes

D E=ε ε*
0

div =B 0

div =D ρe

rot = +H j D∂
∂t

rot =–E B∂
∂t

1 Units: E – [Vm–1]; H – [Am–1]; B – [Vs m–2]; D – [As m–2]; j – [A m–2].
2 According to Eq. (1.5) also a linear relationship between the magnetic field H and the mag-

netic induction B can be defined as where μ* = μ′ – i μ′′ is the complex mag-
netic permittivity. μ′ and μ′′ denote the corresponding real and loss part. μ0 is the magnetic
permittivity of vacuum (μ0 = 1.256637 × 10–6 Vs A–1 m–1). μ0 and ε0 are related by

where c is the velocity of light in vacuum.ε μ0 0 2

1=
c

B H= 0μ μ*



is out of the scope of this book. Relaxation phenomena are related to molecular
fluctuations of dipoles due to molecules or parts of them in a potential land-
scape. Moreover, drift motion of mobile charge carriers (electrons, ions or
charged defects) causes conductive contributions to the dielectric response. In
general, time dependent processes within a material lead to a difference of the
time dependencies of the outer electrical field E(t) and the resulting dielectric 
displacement D(t). For a periodic electrical  field3 E(t) = E0 exp(– iω t) (ω is the 
radial frequency4, i = √4–1) the complex dielectric function ε* is defined by

ε* (ω) = ε′ (ω) – iε″ (ω) (1.6)

where ε′(ω) is the real part and ε′′(ω) the imaginary part of the complex di-
electric function. In the stationary case which will only be considered during the
course of this chapter the difference of the time dependencies of E(t) and  and
D(t) is a phase shift. Due to Maxwell’s equations the complex dielectric function
is related to the complex index of refraction by

(1.7)

with n*(ω) = n′(ω) + in′′(ω). In this sense dielectric (relaxation) spectroscopy
can be regarded as continuation of optical spectroscopy to lower frequencies.
The corresponding function to ε*(ω) in the time domain is the time dependent
dielectric function ε(t) where the relationship between ε*(ω) and ε(t) is dis-
cussed during the course of this chapter.

Because D and E are vectors ε*(ω) (or ε(t)) is in general a tensor. This be-
comes important for anisotropic systems like liquid crystalline [5] or crystalline
materials. For sake of simplicity the tensorial character of the dielectric proper-
ties is neglected in the further discussion of this chapter.

The polarization P describes the dielectric displacement which originates
from the response of a material to an external field only. Hence it is defined as

P = D – D0 = (ε*– 1) ε0E = χ*ε0E with χ* = (ε*– 1) (1.8a)

where χ* is the dielectric susceptibility of the material under the influence of an
outer electric field. For higher field strengths (>106 V m–1) 5 non-linear effects
may take place which can be described by

(1.8b)P E E P E E= + ... in general = +2 +1

...
odd

ε χ β ε χ β0 1 0
1

* *E Ei
i

i
  

=
∑

ε* *=( )2n
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3 This is not an essential assumption because every time dependence can be represented by a
periodical one applying Fourier analysis.

4 ω denotes the radial frequency with the unit [rad s–1]. The relation to the technical fre-
quency v is v = ω/2π. The unit of n is [Hz].

5 Clearly the actual value of the electric field strength at which the dielectric behaviour becomes
non-linear depends on the system under investigation. On the one hand for poly(tetra fluro
ethylene) (Teflon) a value >5 × 106 V m–1 is observed. On the other the dielectric behaviour of
ferroelectric liquid crystals shows non-linear effects for field strengths of 103 V m–1.



The coefficients βi are called hyperpolarizabilities. It should be further noted
that only odd powers contribute to that series development for thermodynamic
and symmetry reasons (note . In the course of this chapter only
considerations which are based on the linear approximation (Eqs. 1.5 and 1.8a)
will be discussed.

Similar to Eq. (1.5) Ohms law

(1.9)

gives the relationship between the electric field and the current density j where
σ*(ω) = σ′(ω) + iσ′′(ω) is the complex electric conductivity. σ ′ and σ′′ are the
corresponding real and imaginary parts. Because the current density and the
time derivative of the dielectric displacement are equivalent quantities accord-
ing to Eqs. (1.2) and (1.5) it holds

(1.10)

This chapter is organized as follows. In the first part the essential points of elec-
trostatics are reviewed. That means the dielectric properties are discussed at an
infinite time after an application of an outer electric field. In the second part the
theory of time dependent dielectric processes is developed in the frame of the
linear response scheme.

1.2
Electrostatics

In general a macroscopic polarization P can be related to microscopic dipole
moments pi

6 of the molecules or particles within a volume V by

(1.11a)

where i counts all dipole moments in the system7. Molecules (or particles) have 
a dipole moment if the electric centres of gravity of positive and negative charges
do not match. The simplest case is given by a positive charge +q and a negative
one –q being separated by a distance d with the dipole moment p = qd. For 
any distribution of charges ρe(r) the dipole moment can be expressed by 

.
The microscopic dipole moments can have a permanent or an induced char-

acter. The latter is caused by the local electrical field ELoc which distorts a neu-
tral distribution of charges. In the linear case p = αELoc holds where the polar-
izability8 α is a measure for the mobility of negative and positive charges. One

p r r r= ( ) 3ρeV
d∫

P p= 1
V i∑

σ ωε ε* *=i 0

j E=σ *

P E P E( ) = – (– ))
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6 During the course of this chapter dipole moments will in general be labelled by p. For per-
manent dipole moments the notation � is used.

7 The SI unit of the dipole moment is As m. But very often also the unit Debye (D) is used
where 1D = 3.336 × 10–30 As m.

8 Similar to ε * α is also a tensor which is neglected for sake of simplicity.



example of induced polarization is the electronic polarization where the nega-
tive electron cloud of an atom (molecule) is shifted with respect to the positive
nucleus. Electronic polarization takes place on a time scale of 10–12 s because 
of the low mass of the electron. Atomic polarization can take place at a slight-
ly longer time scale. These effects can be summarized by an induced polariza-
tion P∞. Another example of charge separation which is based on a complet-
ely different mechanism is the electrode [6] and the Maxwell/Wagner-Polari-
zation [7].

Many molecules have a permanent dipole moment � which can be oriented
by an electrical field. Hence for a system containing only one kind of dipoles
Eq. (1.11a) becomes

(1.11b)

where N denotes the whole number of dipoles in the system and 〈�〉 the mean di-
pole moment. If the system contains different kinds of dipoles one has to sum up
over all kinds. This is neglected for the sake of simplicity in further considerations.

In general the mean value of the dipole moment is determined by different
factors. Assuming that inertia effects contribute only to P∞ the main factors are
the interaction of dipoles and the strength of the electric field at the location of
the dipole. Assuming in the simplest approach first that the dipoles do not in-
teract with each other and second that the electric field ELoc at the location of the
dipole is equal to the outer electrical field the mean value of the dipole moment
is given only by the counterbalance of the thermal energy and the interaction
energy W of a dipole with the electric field given by W = –� · E. According to
Boltzmann statistics one gets [4, 8]

(1.12a)

where T is temperature, kB Boltzmann constant and dΩ the differential space 

angle. The factor gives the probability that the dipole moment 

vector has an orientation between Ω and Ω + dΩ. Only the dipole moment com-
ponent which is parallel to the direction of the outer electric field contributes to
the polarization. Therefore the interaction energy is given by W = – μE cos θ
where θ is the angle between the orientation of the dipole moment and the elec-
trical field (see inset Fig. 1.1). So Eq. (1.12a) simplifies to
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The term 1/2 sin θ corresponds to components of the space angle in θ direction.
With x = (m E cos θ)/(kBT) and a = (m E)/(kBT) Eq. (1.12b) can be rewritten as

(1.13)

where Λ(a) is the Langevin function. The dependence of Λ on a is given in
Fig. 1.1. For small values of interaction energy of a dipole with the electric field
(field strengths |E| ≤ 106 Vm–1) 9 compared to the thermal energy Λ(a) ≈ a/3
holds. Therefore Eq. (1.12) reduces to

(1.14a)

Inserting Eq. (1.14a) into Eq. (1.11b) yields
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Fig. 1.1. Dependence of the Langevin function Λ(a) vs a (dashed line) together with the linear
approximation (solid line). The inset shows the geometrical scheme (spherical coordinate sys-
tem) for derivation of Eq. (1.13)

9 It can be shown that this linear approximation is valid for . For

higher field strengths more terms of the series development

have to be used.
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and with the aid of Eq. (1.8a) the contribution of the orientational polarization
to the dielectric function can be calculated as

(1.15)

where covers all contributions to the dielectric

function which are due to electronic and atomic polarization P∞ in the optical
frequency range.

Equation (1.15) enables one to estimate the mean molecular dipole moment
of 〈μ2〉1/2 from dielectric spectra.However,one has to keep in mind that two main
assumptions were made to derive Eq. (1.15): (i) the dipoles should not interact
with each other which is true only for very diluted systems and (ii) local field ef-
fects (shielding of the outer electric field, see below) are negligible. In the fol-
lowing considerations effects which are due to a shielding of the outer electrical
field will be discussed first. After that some methods to model the interaction
between different dipoles are described.

Shielding effects which are also known as local field effects (or internal reaction
fields) are due to the fact that a molecule with a permanent dipole is surrounded
by other particles. So the field of that permanent dipole polarizes its environment
proportional to the polarizability α. Moreover, if the surrounding particles also
have permanent dipole moments their orientation will be influenced too.A calcu-
lation of the interplay of these two effects is in principle possible by means of sta-
tistical mechanics but in practice it is difficult to take into account both the inter-
action of molecules and the microscopic structure. The first approach to treat this
problem was published by Lorentz [9].A cavity was considered in an infinitely ex-
tended media and the polarization P of that cavity was calculated (see Fig. 1.2a). It
was assumed that the local electrical field ELoc is proportional to the polarization
of the cavity ELoc = E + aLor(P/ε0) and that the surrounding media can be de-
scribed by the static dielectric permittivity εS. For a sphere10 (so called Lorentz
sphere) the coefficient aLor is equal to 1/3. The relation between the dielectric
function and the polarizability α was derived by Mossotti [11] and Clausius
[10]. For apolar molecules the polarization induced by the total electrical (outer
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ω ω

S = lim ( ).  lim ( )
→

∞
→∞

′ = ′
0

ε ε
ε

μ
S

Bk T
N
V

− =∞
1

3 0

2

6 1 Theory of Dielectric Relaxation

10 According to Lorentz the internal field in homogeneously polarized matter can be calcu-
lated as the field in a virtual sphere where the outer electrical field induces apparent charges
on the surface of this virtual sphere. The electric field due to these charges is calculated by
dividing the surface of the sphere in infinitesimally small bands perpendicular to the outer
field. The apparent surface charge density on these bands is given by – P cos θ and the 
corresponding surface element by 1/2 r2 sinθ dθ. θ is the angle between the direction of
the outer and the induced field. The charge on each band can be calculated to dQ =
– 1/2 r2 P sin θ cos θ dθ. The field contribution dESphere in the direction of the outer electric

field is given by . Therefore the field due to the sphere is

The local electrical field is given by .

E P P
Sphere d 1

3
= =∫2 0

2

0 0ε
θ θ θ

ε
sin cos

π

d = d
Sphere 2

E Q
r

cosθ
ε0

E E E ELoc Sphere
+= + = εS 2
3



field and Lorentz-) field is given by . For the static case 

Eq. (1.8a) gives P = ε0(εS – 1) E. The combination of both equations gives [4]

(1.16a)

where the volume density of dipoles is expressed by . M is the 

molar mass of the molecule and ρ is the density of the system. NA denotes the
Avogadro number. For polar molecules the effect of orientation polarization has
to be included and with Eq. (1.14b) one finds

(1.16b)

which is also known as the Debye-formula.
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Fig. 1.2. Schematic 
illustrations for the deriva-
tion of: a the Clausius/
Mossotti equation;
b the Onsager formula;
c the Kirkwood/Fröhlich
correlation factor



The most general extension of the Debye-formula for polar molecules was
given by Onsager by the theory of the reaction field [12] which considers the en-
hancement of the permanent dipole moment of a molecule � by the polariza-
tion of the environment 11 (reaction field) (Fig. 1.2b). For a spherical cavity the
reaction field is parallel to the permanent dipole moment and for the resulting
dipole moment of the molecule m = � + αELoc holds. The detailed calculation
[4, 12] gives

(1.17a)

with

(1.17b)

Equation (1.17) can be used to estimate dipole moments for non-associating or-
ganic liquids. For an overview see Table 1.1 where for a number of molecules the
dipole moment calculated using Eq. (1.17) was compared with that measured in
the gas phase. The values were taken from [4]. In many cases a reasonable agree-
ment was found. Moreover Table 1.1 gives the F-value which corresponds to the
error which is made neglecting the reaction field. In most cases F ≈ 1.9–3.3 was
found for a variation of εS –ε∞ from 0.6 to 34. This means that the Onsager factor
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Table 1.1. Comparison of dipole moments measured in the gas phase μGas and estimated from
the dielectric properties of a liquid using the Onsager formula μOnsag (Eq. 1.17). In addition the
Onsager factor is given. The data are taken from [4]

Compound T [K] εS ε∞ εS – ε∞ μOnsag μGas F
[D] [D]

Chloroform 239 4.77 2.20 2.57 1.18 1.01 2.39
Bromoform 293 4.39 2.70 1.69 0.92 0.99 2.81
Chloromethane 253 12.6 1.97 10.6 1.74 1.87 2.43
Bromomethane 273 9.82 2.17 7.65 1.55 1.81 2.76
Bromoethane 293 9.39 2.13 7.26 1.84 2.03 2.55
Dichloromethane 288 9.28 2.13 7.15 1.68 1.60 2.55
Dibromomethane 288 7.41 2.49 4.92 1.37 1.43 2.87
Nitromethane 303 35.9 1.99 33.9 3.44 3.46 2.58
Cyanomethane 293 27.2 1.96 25.2 3.36 4.02 2.52
Chlorobenzene 293 5.64 2.43 3.27 1.40 1.69 2.69
Ethoxymethane 293 4.37 1.92 2.45 1.40 1.15 2.10
2,2-Dichloropropane 293 11.37 2.10 9.27 2.45 2.27 2.56
Cyanobenzene 288 26.0 2.44 23.5 3.48 4.18 3.13
Nitrobenzene 293 34.89 2.52 32.3 4.06 4.22 3.28
Propanone 298 20.7 1.93 18.7 3.03 2.88 2.45
Trimethylamine 273 2.57 1.95 0.62 0.66 0.61 1.88

11 The field strength of the reaction field can be in the order of 105 Vm–1 [4].



F is an unspecific correction. A more refined discussion of the whole problem
can be found in [4].

For polar associating liquids Eq. (1.17) fails. Table 1.2 compares the dipole
moments for associating liquids estimated from the Onsager equation with that
measured in the gas phase. The reasons for the failure are static orientation cor-
relations between molecules which are not considered in the derivation of the
Onsager equation. Such specific interactions between molecules can be caused
for instance by hydrogen bonding, steric interactions etc. and can lead to asso-
ciations of molecules. Dielectric spectroscopy on such liquids measures the ef-
fective dipole moment of such assemblies which can be greater or smaller com-
pared to the dipole moment of the single molecule depending on the molecular
structure.

In the frame of statistical mechanics [4, 13] the contribution of the orienta-
tion polarization to the dielectric function is given by

(1.18)

where 〈P(0)P(0)〉 is the static correlation function of polarization (dipole) fluc-
tuations. The symbol (0) refers to an arbitrary time, for instance t = 0. In further
consideration it is dropped for brevity. The averaging denoted by the brackets
has to be done over the whole system considering all interactions. From a prac-
tical point of view this seems to be difficult to do. Therefore Kirkwood [14–16]
and Fröhlich [17] introduced the correlation factor g to model the interaction
between dipoles with respect to the ideal case of non-interacting dipoles. In gen-
eral the Kirkwood/Fröhlich correlation factor is defined by

(1.19)

where μ2 is the mean square dipole moment for non-interacting isolated dipoles
which can be measured, for instance, in the gas phase or for diluted solutions.
The g-factor can be smaller or greater than 1 depending on the case if the mole-
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Table 1.2. Comparison of dipole moments measured in the gas phase μGas and estimated from
the dielectric properties of the liquid using the Onsager formula μOnsag (Eq. 1.17) for as-
sociating compounds. In addition the Kirkwood/Fröhlich factor is given. The data are taken
from [4]

Compound T [K] μOnsag [D] μGas [D] g

Hydrogen cyanide 293 5.66 2.98 1.899
Methanol 293 2.95 1.70 4.650
Formamide 293 4.91 3.73 1.310
Propionic acid 293 0.87 1.75 0.497
Heptanol-1 293 2.90 1.66 1.746
3-Ethylpentanol-3 297 1.08 1.61 0.670

�i � j� i � j



10 1 Theory of Dielectric Relaxation

cules have the tendency to orient anti-parallel or parallel. So the experimental
determination of g enables one to estimate the orientation of the molecules with
respect to each other.

Equation (1.19) is a formal definition of the Kirkwood/Fröhlich correlation
factor. For a practical calculation of g Eq. (1.19) has the same difficulties as
Eq. (1.18). To simplify this problem Kirkwood/Fröhlich considered a region con-
taining Ñ molecules (see Fig. 1.2c) [4, 17]. These Ñ molecules were treated ex-
plicitly. The remaining N–Ñ molecules were considered like in the Onsager ap-
proach as an infinite continuum where the dielectric behaviour is characterized
by εS. With these assumptions one gets

(1.20a)

with

(1.20b)

The accuracy of this method can be made as high as necessary by making Ñ as
large as needed. A first approach to calculate g is to consider only the nearest
neighbours of a selected test dipole. For that case g can be approximated by

g = 1 + z ·cos ψ Ò (1.21)

where z is the coordination number and ψ is the angle between the test dipole and
a neighbour [4].Table 1.2 gives some values for g for different liquids. It shows also
the large effect that orientation correlations expressed by g can have on εS.

For an isolated polymeric chain the calculation of g is much more complicated
than for low molecular weight molecules because 104 to 106 carbon atoms are co-
valently bound for that case. However, theoretical considerations are possible in
the frame of the Rotational Isomeric State (RIS-) model [18]. In the case of rod-
like polymers orientation correlations can lead to giant dipole moments for the
whole chain.A detailed discussion about that problem concerning different chain
structures can be found in [19]. A discussion is also given in Chap. 7.

1.3
Dielectric Relaxation (Dielectric Retardation)

1.3.1
Linear Response Theory and Fluctuation Dissipation Theorem

The dielectric relaxation theory for small electric field strengths is a special case
of linear response theory [13] (see Appendix 1.1). In the following we will only
focus on the isotropic system. Within this approach the time dependent re-
sponse y(t) of a system, this means the response of the system following a dis-
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turbance x(t), can be described by a linear equation. In dielectrics the distur-
bance is the time dependent external electrical field x(t) = E(t) and the response
of the system is the polarization y(t) = P(t). In that case linear response theory
gives [20]

(1.22)

where ε(t) is the time dependent dielectric function and P∞ covers all contribu-
tions arising from induced polarization. Equation (1.22) is based only on linear-
ity (the response of the system on two disturbances is the sum of the two single
reactions) and causality (only disturbances in the past contribute to the re-
sponse at the time t). ε(t) can be measured directly as the time dependent re-
sponse caused by a step-like change of the outer electrical field (dE(t)/dt = E0
δ(t); ε(t) = (P(t)–P∞)/E0ε0). The relationships between the time dependence of
the electric field, the polarization and the time dependent relaxation function is
sketched in Fig. 1.3 for a step-like change of the electric field.

Because the polarization is an intensive thermodynamic quantity ε(t) is a
generalized compliance. This statement is important because if different exper-
imental methods are compared a generalized compliance (modulus) should 
be compared with a compliance (modulus). For a comparison of dielectric 
relaxation with other relaxational methods (like mechanical one etc.) see
Appendix 1.1.

If a stationary periodic disturbance E(t) (ω) = E0 exp(–iωt) is applied to the
system where ω is the angular frequency, Eq. (1.22) is transformed to

P(t)(ω) = ε0(ε*(ω) –– 1)E(t) (ω) with ε*(ω) = ε′(ω) –– iε′′(ω) (1.23)

where ε*(ω) is the complex dielectric function. ε′(ω) is proportional to the en-
ergy stored reversibly in the system per period and the imaginary part ε′′(ω) is
proportional to the energy which is dissipated per period. The relationship of
ε*(ω) to the time dependent dielectric function ε(t) is given by

(1.24)

Equation (1.24) is a one-sided Fourier or full imaginary Laplace transformation
[20]. Some further relationships between the time and frequency domain are
given in Fig. 1.4.

Like for all one-sided Fourier transformations of a causal function the real
and the imaginary part of ε*(ω) are related to each other by the Kramers/Kronig
relations [13, 20] (for a derivation of Eq. (1.25) see Appendix 1.2):
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Fig. 1.3. Schematic relationships between the time dependence of the electric field ΔE (small
solid line), the polarization P and the time dependent relaxation function ε(t) (heavy solid
line). The vector sign is omitted for sake of simplicity in the figure. The symbols denote the
norm of the corresponding vectors



The functional H [ ] denotes the Hilbert transformation. From an experimental
point of view Eq. (1.25) means that both ε′(ω) and ε′′(ω) carry the same infor-
mation. Some numerical programs to solve Eq. (1.24) are for instance published
in [21]. However, because of the limited frequency range and conductivity con-
tributions including Maxwell/Wagner or electrode polarization the practical ap-
plicability of the Kramers/Kronig transformations is limited for dielectric ex-
periments. The well known relationship that the dielectric strength Δε can be
obtained by integrating the imaginary part

(1.26)

is obtained directly from Eq. (1.25) for ω = 0 (for details see [17, 20] or
Appendix 1.2).

As already pointed out the time dependent dielectric function ε(t) or the
complex dielectric function ε*(ω) are generalized compliances. The related
modulus is called electric modulus M(t) in the time domain and complex elec-
tric modulus M*(ω) = M′(ω) + i M′′(ω) in the frequency domain where M′ and
M′′ denote corresponding real and imaginary parts. The relationship between
the compliance and the modulus is given by
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Fig. 1.4. Transformation relationships of linear dielectric response theory



where δ(t) is the Dirac function. In the frequency domain

(1.28)

holds (see [20] or Appendix 1.2).
Thermodynamic quantities which characterize a macroscopic sample are 

average values. However, because of the stochastic thermal movement of the
molecules (or particles) these quantities fluctuate around their mean values
[13].This general statement is of course also true for the polarization of a mate-
rial 12. According to Appendix 1.3 for the stationary state the auto correlation
function of the polarization fluctuation Φ(τ) is given by

(1.29)

where τ denotes the time variable. It is obvious that Φ(0) = 1 and Φ(τ → ∞) = 0
hold. Inserting Eq. (1.11b) one gets for Φ(τ) [20–23]

(1.30)

Equation (1.30) is the time dependent generalization of Eq. (1.18). The first part
in Eq. (1.30) is the dipole-dipole auto-correlation function while the second part
describes cross-correlations. It was argued that the cross-correlation terms can
have a considerable magnitude and that their sign can be negative or positive
[22, 23]. Also, the analysis of experimental data for the dynamic glass transition
(α-relaxation) indicates that cross-correlations might be important. For in-
stance the temperature dependence of the dielectric relaxation strength of the
dynamic glass transition shows for a broad variety of materials a much stronger
temperature dependence than predicted by the Onsager/Kirkwood/Fröhlich
theory (Eq. 1.20) [24, 25] (see also Chap. 4). That can be regarded as a hint that
cross-correlation terms can be important for complex (cooperative relaxation)
processes. It should be noted that cross-correlation terms not only include sta-
tic correlations – which can be described in principle by the Kirkwood/Fröhlich
correlation factor – but also dynamic correlations. Clearly the cross-correlations
will decay with increasing distance between dipoles i and j. It was further argued
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by Williams and coworkers [26] that the time dependence of the cross-correla-
tions may be equal to the time dependence of the auto-correlation function of a
selected test dipole.

The inverse Fourier transformation of the correlation function Φ(τ)

(1.31)

is called spectral density (ΔP2)ω and is a measure for the frequency distribution
of the fluctuation ΔP. If the correlation function can be characterized by a cor-
relation time τC (e.g. Φ(τ) = Φ(τ/τC)) for the spectral density (ΔP2)ω > 0 holds
for a frequency interval around 1/τC. In probability theory the spectral density is
also called power spectrum [27]. Historically this name originates from the 
statistical investigation of voltage fluctuations within an insulator. For a fur-
ther discussion of that quantity see Appendix 1.3.

Another representation to express the characteristic frequencies or times
which contribute to the dielectric response is the relaxation time distribution
L(τ). For the complex dielectric function

(1.32)

holds.A more complete set of equations is given in Fig. 1.3. Equation (1.32) mea-
sures the frequency distribution within the dielectric response by Debye func-
tions 13. From a mathematical point of view Eq. (1.32) represents a Stiltje-trans-
formation.

The Fluctuation Dissipation Theorem (FDT) of Callen and Welton [13, 28, 29]
relates the response of a system onto an outer disturbance to the spontaneous
fluctuations within the system. For classical systems (no quantum effects)

(1.33)

holds. The macroscopic response is related to the microscopic fluctuations by
these equations. Equation (1.33) means that for a small (linear) disturbance a
system reacts only in the way it fluctuates.

1.3.2
Theoretical Considerations (Models)

From a microscopic point of view the correlation function can be calculated by
means of irreversible statistical mechanics [30]. In principle the polarization 
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P= P(q,p) is a function of all coordinates q and impulses p. The energy of the
system is described [30] by the Hamiltonian

(1.34)

H0 is the equilibrium energy of the system and H1 represents the energy of small
fluctuations. The correlation function of the polarization fluctuation is given by

(1.35)

where Q is the partition function of the system [13, 30].
The evaluation of Eq. (1.35) is difficult because only in rare cases the polar-

ization is known as a function of all coordinates and impulses. So usually mod-
els have to be used to describe dielectric relaxation phenomena and to extract
information from them.

Equation (1.35) is a general relationship of statistical physics. However, tak-
ing into consideration that dielectric spectroscopy measures reorientation prop-
erties of dipoles which are bound to molecules one can introduce in the sense of
Eq. (1.12) spherical coordinates instead of Cartesian. Therefore, for a reference
dipole Eq. (1.35) can be rewritten [32] as (see inset of Fig. 1.1)

(1.36)

where f (Ω0) 14 is the initial distribution of dipoles and f (Ω,t/Ω0,0) is the condi-
tional probability of obtaining the dipole vector at Ω at the time t given it had
the orientation Ω0 at t = 0.cos θ denotes the projection of the dipole vector �(Ω)
having an orientation Ω at the time t on the vector �(Ω0) having an orientation
at Ω0 at t = 0.

Mori, Zwanzig and coworkers (see [31] for details) have shown that every15

time correlation function can be expressed by a memory function K(t). This fact
was emphasized by Williams recently [32, 33]. There are several ways to express
Φ(t) by K(t). One possibility is to express the Fourier transformation Φ *(ω) of
Φ(t) by a continuous fraction 16 of the Fourier transformations K*

n(ω) of the n-
th memory function Kn(t). This continuous fraction can be truncated at some
level m < n.Another way for the representation of Φ(t) has been given by Berne
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[31]. Φ(t) was expressed by a coupled set of Voltera integral equations involving
the memory functions Kn(t) which corresponds of course to the continuous
fraction representation. It was emphasized by Douglas and Hubbard [34] that
the correlation function of an observable property can be described by [31]

(1.37)

If K(t) can be calculated by a molecular model or if K(t) can be expressed by an
empirical function the correlation function and also the observable quantities
like the dielectric function can be calculated. In the frame of the linear response
theory the memory function can be related to the correlation function of the
fluctuation of the projected forces [30].

1.3.2.1
Debye Relaxation

Neglecting inertia effects the most simple ansatz to calculate the time depen-
dence of dielectric behaviour is the assumption that the change of the polari-
zation is proportional to its actual value (first order differential equation.) 
[8, 17, 20]

(1.38)

where τD is a characteristic relaxation time. Equation (1.38) leads to an expo-
nential decay for the correlation function Φ(τ)

(1.39)

For the complex dielectric function ε*(ω)

(1.40)

is obtained17.
Equation (1.39) does not fulfil the mathematical conditions which are neces-

sary for a correlation function for t → 0. So for short times Φ(τ) have to be re-
placed by another functional relationship like a Gaussian one.

The phenomenological Eq. (1.39) can be justified by different molecular
models. The first is a simple double potential model with stable states 1 and 2.
The states have the populations n1 and n2. Thermal fluctuations lead to transi-
tions from 1 to 2 with the rate Γ12 and from 2 to 1 with the rate Γ21 (see Fig. 1.5a).
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A symmetrical potential (Γ12 = Γ21 = Γ, n1 = n2 = 1/2) is disturbed by an
outer electrical field of ΔU = –�E ≠ 0  which leads to Γ12 ≠ Γ21 and n1 ≠ n2:

(1.41)

The polarization of the system can be calculated to P = �(n1–n2). After switch-
ing off the electrical field (ΔU = 0) at the time t = 0 the populations change ac-
cording to dn1/dt = –n1Γ + n2Γ. For the polarization

(1.42)

is obtained. Equation (1.42) corresponds to Eq. (1.39) with τD = 1/2 Γ.
The Debye relaxation can be also derived in the frame of the rotational diffu-

sion model. Within this model the motion of a rigid isolated fluctuating dipole
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Fig. 1.5. a Model of a double
minimum potential. An
outer electrical field dis-
turbs the symmetrical po-
tential by ΔU = –�E ≠ 0.
b Model of an asymmetric
four minima potential for a
dipole [40]



(rotator) is regarded in viscous media under the influence of a stochastic force.
For the sake of simplicity the outer electrical field E(t) should have the direction
of the z-axis. The dynamical behaviour of the rotator is given by its radius and
the rotational diffusion coefficient DRot. The distribution function of the orien-
tations f(r, t) can be described by a Focker/Planck equation [30]

(1.43)

where Δ means the second differential with regard to space coordinates. The
transition to spherical coordinates and taking into consideration that the prob-
lem is symmetric with regard to x and y leads to (see inset Fig. 1.1)

(1.44)

Because of the assumed symmetry of the rotator with regard to its long axis,
Eq. (1.44) can be solved by development into Legendre polynomials Pm(cos(θ))
[35] (see also Eq. (1.13), m counts the order of the polynomials) and the corre-
lation function can be expressed by (see for instance [31, 32])

(1.45)

Only the component of the dipole moment which is parallel to the outer electri-
cal field contributes and hence only the first polynomial (m = 1) P1(cos(θ)) =
cos(θ) has to be considered. That means for the dielectric relaxation the model
of rotational diffusion leads to an exponential correlation function with τD =
1/(2DRot). For other experiments like Kerr effect measurements [37], Raman and
light scattering [38] or NMR spectroscopy [39] the measured quantity is pro-
portional to P2(cos(θ)). That must be considered in a comparison of different
experimental methods.

In the frame of the memory function formalism (compare Eq. (1.37)) the
Debye relaxation is obtained by

(1.46)

Equation (1.46) implies that the molecular events leading to a Debye-like relax-
ation are not correlated neither in time nor in space.

1.3.2.2
Models for Non-Debye Relaxation

Only in rare cases a Debye-like relaxation behaviour according to Eqs. (1.39) and
(1.40) is observed. Usually the measured dielectric functions are much broader
than predicted by the Debye function. Moreover, in many cases the dielectric
function is asymmetric. That means that the short time (high frequency) be-
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haviour is more pronounced than the long time (low frequency) one. This is
called non-Debye or sometimes non-ideal dielectric relaxation behaviour.

Formally such a non-Debye relaxation behaviour can be expressed in every
case by a superposition of Debye-functions with different relaxation times (see
Eq. 1.32). It should be pointed out that a formal separation of non-Debye relax-
ation behaviour into different Debye-like relaxation processes does not justify 
a molecular interpretation according to independent Debye-like relaxation
processes 18. Such an interpretation might be true for special types of molecular
motions (like local molecular motions). In these cases one can argue that the di-
electric spectra result from a distribution of different environments which mod-
ifies the activation energy. However, such an interpretation fails for cooperative
processes.

A simple case to obtain a relaxation time spectrum is an extension of the dou-
ble minimum potential model (see Fig. 1.5a) to an asymmetric four minima po-
tential (see Fig. 1.5b) [40]. Such a four minima potential model can be regarded
as a simple realization of a more complicated energy landscape.

The definition of the used quantities like the transition rates Γ0i or the popu-
lations of the states ni can be taken from Fig. 1.5b. The probability wi that the sys-
tem is in the state i is given by

(1.47)

Denoting with �i0 = �i – �0 the change of the dipole moment the probability wi
that the system is in the state i with an applied field is given by

(1.48)

where �i0E/kBT � 1 was used. In analogy to Eq. (1.42) for the dynamics of the
system the following system of differential equations can be given (see Fig.1.5b):

(1.49)

where Γi0 and Γ0i denote the transition rates according to
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methods like for instance dielectric hole-burning spectroscopy (see Chap. 14).



Γi,∞ are the transition rates in equilibrium. The solution of Eq. (1.49) with the
ansatz nj = Nj exp(– λj/t) leads to an algebraic equation for the four relaxation
rates λj. One relaxation rate is identical zero. Therefore the asymmetric four
minima potential model leads to a relaxation time spectrum with three different
relaxation rates or times where the time dependence of the populations (which
are directly related to the change in polarization) are given by

(1.51)

The values Ni,j can be calculated from the initial conditions and from the popu-
lation of the different states in equilibrium (see Eq. 1.48). Some further consid-
eration of two- and multiple site models can be found in [41] which have been
developed using group theory. It should be noted that by this method field-free
time-correlation functions can also be derived [42].

In many cases the non-Debye relaxation behaviour in the time domain is em-
pirically described by the Kohlrausch/Williams/Watts-function [43, 44] (KWW-
function) which reads

(1.52)

The stretching parameter βKWW (0 < βKWW ≤ 1) leads to an asymmetric broad-
ening of Φ(τ) at short times (high frequencies) compared with the exponential
decay (βKWW = 1). τKWW is the related relaxation time. The corresponding mem-
ory function for a correlation function according to the KWW-function can be
estimated to be [32, 34]

(1.53)

There are many models in the literature to understand or to derive Eq. (1.52)
from a molecular point of view. One of the first models was developed by
Glarum and is called Defect-Diffusion-Model [45]. It starts from the considera-
tion that a selected dipole can reorient if a so-called defect reaches it. From a
molecular point of view such a defect can be regarded as a decrease of the local
density close to the dipole (increase of free volume; for the free volume model
see for instance [46]). For the correlation function Φ(t)

(1.54)

was proposed where ψ(t) is the probability that a defect reaches the dipole. It
was furthermore assumed that the defect diffuses through the sample. Therefore
a one-dimensional diffusion equation 19 for the movement and an equipartition
of defects was assumed. The solution of these equations leads to a KWW-type
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correlation function with βKWW ≈ 0.5. To explain also other values of βKWW the
Defect Diffusion model was extended including a waiting time distribution for
the diffusion of defects [48–50]. This idea was developed mainly by Bendler,
Shlesinger and Montroll. To recover a KWW-type correlation function the wait-
ing time distribution must have a functional form proportional to

~ (1.55)

where Γ( ) is the Gamma function. From a mathematical point of view this is a
Levy distribution [50]. Zwanzig showed that the incorporation of a waiting time
distribution corresponds to a change from classical random walks (ordinary dif-
fusion) to continuous time random walks [51].

Another way to look at the physical basis of the KWW-function was intro-
duced by Ngai [52–54] (coupling scheme). (For a further discussion of the cou-
pling scheme see also [55–57].) It was assumed that the primary relaxation
mechanism of the molecules (primary species) is due to a coupling among the
molecules. This will lead to a time dependent relaxation rate according to

(1.56)

where τ0 is a time constant (primitive relaxation time) and f(t) is a (reduced)
time dependent relaxation rate. The former characterizes the interaction of the
primary species with a heat bath.At a time τc the coupling of the primary species
leads to a change of the dynamics and the relaxation rate slows down. So roughly
speaking τc measures the complexity of the system. The theoretical basis of a
time dependent relaxation rate is provided by the classical Liouville dynamics
[58] supplemented by an extension of the Dirac constraint theory with time de-
pendent constrains [59, 60]. In the coupling scheme for the time dependent re-
laxation rate f(t)

(1.57)

was assumed empirically. The parameter nc characterizes the strength of the
coupling between the primary species. With Eq. (1.57) Eq. (1.56) gives a KWW-
type correlation function with βKWW = 1 – nc and

τ* = τKWW = [τc
–nc τ0]�

1
91–nc � (1.58)

where τ* is an effective relaxation time of the system.Very recently the coupling
scheme was further supported by the theory which considered the dynamical
behaviour of interacting arrays of coupled non-linear oscillators [61].

In the frequency domain the data are often described by the empirical func-
tion of Havriliak and Negami [62] which reads
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The fractional shape parameters β and γ (0 < β; βγ ≤ 1) describe symmetric and
asymmetric broadening of the complex dielectric function20. Moreover β and γ
are related to the limiting behaviour of the complex dielectric function at low
and high frequencies:

(1.60)

(1.61)

That behaviour was called universal dielectric response by Jonscher [63].
Douglas and Hubbard [34] have shown that the memory function K(t) which
leads to a relaxation behaviour according to the HN-function can be approxi-
mated by

(1.62)

There is only one molecular model which predicts a correlation function with
two shape parameters – the Cluster-Model of Dissado and Hill [64]. The model
starts from the consideration that the structure of a material is inhomogeneous
in general. From a very general point of view disorder means that the structure
of a material can be reorganized into different levels which correspond to length
scales ranging from the microscopic to the macroscopic. The structure on each
level will be localized over its scale and will be further the element – in a kind 
of coarse grained model – of structure with the next larger size. In the
Dissado/Hill-model the material is described on a molecular scale by clusters. In
the case of an ordered (crystalline) solid a cluster can be defined as a distortion.
In the alternative case of a liquid the clusters are assumed to be partly associated
molecules [64]. In the spirit of such a model the clusters are not static but dy-
namic. That means the cluster will be built up, exist for a certain time and will
be annihilated. Consequently, two kinds of molecular motions are possible: in-
ter-cluster and intra-cluster motions. The latter corresponds to the appearing
and the disappearing of clusters. Dissado and Hill could show that in the frame
of such a model the correlation of the inter-cluster motion should have the func-
tional form

(1.63)

where γC is a rate for localized fluctuations (coupling to a heat bath) and ζ–1 cor-
responds to the lifetime of the clusters. The parameter n (0 < n ≤ 1) defines the
order within the cluster: n = 0 completely disordered and n = 1 perfect three-
dimensional crystalline material.

It was argued further that the probability of the disappearance of a cluster at
the time t1 can be written as ~ t1

–m where m (0 < m ≤ 1) is a parameter which de-
fines the order of the array of clusters. For consistency reasons the probability to
build a cluster must have the form ~ (t – t1)m for t > t1. Therefore the probability
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to change the array of clusters completely can be written as (t – t1)m t1
–m and the

correlation function of the whole process can be expressed as

(1.64)

Equation (1.64) can be integrated which leads to

(1.65)

where 1F1( ) is the confluent hypergeometric function [35].
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Appendix 1.1
Linear Response Theory

An outer disturbance x(t) may act on a system and may cause the response y(t).
Assuming linearity (the response of the system on two disturbances is equal to
the sum of the two single reaction) and causality (only disturbances in the past
contribute to a response at the time t) the response y(t) can be described by fol-
lowing linear material equation:

(A1.1)

J̃(τ) is the so-called memory or material function which can be measured as the
time dependent response to a step-like disturbance (δ denotes the Dirac func-
tion):

(A1.2)

y∞ is the response which is not due to relaxation processes (response for very
short times, fully elastic response). Partial integration leads to a further repre-
sentation of Eq. (A1.1) which is often used in the literature:

(A1.3)

where yS is the static response for long times.
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Because Eqs. (A1.1) and (A1.3) are linear they can be inverted:

(A1.4)

x(t) and y(t) form a pair of conjugated variables. In the frame of linear response
theory y(t) is regarded as an extensive quantity (proportional to the volume of
the system); in that case J̃(τ) is called a generalized compliance and the time de-
pendent process is called retardation. If y(t) is an intensive quantity (indepen-
dent of the volume) according to Eqs. (A1.1) and (A1.4) x(t) must be an exten-
sive quantity (proportional to the volume of the system). The corresponding
material function G̃ (τ) is a generalized modulus. The time dependent process is
defined as relaxation.Because Eq. (A1.4) is the inverse of Eq. (A1.1) J̃(τ) and G̃(τ)
are related to each other by

(A1.5)

In the following for the time dependence of x(t) a periodic disturbance x(t) =
x0exp(–iωt) will be assumed where ω is the (radial) frequency. In the stationary
case one finds

(A1.6)

where J̃ *(ω) is the generalized complex susceptibility. Again partial integration
leads to

(A1.7)

The corresponding equations for the modulus are

(A1.8)

The indices S and ∞ denote the corresponding values for ω → 0 and ω → ∞ re-
spectively.

As a consequence of Eq. (A1.5) the simple relation
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holds between the generalized compliance and the generalized modulus in the
frequency domain.

The different experimental methods in the frame of the linear response the-
ory are compared in Table A1.1.

Appendix 1.2
Derivation of the Kramers/Kronig-Relationships

To derive the Kramers/Kronig relationships, methods of complex function the-
ory have to be employed. Cauchy’s integral theorem states that the integral of
f(ξ) (ξ- is a complex quantity) along a closed contour C inside a simple con-
nected region is zero, i.e.

(A2.1)

The only requirement for Eq. (A2.1) is that f (ξ) is  analytic inside the region sur-
rounded by C [65]. With the aid of Cauchy’s integral theorem the follow-
ing formula can be obtained expressing the value of a function f(ω) in a point 
ξ = ω in terms of values of the function on a closed contour surrounding the
point ω

(A2.2)f
i

f

C

(  dω ξ
ξ ω

ξ)
( )=
−∫

1
2π

f
C

( ) d 0ξ ξ =∫
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Table A1.1. Comparison of different experimental methods in the frame of the linear response
theory

Type of Disturbance a Response a Compliance Modulus
Experiment x(t) y(t) J̃ (τ) or J*(ω) G̃(τ) or G*(ω)

Dielectric Electric field Polarization dielectric Electric 
E P susceptibility modulus

χ*(ω) = (ε*(ω)–1)
Mechanical Shear tension Shear angel Shear compliance Shear modulus
shear σ J(t) G(t)
Isotropic Pressure Volume Volume Compression 
compression p V compliance modulus

B(t) V K(t)
Magnetic Magnetic field Magnetization Magnetic –

H M susceptibility
μ*(ω)–1

Temperature Temperature Entropy Entropy Temperature
change T S compliance modulus

JS(t) GT(t)

a Depending on the definition of the different quantities in some case a multiplication with
the volume is necessary to meet the definition of extensive and intensive quantities.



The Chauchy integral formula is valid for functions which are analytic in the re-
gion enclosed by C and on C itself.

To derive the Kramers/Kronig relationships f(ξ) = ε*(ξ) – ε∞ is considered
with an integration path, formed by the closed contour of the real axis (avoiding
ω) and the semicircle in the upper complex half plane (see Fig. A2.1). According
to Eq. (A2.2) one gets

(A2.3)

Because ε*(ξ) – ε∞ goes to zero for R → ∞ the function (ε*(ξ) – ε∞)/(ξ – ω) ap-
proaches zero stronger than 1/ξ for R→ ∞. So the second integral vanishes for 
R → ∞ and Eq. (A2.3) becomes

(A2.4)

The integral in Eq. (A2.4) means the Chauchy principal value of the integral 
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Fig. A2.1. Integration path C
for the derivation of the
Kramers/Kronig relation-
ships: a without a singu-
larly at ξ = 0; b with a sin-
gularity at ξ = 0 according
to f (ξ) = iA/ξ

dx



in Eq. (A2.4) is a real quantity. The separation into the real and imaginary part
gives the Kramers/Kronig relations (see Eq. 1.25):

(A2.5)

From the definition of the complex dielectric function (Eq. 1.24) the relation

(A2.6)

follows where ε̂ *(ω) is the complex conjugated function of ε*(ω). Separation into
the real and imaginary part yields

(A2.7)

With Eq. (A2.7), Eq. (A2.5) can be written as

(A2.8)

which leads to

(A2.9)

Recalling that εS = ε′(0) one finds for ω → 0

(A2.10)

If the function f (ξ) has a singularity with f (ξ) = iA/ξ at ξ = 0 then the sur-
rounding of that singularity by a semi circle (Fig.A2.1b) gives the additional real
contribution – A/ω which has to be added to Eq. (A2.4) yielding

(A2.11)

Therefore, one has to conclude that a conductivity term proportional to A/ω in
the imaginary part of the complex dielectric function has no contribution in the
real part.
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Appendix 1.3
Fluctuation Dissipation Theorem

Thermodynamic quantities which characterize a macroscopic sample are aver-
age values. Because of the stochastic motions of the molecules (or particles)
these quantities fluctuate around their mean value [13]. An example for that is
Brownian Motion. Let x(t) be a quantity of a well defined subsystem21 of a sam-
ple with a macroscopic significance and 〈x〉 its average value. For instance, x can
be the volume, the energy or also the polarization of the subsystem. Δx(t) = x(t)
– 〈x〉 defines the stochastic process of the fluctuations of x(t). For a stationary
process the average value 〈Δx(t)〉 vanishes but the mean quadratic fluctuation
〈Δx(t)2〉 = 〈Δx2〉 is different from zero. The correlation function is defined as av-
erage of the product of two values Δx separated by a time τ

(A3.1)

The correlation function describes the dependence of Δx(t + τ) on Δx(t). In the
stationary state the time t does not play a role:

(A3.2)

with Ψ(–τ) = Ψ(τ). That means Ψ is a symmetrical function with regard to τ.
For τ → ∞ Ψ = 0 holds. The relationship of the correlation function to 〈Δx2〉 is
given by 〈Δx2〉 = Ψ(0). Therefore often the normalized correlation function

(A3.3)

is considered. The inverse Fourier transformation of the correlation function
Ψ(τ)

(A3.4)

is called spectral density (Δx2)ω and is a measure for the frequency distribution
of the fluctuation Δx. (In the theories of stochastic processes (Δx2)ω is often
called power spectrum [27]. Historically this name stems from the statistical
treatment of the voltage fluctuations in an insulator.) The relationship to the
mean square fluctuation is given by

(A3.5)

and it holds (Δx2)ω = (Δx2)–ω
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21 According to [13] a subsystem is defined as a small but macroscopic part of the sample hav-
ing all its natural interaction with the surrounding.



The Fluctuation Dissipation Theorem (FDT) of Callen and Welton [28] relates
the response of a system to an outer disturbance to the spontaneous fluctuations
of the system. For classical systems (no quantum effects)

(A3.6)

hold, relating the macroscopic response to the internal fluctuations of a subsys-
tem. Equation (A3.6) means that – within the linear response – a system reacts
and fluctuates based on the same microscopic mechanism.

List of Abbreviations and Symbols

a Reduced electrical interaction energy
B Volume compliance
B Magnetic induction
d Distance
D Dielectric displacement
E Electric field
F Onsager factor
1F1 Confluent hypergeometric function of the order l,l
g Kirkwood/Fröhlich correlation factor
GT Temperature modulus
G* Shear modulus
G̃ Generalized modulus
H Hamiltonian
H [] Hilbert transformation
H Magnetic field
j Current density
J* Shear compliance
J̃ Generalized compliance
JS Entropy compliance
kB Boltzmann constant (k = 1.381 × 10–23 J K–1)
K Memory function
L Relaxation time distribution
m Effective dipole moment
m, n Low and high frequency slope of the HN-function
M Molar mass of a particle
M*; M ′, M ′′ Complex electrical modulus; real and imaginary part of the

electrical modulus
nc Coupling parameter
n*; n′, n′′ Complex index of refraction; real and imaginary part of the

complex index of refraction

    ( )
˜ ( )

    ( ) ˜( )
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k T
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NA Avogadro number (NA = 6.022 × 1023 mol–1)
p Microscopic dipole moment
P Polarization
q Charge
Q Partition function of a system
S Entropy
t Time
T Temperature
U, Ui Potential energy
V Volume
w Transition probabilities
α Polarizability
βKWW Stretching parameter of the KWW-function
β; γ Fractional shape parameters of the HN-function
βi Hyperpolarizabilities
ε*; ε′, ε′′ Complex dielectric function, real and imaginary part of the

complex dielectric function
ε0 Dielectric permittivity of vacuum (ε0 = 8.854 × 10–12 As V–1 m–1)
εS; ε∞

Δε = εS – ε∞ Dielectric strength, dielectric intensity
Γ Molecular transition rate
Γ () Gamma function
δ Dirac-(delta-) function
θ Angle between the dipole moment and the electric field
Λ() Langevin function
� Permanent dipole moment
ν, ω Frequency, radial frequency
ρe Density of charges
σ∗; σ ′, σ ′′ Complex conductivity, real and imaginary part of the complex

conductivity
τ Relaxation time
τD, τHN, τKWW Relaxation time of the Debye-, HN- and KWW-function
Φ Correlation function of the polarization fluctuation
χ∗ Dielectric susceptibility
Ω; (θ and φ) Space angle

FDT Fluctuation Dissipation Theorem
HN Havriliak/Negami
KWW Kohlrausch/Williams/Watts

ε ε ω ε ε ω
ω ω

S
0

= lim ( ); = lim ( )
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2 Broadband Dielectric Measurement Techniques
(10–6 Hz to 1012 Hz)

F. Kremer · A. Schönhals

2.1
Introduction

The complex dielectric 1 function ε* (ω) = ε′(ω)– iε′′(ω) can be measured in the
extraordinary broad frequency regime [1–13] from 10–6 Hz up to 1012 Hz (in
wavelength 3 × 1016 cm – 0.03 cm). To span this dynamic range different mea-
surement systems based on different measurement principles have to be com-
bined (Fig. 2.1). From 10–6 to 107 Hz lumped circuit methods are used in which
the sample is treated as a parallel or serial circuit of an ideal capacitor and an
ohmic resistor. Effects of the spatial extent of the sample on the electric field dis-
tribution are neglected. With increasing frequency the geometrical dimensions
of the sample capacitor become more and more important limiting this ap-
proach to about 10 MHz. In addition parasitic impedances caused by cables,
connectors, etc. become important at frequencies >100 kHz.

Using distributed circuit methods (107 Hz – 1011 Hz) the complex dielectric
function is deduced by measuring the complex propagation factor (in reflection
or transmission). Both, waveguide as well as cavity techniques can be applied.

In the dynamic range between 10–6 Hz and 1010 Hz the complex dielectric
function ε*(ω) can also be deduced from a measurement of the time dependent
dielectric function ε(t). The latter is related to ε*(ω) via a Fourier transforma-
tion

(2.1)

with ε∞ = ε′ (ν ≈ 1011 Hz). For frequencies between 1010 Hz –1012 Hz (in wave
numbers –λ = λ–1 = 0.3 cm–1 – 30 cm–1, λ: wavelength in vacuum) quasioptical
set-ups as polarizing Mach-Zehnder interferometers or oversized cavity res-
onators are employed. The latter has the advantage that it is suitable for very low
loss materials and for measurements at low temperatures. The main experimen-
tal difficulty in this frequency range arises from the large coherence length of

ε ω ε ε ω*( ) ˙( )− =∞
−

−∞

+∞

∫ t ti te d

1 Dielectric data are also often presented in terms of the complex conductivity σ* = iωε0ε*

or the complex electrical modulus M* = 1/ε*. For dipolar relaxation processes ε* is usually
used while for systems with mainly conductive processes σ* or M* prevails.
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Fig. 2.1. Survey of measurement techniques used in the frequency range from 10–6 Hz –
1015 Hz



the mm- and sub-mm-wave sources (backward wave oscillators, klystrons, gun-
oscillators, etc.) resulting in multiple standing wave patterns. Above 1011 Hz
Fourier-Transform spectrometers are used. Due to the throughput and the mul-
tiplex advantages they are superior to arrangements using monochromators.
More specialized dielectric techniques are discussed in Chaps. 14–16.

2.2
Measurements in the Frequency Domain from 10–6 Hz to 1011 Hz

For a capacitor C* filled with a material under study the complex dielectric func-
tion is defined as

(2.2)

where C0 is the vacuum capacitance of the arrangement. ω is the angular fre-
quency with ω = 2πν = 2πT–1 with T as time for one period.ε′(ω) and ε′′(ω) de-
scribe the real and imaginary part of the complex dielectric function. Using a si-
nusoidal electric field E*(ω) = E0 exp(iω t) with the angular frequency ω and at
field strengths within linear response (for most materials E0 ≤ 106 V cm–1) the
dielectric function can be derived by measuring the complex impedance Z*(ω)
of the sample

(2.3)

where J*(ω) is the complex current density and ε0 the permittivity of free space.
To cover the frequency domain from 10–6 Hz up to 1011 Hz four different systems
based on different measurement techniques are employed [14]: Fourier correla-
tion analysis in combination with dielectric converters (10–6 Hz –107 Hz)
[15–17], impedance analysis (101 Hz –107 Hz), RF-reflectometry (106 Hz –
109 Hz) [18, 19] and network analysis (107 Hz –1011 Hz) [20, 21].

2.2.1
Fourier Correlation Analysis

The basic principle is shown in Fig. 2.2. Typically a sine wave voltage U1(t) with
frequency ω/2π is applied to the sample by a generator, covering the frequency
range from 10–6 Hz to 107 Hz 2. The resistor R converts the sample current IS(t)
into a voltage U2(t). U1(t) and U2(t) are analyzed with respect to the amplitudes
and phases of their harmonic Fourier base waves U*

1(ω) and U*
2(ω) by two phase

sensitive sine wave correlators. The complex sample impedance Z*
S is calculated

ε ω ω
ω ε ω ω ω

*
*

* *
( ) ( )

( ) ( )
= =J

i E i Z C0 0

1

ε ω ε ω ε ω ω*
*

( ) ( ) ( ) ( )= ′ − ′′ =i C
C0
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2 Fourier correlation analysis for frequencies <10–2 Hz becomes extremely time consuming.
In this case measurements in the time domain are advantageous.



from the measured data by

(2.4)

where US
*(ω) and IS

*(ω) are the sample voltage and current. The response of the
correlator to the signal Ui(t) are the two components

(2.5a)

and

(2.5b)

with j = 1,2. Uj′ is the in phase component and Uj′′ the orthogonal (90° shifted or
quadrature) component of the harmonic base wave. N is the number of periods
with duration T = 2π/ω measured by the correlator 3.

For technical implementation of Fourier correlation analysis one has to real-
ize Eq. (2.5a/b). This is done in conventional systems by analog components.
From the main oscillator, the reference sin and cos signals are created by a 90°

′′ = ∫U
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Fig. 2.2. Scheme of a
Fourier correlation 
analyzer. Taken from [10]
with permission

3 For readers having no experience in Fourier analysis, the following may be helpful in order
to understand the correlator operation. If Ui(t) is a sine wave with amplitude U0 and phase
angle φ

(2.5c)

for the product holds

(2.5d)

As the integration in Eqs. (2.5a/b) is applied over a number of periods T, the second term in
Eq. (2.5d) averages to zero. Therefore, the integral (Eq. 2.5a) becomes Ui′(ω) = U0 cos(φ)/2.
With the same arguments, Ui′′(ω) = U0 sin(φ)/2. If Ui (t) is a signal of arbitrary type like, e.g.,
a sine wave superimposed with noise, it can be transformed into its Fourier representation
consisting of a number of sine waves. For each frequency component both terms of

U t t U t t U
j( ) sin( ) sin( ) sin( ) (cos( ) cos( ))ω ω φ ω φ ω φ= + = − +0
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phase shifter, multiplied with the test signal and finally integrated. Modern sys-
tems digitize the test signal and approximate numerically Eqs. (2.5a/b) by a sig-
nal processor avoiding by that the drift and the non-linearity of analogue com-
ponents. Fourier correlation analyzers are commercially available as frequency
response analyzers or lock-in amplifiers from Agilent Technologies, EG & G,
Novocontrol, Solartron and Stanford Research Systems.

2.2.2
Dielectric Converters in Combination with Fourier Correlation Analysis

For measurements, the setup from Fig. 2.2 with the resistor R suffers from sev-
eral limitations and therefore a dielectric converter is usually used for conver-
sion of the sample current to U2(t) [15–17]. The Fourier correlation analysis is
done either by an additional frequency response analyzer or lock-in amplifier.
The dielectric converter uses a broadband electrometer amplifier with variable
gain (Fig. 2.3) in order to match the huge impedance range required for dielec-
tric measurements which typically covers about 13 orders of magnitude over the
frequency range from 1 mHz to 10 MHz.

If Z*
X(ω) is a variable impedance which can be changed in resistance and ca-

pacitance, the sample impedance Z*
S(ω) of a direct measurement is given by

(2.6)

The accuracy of the measurement according to Eq. (2.6) is limited due to ampli-
tude and phase errors in the current to voltage converter and the correlators.

Further improvement results from a comparison of the sample capacitor with
a variable converter internal reference capacitor with impedance Z*

R(ω). If a ref-
erence measurement under the same conditions (especially for the current-to-
voltage converter) is made
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(continued Footnote 3)
Eq. (2.5d) are frequency dependent and will average out to zero if the integration is per-
formed over many periods. The only frequency component which does not average out is
the one at the correlator frequency ω/2π. Therefore, the correlator phase-sensitively detects
the base Fourier component contained in any input signal. All other contributions are aver-
aged out. The quality of suppression increases with averaging time determined by the num-
ber N of integration periods. Therefore, this technique generally is used in precision instru-
mentation like lock-in amplifiers for noise suppression or if small signals have to be mea-
sured, e.g., measuring a signal in the nV range superimposed by a 1000 times higher noise
signal is possible. These properties are the basis for the many advantages sine wave correla-
tion systems offer with respect to non-correlated analysis systems like, e.g., time domain
techniques or bridges where any noise or non-linear response usually strongly contributes
to the measured signal. As a further advantage of sine wave correlation systems, higher har-
monic signal components may readily evaluated by increasing the number N in Eqs. (2.5a/b).



Combining Eqs. (2.6) and (2.7) yields

(2.8)

which is independent of linear amplitude or phase errors of the correlators, as
they enter both in the sample and reference measurement and therefore are can-
celed out. This works in practice only if the sample impedance and reference im-
pedance are nearly in the same range. In this case the accuracy is limited only by
the correlator resolution. Therefore, the reference capacity for some dielectric
converters can be adjusted, e.g., in 64 steps between 25 pF and 2 nF [16, 17].

For frequencies <100 kHz (Fig. 2.3) a low current operational amplifier can
be used. Such amplifiers are available for extreme low input currents down to
some fA. On the other hand, these amplifiers are limited to low frequencies.
Therefore, some dielectric converters [16] use for frequencies between 105 Hz
and 107 Hz a different technique of current to voltage conversion (Fig. 2.4). The
a.c. voltage of the generator drives a buffer amplifier which decouples the 
sample. In contrast to Fig. 2.3 the active current-to-voltage converter is replaced
by a passive variable impedance Z*

X. For ideal components and neglecting in-
ductive effects one finds

(2.9)

With this equation the reference technique can be applied in a similar manner
as above.

Dielectric converters enable one to measure highly accurate results for ca-
pacitive samples with not too high losses and only low d.c. conductivity. For high
d.c. conductivity or high dielectric losses, the sample impedance is mainly resis-
tive and often not in the range of the reference capacitors.For such kinds of sam-
ples, impedance analysis as discussed below often yields better results.

Z Z U
US X

S

S

* *
*

*
( ) ( )

( )
ω ω

ω
= −⎛

⎝⎜
⎞
⎠⎟

1

2
1

Z U
U

U
U

ZS
S

S

R

R
R

*
*

*

*

*
*( ) ( )

( )
( )
( )

( )ω ω
ω

ω
ω

ω= ⋅ ⋅1

2

2

1

40 2 Broadband Dielectric Measurement Techniques (10–6 Hz to 1012 Hz)

Fig. 2.3. Scheme of a dielectric converter in the low-frequency range with electrometer am-
plifier and variable reference capacitor



Using state of the art equipment, an accuracy in better than 10–4

can be achieved over a broad frequency range. The limits for high impedance
and low capacitance are around 1014 Ω and 1 pF. Low impedances down to about
100 Ω may be measured too, but only with reduced accuracy due to the limita-
tions of the reference technique.

Dielectric converters in combination with frequency response analyzers
(FRAs) or lock-in amplifiers are commercially available from, e.g. Novocontrol
and Solartron.

Similar systems with electrometer amplifiers but without reference technique
are commercially available from, e.g. Micromet, Rheometrics, Seiko, and TA
Instruments.

2.2.3
Impedance Analysis

Two kind of techniques have to be distinguished. The first is the I-V method re-
ferring to the direct phase sensitive measurement of the sample current and
voltage. It is similar to the dielectric converter techniques described above.
Instead of an electrometer amplifier, a broadband current to voltage converter is
used without reference technique.

An alternative technique is the a.c. impedance bridge shown in Fig. 2.5 which
consists of the sample capacitance Z*

S(ω) and the adjustable compensation im-
pedance Z*

C(ω). On the left hand side of the bridge, the generator drives the sam-
ple with the fixed and known a.c. voltage U*

S(ω) which causes the current I*
S(ω)

to flow into PI.On the right hand side of the bridge, the variable amplitude-phase
generator (VAPG) feeds the current I*

C (ω) through the compensation impedance
Z*

C(ω) into PI. The bridge will be balanced, if I*
S(ω) equals –I*

C (ω) which corre-
sponds to I0 = 0. Any deviation is detected by the zero voltage detector which
changes the amplitude and phase of the variable amplitude phase generator

tanδ ε
ε

= ′′
′
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Fig. 2.4. Scheme of a dielectric converter in the high-frequency range with variable imped-
ance and variable reference capacitors



(VAPG) as long as I0 ≠ 0. In the balanced state, the sample impedance is calcu-
lated as

(2.10)

Impedance bridges or analyzers which are not specially designed for dielectric
measurements typically work from 10 Hz to 10 MHz.For dielectric samples, they
suffer from the inverse problem of the dielectric converter systems as optimized
for low (typically 10 mΩ) to medium impedance with a limit of about 100 MΩ.
This limit is reached for typical dielectric samples (100 pF, tanδ = 0.01) at about
1 kHz. The typical accuracy in tanδ is <10–3. Here, a.c.-impedance analyzers or
bridges offer a suitable and inexpensive solution for applications which do not
require a large frequency and a high impedance range. Due to the fact that the
measurement time is lower compared with systems using reference techniques,
a.c.-impedance bridges are particularly suited for measurements on materials
with time-dependent dielectric properties (monitoring of chemical reactions,
characterization of phase transitions, etc.). Impedance analyzers or bridges are
commercially available from several manufactures like, e.g., Agilent Techno-
logies, Novocontrol, Solartron, QuadTech, and Wayne Kerr.

2.2.4
Integrated Dielectric Analyzers

Systems combining the advantages of Fourier correlation analysis, with dielectric
converters and impedance analysis, are the latest progress in dielectric instru-
mentation [17]. These incorporate in one device a direct digital synthesizer gen-
erator, two digital precision sine wave correlators, a state of the art dielectric con-
verter, and a direct I–V current to voltage converter for the low impedance range.
For typical dielectric capacitive samples, the dielectric converter is used as a pre-
cision front end. In this mode broadband phase and tanδ accuracy <3 × 10–5 is
available. If the sample impedance is out of the dielectric converter reference ca-
pacitor range, the front end is switched automatically to the I–V converter.

Z U
I

U
U

ZS
S

S

S

C
C

*
*

*

*

*
*( ) ( )

( )
( )
( )

( )ω ω
ω

ω
ω

ω= = −

42 2 Broadband Dielectric Measurement Techniques (10–6 Hz to 1012 Hz)

Fig. 2.5. Scheme of an im-
pedance bridge



With this concept an overall impedance range from 0.01 Ω to 1014 Ω is cov-
ered with one single device. The wide impedance range results in a wide capac-
ity range as well. Ultralow capacities can be measured with high precision to a
limit of 1 fF (10–15 F). High resolution dielectric analyzers are commercially
available from Novocontrol.

2.2.5
Samples and Sample Cells for Frequencies < 10 MHz

Typical samples have a thickness of ≈50 μm and diameter of 10 mm resulting in
a capacitance of 69.5 pF for a value of ε′ = 5. It is essential to measure the sam-
ple temperature in the immediate sample neighborhood and to keep the sample
temperature as constant as possible. As sample geometry a parallel plate capa-
citor arrangement is commonly used.

For the techniques discussed so far, a sample cell is required which is con-
nected by BNC cables to the impedance plugs of the measurement system. Due
to the parasitic inductance of the lines and connectors the high frequency limit
is reached at about 1 MHz.At the lower frequency range end, very small currents
down to fA have to be measured. In this region, the measurement may be ob-
scured by noise pick up and piezoelectric charges in the cables due to mechani-
cal stress. Therefore a sophisticated cell and cable design optimized for both
high frequency performance and best insulation over the entire frequency and
temperature range is required.

As an alternative, active sample cells may be used where the electrometer am-
plifier and the reference capacitors are integrated in the sample cell head avoid-
ing BNC cables in the sample impedance circuit [16, 17]. For such systems, the
active cell can be considered as an analyzer system and the accuracy and range
specifications apply in parallel. This is in contrast to systems with BNC cables
and passive sample cells which are usually specified at the analyzer BNC input
plugs neglecting cable and cell effects.

2.2.6
RF Reflectometry

Coaxial line reflectometry [14, 18, 19] can be employed at frequencies from
1 MHz to 10 GHz. In contrast to the low frequency techniques already described,
above 1 MHz the measurement cables significantly contribute to the sample im-
pedance.Above approximately 30 MHz standing waves arise in the line and a di-
rect measurement of the sample impedance completely fails.This can be avoided
by application of microwave techniques taking the measurement line as the
main part of the measured impedance into account. Therefore, precision lines
and sample cells with defined propagation constants are required. A schematic
of the measurement technique is shown in Fig. 2.6. The sample capacitor is used
as the termination of a precision coaxial line.

The complex reflection factor r*(l) of the line (length l) depending on the
sample impedance is measured with a microwave reflectometer. For this pur-
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pose, the incoming and reflected waves are separated with two directional cou-
plers and are measured in amplitude and phase. r*(x) is defined as the ratio of
the voltages (or electrical fields) of the reflected and the incoming wave of the
line. It depends on the location of the measurement along the line

(2.11)

For an ideal line, r*(l) which is measured by the reflectometer is related to the re-
flection factor r*(0) at the beginning (l = 0) of the line by

(2.12)

where α is the attenuation coefficient and β the phase (or propaga-

tion) coefficient . From Eq. (2.11) the sample impedance is calcu-
lated as
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Fig. 2.6. Scheme of the coaxial line reflectometer with sample head
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where Z0 is the wave resistance of the line. As can be seen from Eq. (2.13), the
measurement range is limited to sample impedances Z*

S being in the region 
of Z0.

In practice, the lines are not ideal and sophisticated calibration procedures
have to be applied and low loss precision lines matching the output resistance of
the reflectometer are required. The line parameters α, β must be homogeneous
over the whole line and also independent of temperature, as the calibration gen-
erally can only be carried out at room temperature. The same criteria mentioned
for the line apply to the sample cell. Therefore, an additional calibration which
eliminates the influence of internal impedances in the sample cell is necessary.
In order to keep the waveguide as short as possible, the cryostat with the sample
has to be closely mounted at the frontend of the analyzer. Coaxial line reflec-
tometers cover the frequency range between 1 MHz and ∼3 GHz. Based on
Agilent RF-impedance analyzers an accuracy in tanδ < 10–2 can be realized (HP
4291 B: 1 MHz–1.8 GHz, HP 4991 A: 1 MHz–3 GHz). Sample cells, precision ex-
tension line, and dedicated cryostats are commercially available.

2.2.7
Network Analysis

At frequencies above 1 GHz network analysis [20, 21] can be used (Fig. 2.7) in
which not only the reflected wave but also the wave transmitted through a sam-
ple is analyzed in terms of phase and amplitude. This allows the frequency range
to be extended up to 100 GHz. However, with increasing frequency and hence
decreasing dimensions of coaxial lines or waveguides, the calibration procedure
becomes cumbersome.With network analyzers based on the Agilent 8510 an ac-
curacy in tanδ < 10–2 is possible.
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Fig. 2.7. Scheme of the vec-
torial network analyzer with
transmission cell



2.2.8
Impedance and Frequency Ranges Overview

It is convenient to represent the sample impedance as a capacitor Cs related to ε′
in parallel circuit with a resistor Rs related to ε′′ and the material d.c. conduc-
tivity σdc.

The serial impedance of the sample capacitor is

(2.14)

The parallel impedance Zp
* is defined with respect to each sample current com-

ponent I ′ and I ′′ as

(2.15)

Combination with Eq. (2.14) yields

(2.16)

The dark shaded area in Fig. 2.8 shows Zp′ and Zp′′ for a typical dielectric 
sample with capacity Cs around 100 pF, loss factor tanδ in the range from 10–4

to 1 and σdc = 0. Both Zp′ and Zp′′ show the typical 1/ω increase with decreas-
ing frequency for capacitive samples. Due to the broad frequency regime, the
impedance range becomes extraordinary large. For high losses with e.g.
tanδ = 1, the real and imaginary parts of Zp

* become equal. With decreasing ε ′′
and tanδ, Zp′ increases linearly shifting for constant tanδ and Cs to higher 
impedances.

For comparison, the typical impedance ranges of the several analysis tech-
niques are shown, too. The outer border lines of each range correspond to 10%
accuracy for each Zp component which may be seen as a reasonable limit for the
usable range. For impedance points within this range, accuracy linearly in-
creases from 10% with the logarithmic distance to the border line until the sys-
tems base accuracy is reached. For example, if the impedance point is located
within the range two orders of magnitude apart from a border line, the accuracy
would be 0.1%. The total impedance limit (100% error) would be reached for
impedance points one order of magnitude outside the marked areas.

As can be seen from Fig. 2.8, the capacitive component Zp′′ related to ε′ is gen-
erally lower in impedance (for tanδ < 1) and therefore it can be measured with
all techniques within their frequency range. At the high frequency end, the RF
reflection and network analyzers suffer from too low sample impedances.
Therefore, one usually reduces the sample capacity by increasing the sample
thickness or decreasing its diameter. Typical values are within 1 pF–10 pF for
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optimized performance at the high frequency end. This is only possible at the
further cost of decreased accuracy at the RF low frequency range end (1 MHz).

For the Zp′ component related to ε′′, the situation becomes more critical with
decreasing losses. For tanδ = 10–2, the 10% borderline applies for all systems at
frequencies >10 MHz, meaning that low loss dielectrics cannot be measured at
high frequencies with the broadband techniques presently available.The general
impedance analyzers reach their Z ′p 10% limit below about 1 kHz. With further
decreasing losses <10–3, the dielectric converters reach their 10% border line as
well. Lower loss samples down to 10–4 can be measured with the dielectric ana-
lyzer from about 10 Hz–100 kHz.

The d.c. conductivity contributes, according to Eq. (2.16), a frequency inde-

pendent part to Zp′ which is drawn as a horizontal line in Fig. 2.8. This

line confines the dielectric contribution to Zp′ at high impedance. As Zp′′

increases to low frequencies with 1/ω, there is always a turn over frequency
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0ω ε′′C

ε
σ
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0dcC

2.2 Measurements in the Frequency Domain from 10–6 Hz to 1011 Hz 47

Fig. 2.8. Ranges (10% accuracy) of complex impedance [Zp′ Zp′′] and frequency for a dielectric
sample (100 pF, tanδ from 10–4 to 1) represented by a parallel circuit of a capacitor 
and resistor (inlet). Different measurement systems are compared: --- Impedance ana-
lyzer, •••• Dielectric converter with Fourier correlation analyzer, ⎯⎯ Dielectric analyzer,
⎯ •• ⎯ RF reflectometer and network analyzer



where the sample impedance changes from capacitive to resistive 

characteristics. Depending on the material, σdc and with this ωt may vary over
many orders of magnitude especially if measured at different temperatures. For
high d.c. conductivity, Zp′ may become small at low frequencies. This causes
problems for systems based on dielectric converters, as their reference capacitor
technique usually fails in this range. It is then more convenient to use the 
general impedance techniques or the dielectric analyzer which offer high ac-
curacy over the entire impedance range both for low loss and high conductive
samples.

2.3
Measurement Systems in the Time Domain from 10–6 Hz to 1010 Hz

In the dynamic range from 10–6 Hz to 1010 Hz the complex dielectric function
can also be determined by measuring the time dependence of the (d.c.)-polar-
ization current of a (loaded) sample capacitor [22–26]. The experimental ap-
proach is simple and because of the multiplex advantage less time consuming
than measurements in the frequency domain. However, this is possible only on
the expense of a reduced accuracy. In analogy to Eq. (2.1)

(2.17)

hold where I(t) is the polarization current and UPol the polarizing voltage. C0 is
the capacitance of the empty capacitor. According to Eq. (2.13) the time depen-
dent dielectric function is determined from a measurement of the time depen-
dence of the (d.c.)-polarization current I(t). (Depolarization experiments are
often more convenient because they are not disturbed by a d.c.-conductivity
contribution. The driving external electric field is zero.) A typical experimental
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Fig. 2.9. Scheme of the
time-domain set-up for fre-
quencies up to 100 Hz with
mechanical switches and up
to 104 Hz with electronic
switches [22]



set-up for a low frequency (≤10 kHz) time domain spectrometer is shown in
Fig. 2.9. In order to achieve a high resolution in tanδ ≤ 10–3 three requirements
must be fulfilled: (i) a sensitive electrometer covering a wide dynamic range
from 10–3 A to 10–15 A (Keithley 617 or Keithley 6517), (ii) low noise triaxial ca-
bles with an insulation resistance of ≥1015 Ω, and (iii) earth loops caused by dif-
ferent ground sites must be avoided.

An example of a time domain measurement is presented in Fig. 2.10a/b for
the glass transition range of poly(propylene glycol) [27]. To obtain the complex
dielectric function in the frequency domain a Fourier transform would be nec-
essary.As a rough estimation of ε*(ω) the function π/2t dε/dt can be used, which
is called the Hamon-transformation [23]. This representation of the time do-
main measurements shows maxima for relaxation processes similar as for the
loss part of the complex dielectric function ε′′. An example is given for
poly(propylene glycol) in Fig. 2.10b. With the relation ω = 0.2π t–1 the Hamon-
transformation can be directly compared with ε′′ with respect to the maximum
position and high frequency behavior of a relaxation process. At the low fre-
quency side of a relaxation process these two functions behave differently. An
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Fig. 2.10.
a Depolarization current vs
time at different tempera-
tures as indicated. b Data 
after a Hamon transforma-
tion. Sample: poly(propy-
lene glycol)



exact transformation of time domain data into the frequency domain requires a
Fourier transform which can be done numerically (see for instance [28, 29]).
Some approximative methods are discussed in [30, 31].

An alternative approach to the dielectric polarization as a function of time is
based on the recent development of electrical modulus M(t) measurements.
Under the condition of a constant charge (instead of the usual constant field
case), the voltage across the capacitor is proportional to the polarization and to
the modulus M(t), with M*(ω) = 1/ε*(ω). The experimental setup creates a step
function in the dielectric displacement D(t), while the voltage U(t) ~ M(t) across
the capacitor is measured [24a]. In order to assure a constant D for t ≥ 0 the
setup should not allow any external current flow within the circuit, i.e., a high in-
put resistance of the voltmeter is essential. The step function in D(t) at t = 0 is
realized by connecting a voltage source with U = U0 to the discharged capacitor
for a short period of time. Figure 2.11 displays a schematic diagram of such a
setup which employs the guarding technique in order to minimize cable capac-
itance effects. With a Keithley 6517 electrometer serving as voltmeter with
guarded input (Rin ≥ 200 TΩ,Cin ≈ 2 pF, Ibias ≤ 2 fA) and as voltage source, the po-
larization can be measured for times 10–3 s to 106 s.

The modulus technique is advantageous in several ways. For dielectric relax-
ation measurements at long times one can exploit the fact that M(t) decays faster
than ε(t) under identical conditions. The time scale relation for KWW type re-
sponses is given by

(2.18)

where Ms = ε s
–1 and M∞ = ε∞

–1 denote the electric modulus in the limits t → ∞ and
t → 0, respectively [24b]. For the example of a polymer system shown in Fig. 2.12,
this feature allowed access of an average time scale for dipole fluctuations log(τ [s])
= 7.53 (1.1 years).For ionic conductors,even severe cases of electrode polarization
give rise to only small effects in the M(t) signal [24c]. Furthermore, the technique
has allowed dielectric hole-burning measurements to be applied to vitreous ionic
conductors (see Chap. 14 on non-resonant dielectric hole burning spectroscopy).

Dielectric measurements in the time domain can be extended to high fre-
quencies covering the range from 105 Hz to 2 × 1010 Hz [26]. As in the reflec-
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Fig. 2.11. Schematic dia-
gram for measuring the di-
electric modulus M(t) in the
time domain
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tometer approach (see below) the sample is located at the end of a coaxial trans-
mission line. A rectangular step voltage is sent to the sample cell and the re-
flected pulse is measured by use of a fast digital oscilloscope. Hence the accessi-
ble frequency range is determined by the width and rise time of the incident
pulse. The resolution of these spectrometers is smaller than that of the equip-
ment which is based on network analyzers in the frequency domain.

2.4
Quasioptical Set-Ups in the Frequency Range from 1010 Hz to 1012 Hz

In the frequency regime between 1010 Hz and 1012 Hz (mm- and sub-mm-waves)
on the low frequency side (<~100 GHz) coaxial and waveguide techniques are
used and above 300 GHz (–λ = 10 cm–1) Fourier-Transform spectroscopy is em-
ployed. The intermediate range is bridged by “quasioptical”-methods [32–35]
using unguided monochromatic electromagnetic waves propagating through
“free space”. As radiation sources typically backward-waveoscillators (BWO) 
are applied because of their tunability in frequency (in contrast to gunoscilla-
tors or clystrons which are narrow banded). The scheme of a quasioptical mm-
and sub-mm-wave spectrometer based on a polarizing double beam Mach-
Zehnder interferometer is shown in Fig. 2.13. The radiation of the BWO is emit-
ted by a horn-antenna and focused by Teflon lenses. For measurements of the
transmission T(ω) one arm of the interferometer is blocked. A set of two lenses
is used to focus the radiation at the position of the sample in the cryostat 
or oven. The radiation is detected by a Golay cell or a (pumped) Helium 
InSb-bolometer. To reduce the noise level a chopper in the beam path and phase
sensitive detection is applied. Two consecutive frequency sweeps with and with-
out the sample at each temperature are made leading to a precise determination
of the transmission coefficient T. Values as low as T = 10–7 can be detected.

To record the phase shift ϕ(ω) the instrument works in the interferometer
mode. For that the beam is split using a 45° wire-grid. In the second arm of the
spectrometer a similar set of lenses is mounted in order to make the optical path

Fig. 2.12. Experimental re-
sults for the dielectric mod-
ulus M(t) for poly(vinyl ace-
tate) at temperatures from
291 K to 323 K in steps of
2 K. The contributions
above and below the plateau
at ≈ 0.5 reflect the α-process
and d.c.-conductivity, re-
spectively



length identical to that of the first arm (without sample). After combination of
the two beams by another 45°-wire-grid the radiation is detected. Using the
movable mirror in the reference arm the phase shift ϕ(ω) of the sample is 
measured. For an isotropic sample layer the complex transmission coefficient

is determined by the following well known relationships
[32, 33]

(2.19)

where λ is the wavelength of the radiation, d the sample thickness, and ε* and μ*

the complex dielectric permittivity and magnetic permeability of the substance,
respectively.

A principal difficulty for measurements in the mm- and sub-mm-wave fre-
quency range using monochromatic sources results from the high coherence
length of the radiation. This gives rise to multiple interference patterns which
may spoil the experimental accuracy. Phase-shakers can be used to circumvent
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Fig. 2.13. Scheme of the polarizing quasioptical Mach-Zehnder interferometer for the mm-
and sub-mm-wave regime



this problem [32]. For the above described Mach-Zehnder set-up the minimum
detectable value for ε′′ is limited by the maximum thickness of the sample only.
A typical minimal value for the measurement of tanδ is 10–2.

An alternative experimental approach in the mm- and sub-mm-wave regime
are oversized cavities [36, 37] with typical dimensions being much larger than
the wavelength: using high reflectivity walls and “mode stirrers” an isotropic
and homogeneous field is generated on a time-averaged basis. The usefulness of
the device arises from several advantages. For absorption measurements of
gaseous samples the oversized cavity serves as a long-path absorption cell, thus
providing a manifold increase in sensitivity compared to a single-path set-up.
The photon-storing capability of the device can also be used for measuring the
resistivity of metals. In this case the walls of the oversized cavity are partly com-
posed of the materials under study. For inhomogeneous samples, the main ad-
vantage arises from the fact that such measurements are only sensitive to the ab-
sorption loss in the specimen and not to scattering and reflection losses. Thus,
specimen preparation in a plane-parallel form is not necessary, as it is for quasi-
optical methods. It therefore allows for the quantitative study of a substantial
body of materials, including powders, thin films, and composites. This applies to
the whole mm- and sub-mm-wave spectrum. For low temperature absorption
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Fig. 2.14. Dielectric spectra: a real part ε′; b imaginary part ε′′ for glycerol as measured in the
entire frequency regime from 10–6 Hz to 1012 Hz. The dynamic glass transition is seen over
many decades in frequency with varying temperature. In addition in ε′′ the excess wing and
the boson peak show up (see Chap. 5) [38]



measurements the device can be used with a cryostat such that the total sample
chamber inside the oversized cavity is composed of fused silica which is nearly
transparent in this spectral range. By that serious problems can be circumvented
by heat conduction in waveguide systems or by standing waves between the win-
dows of the cryostat in quasioptical systems. The main disadvantage of over-
sized cavities is the loss of phase information. Thus only indirect measurements
of the real part ε′ of the complex dielectric function are possible. Details are dis-
cussed in [37].

For frequencies above 1012 Hz Fourier-Transform spectrometers are em-
ployed which are also available for the far infrared (e.g., Bruker 113v and 66v/s).
If only the transmission and the reflection spectra are measured the complex
permittivity can be determined by a Kramers-Kronig transformation. Using dis-
persive Fourier-Transform spectroscopy the complex dielectric function is mea-
sured directly [33, 34].

The complex dielectric spectrum of the glass-forming liquid glycerol as mea-
sured from 10–6 Hz to 1013 Hz is shown in Fig. 2.14. It is nicely demonstrated how
well the different measurement systems can be combined.

2.5
Conclusions

With modern equipment it is possible to cover the entire regime from 10–6 Hz to
1012 Hz without any gap. For that different measurement systems based on dif-
ferent physical principles have to be combined: Fourier correlation analyzers
(10–6 Hz to 107 Hz), impedance analyzers (10 Hz to 106 Hz), coaxial line reflec-
tometers (106 Hz to 109 Hz), network analyzers (107 Hz to 1010 Hz), quasi-optical
interferometers (1010 Hz to 1012 Hz), and Fourier spectrometers (1011 Hz to IR).
In the time domain measurement systems between 10–6 Hz and 1010 Hz can be
employed but with reduced accuracy.
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List of Abbreviations and Symbols

c Speed of light
C0 Vacuum capacitance
E*(ω) Complex sinusoidal electric field strength
J*(ω) Complex sinusoidal current density
M*(ω)=M ′(ω) + iM ′′(ω) Complex electrical modulus
n*(ω) = n′(ω) – in′′(ω) Complex index of refraction
R Resistor
r*(x) Complex reflection at position x
t*(x) Complex transmission at position x
U*(ω) Complex voltage
Z*(ω) Complex impedance
α Damping constant
β Propagation constant
βε, βM KWW stretching parameter for the dielectric peri-

mittivity and for the electric modulus
Tangents of the phase angle between ε′(ω) and ε′′(ω)

ε(t) Time dependent dielectric function
ε0 Permittivity of free space 

(ε0 = 8.854 × 10–12 As V–1 m–1)
ε *(ω) = ε′(ω)– iε′′(ω) Complex dielectric permittivity or function 4

μ *(ω) = μ′(ω) – iμ′′(ω) Complex magnetic permeability
λ Wavelength in vacuum–λ Wavenumber
v Frequency
σdc Direct current conductivity
σ *(ω) = σ′(ω) + iσ′′(ω) Complex conductivity
τε , τM Relaxation time of the KWW-function for the dielec-

tric perimittivity and for the electric modulus
ϕ(ω) Phase shift
ω Angular frequency

tanδ ε
ε

= ′′
′
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4 The complex index of refraction and the complex dielectric permittivity are related by
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a.c. Alternating current
d.c. Direct current
BWO Backward-wave oscillator
FRA Frequency response analyzer
KWW Kohlrauch/Williams/Watts
RF Radio frequency
TDR Time domain reflectometer
VAPG Variable amplitude-phase generator
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3 Analysis of Dielectric Spectra

A. Schönhals · F. Kremer

3.1
Introduction

The complex dielectric function ε*(ω) in its dependence on angular frequency
ω = 2πν (ν -frequency of the outer electrical field) and temperature originates
from different processes: (i) microscopic fluctuations of molecular dipoles [1]
(rotational diffusion 1), (ii) the propagation of mobile charge carriers (transla-
tional diffusion of electrons, holes or ions), and (iii) the separation of charges at
interfaces which gives rise to an additional polarization. The latter can take place
at inner dielectric boundary layers (Maxwell/Wagner/Sillars-polarization [2, 3])
on a mesoscopic scale and/or at the external electrodes contacting the sample
(electrode polarization) on a macroscopic scale. Its contribution to the dielectric
loss can be orders of magnitude larger than the dielectric response due to mo-
lecular fluctuations.

Each of the above mentioned processes has specific features in the frequency
and temperature dependence of the real and imaginary part of the complex di-
electric function. It is the objective of this chapter to discuss the methods to an-
alyze, to separate, and to quantify their different contributions to the dielectric
spectra.

Relaxation processes are characterized by a peak in the imaginary part ε′′
and a step-like decrease of the real part ε′ of the complex dielectric function
ε*(ω) = ε′(ω) – iε′′(ω) (i = √4–1) with increasing frequency. In contrast, conduc-
tion phenomena show an increase of the imaginary part of the dielectric func-
tion with decreasing frequency.For pure ohmic conduction the real part of ε*(ω)
is independent of frequency while for non-ohmic conduction or polarization ef-
fects (at inner boundaries or external electrodes) the real part of ε*(ω) increases
with decreasing frequency. A schematic representation of the frequency depen-
dence of ε*(ω) is given in Fig. 3.1.

Alternative representations of the dielectric properties of a material are the
complex conductivity σ*(ω) or the complex electric modulus M*(ω) (see
Chap. 1). They emphasize different aspects of polarization and charge transport
in a material as discussed below.

1 In special cases like the normal mode relaxation (see Chap. 7) the translational diffusion can
be deduced from dielectric measurements.



3.2
Dipolar Fluctuations

One of the most important applications of dielectric spectroscopy is the investi-
gation of relaxation processes which are due to rotational fluctuations of mole-
cular dipoles.As they are related to characteristic parts of a molecule (functional
groups etc.) or to the molecule as a whole, information about the dynamics of a
molecular ensemble can be obtained by analyzing the dielectric function. If the
frequency ν = ω/2π of the applied outer electric field corresponds to reorienta-
tion times τ of molecular dipoles the complex dielectric function shows a char-
acteristic pattern. With increasing ω the real part ε′(ω) decreases step-like
whereas the imaginary part ε ′′(ω) exhibits a maximum (Fig. 3.2). The essential
quantities which characterize a dielectric relaxation process can be extracted
from that behavior. The frequency of maximal loss νp is related to a characteris-
tic relaxation rate ωp = 2πνp or relaxation time τp = 1/ωp of the fluctuating
dipoles. From the shape of the loss peak the distribution of relaxation times can
be deduced.The dielectric strength Δε of a relaxation process can be determined
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Fig. 3.1. Scheme of the real
ε′ (solid line) and the imagi-
nary ε′′ (dashed line) part
of the complex dielectric
function for a relaxation
process and an a ohmic or 
b non-ohmic conductivity.
In the latter case electrode
polarisation is observed



either from the area under the loss peak ε′′(ω) or from the step in ε′(ω). Since
ε′(ω) and ε′′(ω) are interrelated by the Kramers/Kronig-relations [1], both con-
tain the same information.

3.2.1
Analysis of Dielectric Spectra – Model Functions

Dielectric relaxation processes are usually analyzed using model functions.
Starting from the theoretically well founded Debye function (see Chap. 1) sev-
eral formulas for both the frequency and the time domain have been suggested
to describe the experimentally observed spectra. The most important of these
approaches are discussed below.

The Debye function for the frequency dependence of ε*(ω) is given by

(3.1)

where Δε = εS – ε∞ is the dielectric relaxation strength or intensity with
and . The Debye relaxation time τD is related to

the position of maximal loss by ωp = 2πνp = 1/τD (see Fig. 3.2). The separation of
ε*(ω) in the real and the imaginary part is given in Table 3.1. The loss peak is
symmetric with a half width ωD of 1.14 decades.

In most cases the half width of measured loss peaks is much broader than
predicted by Eq. (3.1) (up to six decades) and in addition their shapes are asym-

ε ε ω
ωτ

∞ = ′lim ( )
�1

ε ε ω
ωτ

S = ′lim ( )
�1

ε ω ε ε
ωτ

*( ) = +
+∞

Δ
1 i D
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Fig. 3.2. Real ε′ and imaginary part ε′′ of the complex dielectric function vs normalized fre-
quency for a Debye relaxation process
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metric with a high frequency tail. This is called non-Debye (or non ideal) relax-
ation behavior. In the literature several empirical model functions – mostly gen-
eralizations of the Debye function – have been developed and tested which are
able to describe broadened and/or asymmetric loss peaks. A compilation of the
most important formulas gives Table 3.1.

A broadening of the dielectric function can be described by the Cole/Cole-
function [4] 

(3.2)

where 0 < β ≤ 1 leads to a symmetrical broadening for the relaxation function
compared to Eq. (3.1). For β = 1 the Debye-function is obtained. The Cole/Cole-
relaxation time τCC gives the position of maximal loss by ωp = 2πνp = 1/τCC.

Many experimental results, especially on liquids or low molecular glass-form-
ing materials, show that the complex dielectric function can have also an asym-
metric broadening which can be described by the Fuoss/Kirkwood- [5] or by the
Cole/Davidson function [6, 7] which reads

(3.3)

The parameter γ (0 < γ ≤ 1) describes an asymmetric broadening of the relax-
ation function for frequencies ω >1/τCD where τCD is the Cole/Davidson-relax-
ation time. For γ = 1 the Debye-function is recovered again. It should be noted
that for an asymmetric model function like the Cole/Davidson-function the
characteristic relaxation time of the model function does not coincide with the
relaxation time which is related to the position of maximal loss. The relationship
of both quantities depends on the shape parameters. For the Cole/Davidson-
equation (Eq. 3.3) one obtains [8]

(3.4)

A more general model function was introduced by Havriliak and Negami [9, 10]
(HN-function) (Eq. 3.5) which is in fact a combination of the Cole/Cole- and the
Cole/Davidson-function:

(3.5)

Real and imaginary part for the HN-function are given in Table 3.1. For the frac-
tional shapeparameters β and γ which describe the symmetric and asymmetric
broadening of the complex dielectric function 0 < β, βγ ≤ 1 holds. Figure 3.3
gives some examples of the HN-function for selected shape parameters.

The parameters β and γ are related to the limiting behavior of the complex di-
electric function at low and high frequencies:
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(3.7)

In other words, the shape parameters m and n, introduced by Jonscher [11], are
the slopes of log ε′′ vs log ω at low and high frequencies with regard to the po-
sition of maximal loss.

The position of maximal loss depends on the parameters β and γ according 
to [8, 12]

(3.8)

Figure 3.4 gives the dielectric loss of poly(chloro styrene) for the α-relaxation
(dynamic glass transition) at a temperature of 428.6 K. The Cole/Davidson-, the
Cole/Cole- and the HN-function are fitted to the data. Only the HN-function is
able to describe the data in the whole frequency range. This means that for a
complete description of an isolated relaxation region at least a set of four para-
meters is needed.

It has been known for a long time that at least for the dielectric α-relaxation
the loss data are described only incompletely for frequencies ν >103νp by any of
the model functions mentioned above [6, 7, 13–15]. This is demonstrated in
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Fig. 3.3. Complex dielectric permittivity for the Havriliak/Negami-function with fixed:
a γ = 1; b β = 1 (τHN = 1 s, Δε = 1, ε∞ = 1)



Fig. 3.5 where the dielectric loss for glycerol is plotted vs frequency over nine
decades in frequency.

Nagel and coworkers suggested a scaling function to model this behavior
[14]. But this function lacks any theoretical foundation and is valid only for the
special case m = 1 [15].A possible theoretical explanation of this high frequency
wing was suggested by Chamberlin and Kingsbury based on the concept of dy-
namical heterogeneity [16].

Figure 3.5 shows that the major contribution of the relaxation function is well
described by a single HN-formula (more than five decades in frequency). Only
the wing at high frequencies cannot be covered by the fit. For a more detailed
discussion see Chaps. 4 and 5.

Within the framework of linear response theory the dielectric behavior in the
frequency domain is related to that in the time domain by a Fourier transform
(see Chap. 1 or [1]). Hence the analogous formula to Eq. (3.1) is in the time do-
main a simple exponential decay. This means that the time dependent dielectric
function ε(t) is given by

(3.9)

Often a non-Debye relaxation behavior in the time domain can be described by
the empirical Kohlrausch/Williams/Watts (KWW) function [17, 18] which reads
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Fig. 3.4. Imaginary part ε′′ (�) vs frequency for poly(chloro styrene) at T = 428.6 K. The data
are described by a superposition of a conductivity contribution (dotted line) and different
model functions to relaxation processes: dashed-dotted-dashed Havriliak/Negami-, dashed-
dotted-dotted-dashed Cole/Davidson-, and dashed Cole/Cole-function. The error of the mea-
surement is smaller than the size of the symbols
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(3.10a)

(3.10b)

The stretched exponential parameter βKWW leads to an asymmetric broadening
of ε(t) at short times (high frequencies) compared to an exponential decay
(βKWW = 1). τKWW is the corresponding relaxation time. Several models to inter-
pret the KWW-function from a molecular point of view are discussed in
Chap. 1.

In the time domain an expression analogous to Eq. (3.5) does not exist.
However, according to linear response theory the following relationship holds:

(3.11)

Equation (3.11) represents a model function with four parameters in the time
domain. It cannot be solved analytically but a fast numerical algorithm is 
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Fig. 3.5. High frequency deviation of the α-relaxation of glycerol compared to the HN-func-
tion at T = 208.3 K. This high frequency wing is described by a second HN-function. A com-
parison of the estimated relaxation strengths for both functions shows that the contribution
of the high frequency wing is small



available [19]. For long and short times compared to τHN one finds

(3.12)

(3.13)

Equations (3.12) and (3.13) correspond to Eqs. (3.6) and (3.7) in the frequency
domain. The representation t dε/dt of the time-dependent dielectric function is
chosen according to the Hamon method [20]. It should be noted that Eq. (3.5)
can be expanded in a Taylor-series which can be Fourier transformed step by
step. Thus a series representation for ε(t) [21] or dε/dt [1, 19] is obtained. For
ε(t) one gets the Riesz function [21]

(3.14)

but the convergence of this series is insufficient at least for broadened dielectric
spectra.

As pointed out already the dielectric properties measured in frequency and
time domain are related to each other by a Fourier transform:

(3.15)

Therefore several attempts have been made to derive simple mathematical ex-
pressions to interrelate the dielectric behavior in the frequency and in the time
domain and/or to compare the results.

The most common approximation for Eq. (3.15) is the Hamon transform [20].
A plot of π/2t dε/dt vs ω = 0.2π/t displays a chart which corresponds to the
imaginary part of the complex dielectric function ε′′(ω). Both quantities have
the same position of maximal loss and the dependence on the high frequency
side (ω > ωp) can be directly compared as well. On the low frequency side both
functions have a different dependence on ω. More refined transformation for-
mulas were developed by Brather [22]. The accuracy of these relationships has
been discussed by Simon and Williams [23].

Patterson and Lindsay [24] derived a relationship between the Cole/Davidson
function and KWW formula which both have one shape parameter only. This
work was extended by Colmenero et al. [25]. They interrelated the HN- and the
KWW function leading to the following approximations:

(3.16)

For the limits of these formulas see [25]. It is important to note that the HN-
function has two shape parameters while the KWW formula has only one. Hence
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during the transformation from the frequency to the time domain information
is lost. This was also discussed in a recent publication by Snyder and Mopsik
[26]. It is also evident from Fig. 3.6 where shape parameters m and n for the di-
electric α-relaxation of a representative number of low molecular weight and
polymeric materials are plotted [27]. In addition the theoretical relationships
between m and n according to the Cole/Davidson-, the Cole/Cole- and the
Kohlrausch/Williams/Watts function are included. A more complete compila-
tion of data has been published by Jonscher [11] and Havriliak and Havriliak
[21] in a similar representation. Figure 3.6 proves that in general no correlation
between the shape parameters exists. Hence it has to be concluded that two
shape parameters are necessary to describe a dielectric relaxation process.

To analyze the results of dielectric measurements the model functions were
fitted to the dielectric data. As it was already pointed out in the frequency do-
main the most general model function is the HN-formula.Each parameter of the
HN-function can be estimated by

(3.17)

where wi is a weighting factor which can be used to take into consideration the
different accuracy of data measured with different equipment while i counts the

wi i i
i

 [ ( )]   minε ε ω* *−∑ HN
2

→
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Fig. 3.6. Shape parameters n and m for the dielectric α-relaxation for different polymeric (�)
and low molecular weight systems (�). Data see Appendix 3.1. (Redrawn from [27] with per-
mission of American Chemical Society)



experimental points. The fitting procedure can be carried out by using ε′′- or ε′
data or by taking both into account. However, the practical experience shows
that the different approaches lead to nearly identical results so that in the most
cases only the ε′′ data are used.

Rarely isolated relaxation regions are observed. Usually different relaxation
processes and often also a conductivity contribution add up. If the latter is of

pure electronic origin it has no contribution to ε′ while where σ0 is

the d.c.-conductivity of the sample and ε0 is the dielectric permittivity of vacuum
(ε0 = 8.854 × 10–12 As V–1 m–1). In practice often ε′′ ~ω–s with s < 1 is observed.
This is the case for ionic charge carriers which cause electrode- or Maxwell-
Wagner-polarization effects, as discussed below. Hence as dielectric function2

(3.18)

can be fitted to the data. The factor a having the dimensionality (Hz)–1 (rad Hz)s.
If several relaxation regions are observed in the available frequency window

the HN-function can be used to describe and moreover to separate the different
processes. Provided that the different relaxation regions are independent and
hence the contribution of each process to the complex dielectric function is ad-
ditive

→ min (3.19)

holds, where k counts for the different relaxation regions.An example for the ap-
plication of Eq. (3.19) is presented in Fig. 3.7 where two HN-functions and a con-
ductivity term are fitted to dielectric loss data of poly(cis-1,4 isoprene) in order
to separate the contributions of segmental and chain dynamics.

The discussed method to evaluate measurements in the frequency domain
can be transformed to the time domain. According to Eq. (3.16) one gets

→ min (3.20)

where ε̇HN(t) can be calculated by Eq. (3.11). The outlined approach can be eas-
ily extended to analyze measurements which are carried out partly in time and
partly in frequency domain. By minimizing
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2 Equation (3.18) describes only the contribution to ε′′ and not to ε′ (see Sect. 3.4).



with the same parameter set a consistent evaluation of frequency and time 
domain measurements is possible where in both the same model function 
is used. Hence there is no need to use the KWW-functions in the time do-
main and the HN-function in the frequency domain as sometimes proposed
(e.g. [25]). Figure 3.8 demonstrates the application of Eq. (3.20) for the analysis
of time domain measurements and also the use of Eq. (3.21) for a joint evalua-
tion in the time and frequency domain [29].

In general all parameters of a relaxation process are temperature dependent.
The most significant temperature dependencies are due to the relaxation time
and the dielectric relaxation strength. Usually the isothermally measured di-
electric spectra are evaluated to extract the temperature dependence of all pa-
rameters. However, there are also methods published in the literature where a set
of isochronal data measured at different temperatures is analyzed [21, 30–32].
Due to the temperature dependence of the relaxation parameters functional re-
lationships have to be assumed. Furthermore this method cannot be applied for
the analysis of the dielectric response of materials which show phase transitions
or phase separation etc. where the dielectric behavior may change discontinu-
ously.

It has been discussed in Chap. 1 that in the frame of thermodynamic consid-
erations the complex dielectric function is a generalized compliance. According
to linear response theory the dielectric data can be also described by the corre-
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Fig. 3.7. Fit of two HN-functions to separate the α-relaxation (segmental relaxation) and 
the chain dynamics (Rouse modes) for poly(cis-1,4 isoprene) with a molecular weight of
Mw = 1400 g mol–1 at T = 216 K [28]. The solid line is the sum of the segmental mode (dashed
line), the normal mode (dashed-dotted line) and a conductivity contribution (dotted line).
The experimental error is smaller than the size of the symbols. For a detailed discussion see
Chap. 7. (Redrawn from [28] with permission)



sponding complex electric modulus M*(ω) where

(3.22)

holds (see Chap. 1). A method to measure the dielectric modulus directly is dis-
cussed in Chap. 2.

If ε*(ω) is described by the Debye-function for the corresponding modulus 3

(3.23)

is obtained with ΔM = MS – M∞, MS = 1/εS and M∞ = 1/ε∞. This means that if the
compliance is Debye-like, the frequency dependence of the modulus also follows
the Debye function.For the electric relaxation time τD–M = (ε∞/εS)τD is calculated
and because ε∞ < εS is valid τD–M < τD holds. Therefore, a relaxation process ap-
pears in the modulus representation at a higher frequency than for the corre-
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Fig. 3.8. Examples for the evaluation of time domain measurements for poly(propylene gly-
col) MW = 4000 g mol–1 (a) Evaluation of an isolated relaxation region in the time domain;
(b) Evaluation of a measurement which was carried out partly in the time and partly in the
frequency domain. Two HN-functions were fitted to the whole spectrum [29]. The solid line is
the sum of the segmental mode (dashed line) and the normal mode (dashed-dotted line). The
experimental error is smaller than the size of the symbols

3 Note that the sign of ΔM is negative in that notation.



sponding compliance expressed by ε*(ω). This means that in the modulus for-
mulation the high frequencies have greater weight. The differences in the relax-
ation times obtained for a modulus or a compliance must be considered com-
paring the results complementary experimental methods like dielectric or me-
chanical spectroscopy (see Chap. 17).

If ε(t) as compliance is modeled by the KWW-function (Eq. 3.10)

holds approximately for 1 ≤ εS/ε∞ ≤ 11 and 0.3 ≤

βKWW ≤ 1 [33]. For the stretching parameters βKWW–M = 0.8 βKWW is obtained
[33]. In general the model functions discussed in this paragraph can also be ap-
plied in the modulus formulation taken into consideration the inverse sign of
the relaxation increment. For the HN-formula (Eq. 3.5) as compliance the corre-
sponding modulus M*

HN(ω) cannot be calculated exactly but in a good approxi-
mation a proper model function is given by

(3.24)

where mainly the frequency is changed to its reciprocal value [32].

3.2.2
Analysis of Dielectric Spectra – Model Free

Cole and Cole [4] suggest plotting dielectric spectra as ε′′(ω) vs ε′(ω)
(Cole/Cole plot, Argand plot). In such a representation for a Debye-function
(Eq. 3.1, Fig. 3.9a) the data points lie on a semicircle which intersects the ε′ axis
at ε∞ and ε∞ + Δε. This statement is also valid if the data cannot be described by
a single relaxation time. Figure 3.9b displays the Cole/Cole-plot for the Cole/
Cole-function. A circular arc which cuts the ε′ axis under the angle of 1/2 πβ
on both sides is obtained. It indicates a symmetric relaxation function and in
addition to ε∞ and Δε the shape parameter β (symmetrical broadening) can also
be estimated. Using Cole/Cole-plots it can be easily decided whether the data
have to be described by a symmetric or by an asymmetric distribution of relax-
ation times. This becomes evident from Fig. 3.9c where a Cole/Cole-representa-
tion for the HN-functions is shown. The angle of the intersection with the ε′ axis
is 1/2 πβγ at the high frequency side and 1/2 πβ at low frequencies.

In addition to the characterization of an isolated relaxation process the
Cole/Cole plot can also be used to separate overlapping relaxation regions as
demonstrated in Fig. 3.10, where the Cole-Cole plot for poly(propylene glycol) is
shown.The chart displays clearly a double arc which indicates two overlaying re-
laxation processes. For each process the dielectric strength and the shape para-
meters can be extracted.

Broadened relaxation processes can be formally described by a superposition
of Debye-functions with different relaxation times [1]

(3.25)ε ω ε ε τ
ω τ

τ*( )
( )

 ln= +
+∞ ∫Δ L

i1
d

M M M
iHN

HN M

* ( )
( ( ( ) ) )

ω
ω τ β γ

= +
+ −∞

−
−

Δ
1 1

τ ε
ε

τ
β

KWW M KWW

KWW

−
∞= ⎛

⎝⎜
⎞
⎠⎟S

72 3 Analysis of Dielectric Spectra



where the relaxation time distribution L(τ) fulfills the normalizing condition

(3.26)

For the time domain

(3.27)

holds.
It cannot be concluded from Eqs. (3.22) or (3.24) that the molecular origin of

a non-Debye behavior is a relaxation of several independent relaxators (hetero-
geneous relaxation) which behave Debye-like. In some cases such an interpreta-
tion may be correct like in the case of local relaxation processes. However, in
other cases such a conclusion is questionable because the non-exponential char-
acter of the relaxation process might be a feature of the molecular process itself
(homogeneous relaxation). A discrimination between these two interpretation
schemes is not possible in the framework of linear relaxation theory. A possibil-
ity to discriminate experimentally between these interpretations are dielectric
hole burning experiments (see Chap. 14). The relaxation time spectra discussed
for the model functions are given in Table 3.1.
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Fig. 3.9. Cole-Cole plots for
different model functions
with Δε = 1, ε∞ = 1 and 
τ = 1 s: a Debye-function;
b Cole/Cole-function with 
β = 0.5; c HN-function with
β = 0.7 and γ = 0.6



In most cases the relaxational dynamics is characterized by the frequency of
maximal loss ωp = 2πνp or the relaxation time τp = 1/ωp. This key feature of the
molecular dynamics can be extracted from the experimental data model free.
With the aid of the relaxation time distribution L(τ) and the discussed model
functions different mean values of the relaxation time can be defined. The sim-
plest cases is the mean value 〈τ〉

(3.28)

For the Debye-function the linear mean value 〈τ〉 is equal to τD because the re-
laxation time spectrum L(τ) is the Dirac- (delta) function.Applying Eq. (3.28) to
the spectrum of the KWW-function a mean value 〈τ〉KWW can be calculated to

(3.29)

where Γ(x) is the Gamma function. Moreover, for the Cole/Davidson-function
the mean value can be calculated numerically according to Eq. (3.28). However,
one has to state that the mean value 〈τ〉 does not exist for the Cole/Cole-function
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Fig. 3.10. a Real part
ε′(open circles) and imagi-
nary part ε′′(open squares)
of poly(propylene glycol) at
T = 213.7 K. b Cole-Cole
representation of the data in
a. The experimental error is
smaller than the size of the
symbols



and also for the HN-function. Therefore a logarithmic mean value of the relax-
ation time can be defined according to

(3.30)

A detailed discussion of the different mean values can be found in [34]. In gen-
eral the mean values differ from the position of maximal loss ωp. The degree of
that deviation depends on the shape of the dielectric function. In the inset of
Fig. 3.11 the different mean values are compared for the HN-function with 
β = 1 and γ = 0.2. log(ωHN) differs from – 〈logτ〉 by more than two decades.
Figure 3.11 shows the temperature dependence of ωp, ωHN = 1/τHN and – 〈logτ〉
for the glass-forming liquid salol.With increasing temperature the loss peak be-
comes smaller and the different mean values coincide together.

To estimate the relaxation time spectra from the experimental data requires
inversion of Eqs. (3.25) or (3.27). From a mathematical point of view this is a so-
called ill-conditioned problem because Eq. (3.25) is essential a Fredholm inte-
gral equation of the first order. A software package to solve that problem is pro-
vided by Provencher [35] (CONTIN). Recently the Tikhonov regularization al-
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Fig. 3.11. Comparison of the temperature dependence of ωp (�), ωHN = 1/τHN (�) and – 〈logτ〉
(�) for the glass-forming liquid salol. The data were taken from [34]. The error of the data is
smaller than the size of the symbols. The lines are fits of the Vogel/Fulcher/Tamann equation
to the data (see [34] for details). The inset compares ωp, ωHN = 1/τHN, 1/〈τ〉KWW, and – 〈logτ〉
calculated for the HN-function with β = 1 and γ = 0.2



gorithm has been used to calculate the relaxation time spectra from the mea-
sured data. This method takes the curvature of L(τ) into account by an addi-
tional term λL′′(τ) [36,37].λ is the regularization parameter and L′′(τ) describes
the second derivative of the relaxation time distribution function. If λ is too
small, unphysical oscillations in L(τ) occur, but if it is too large the shape of L(τ)
will be over-smoothed resulting in a loss of information. The self-consistency
method of Honerkamp and Weese [38, 39] provides a reliable value for the reg-
ularization parameter λ. Schäfer et al. [40–42] developed a program using the
above mentioned methods to calculate the relaxation time distribution function
L(τ) for equidistant values of log τ from dielectric spectra after subtraction of
a possible conductivity contribution.

In Fig. 3.12 the Havriliak/Negami analysis and the Tikhonov algorithm are
compared with respect to their ability to resolve the two relaxation processes of
a bimodal spectrum. Therefore dielectric data were simulated, based on two
neighboring processes, consisting of 70 points in the frequency range from 10–1

to 106 Hz (ten data points per decade). For simplicity the spectrum does not con-
tain a conductivity contribution. The first process has a relaxation strength of
Δε1 = 1/3 and a mean relaxation time log (τHN1/s) = – 4. The second process has
a longer relaxation time (log(τHN2/s) = – 3.6) and a relaxation strength Δε2 = 2/3
so that the weaker process might disappear in the wing of this stronger process.
Gaussian random numbers with a standard deviation of 10–4 were added to sim-
ulate experimental noise. Figure 3.12 shows the deconvolution of the data and
the resulting relaxation time distribution functions.

As expected the fit using one Havriliak/Negami function is not satisfactory
compared to the one based on two relaxation processes (compare inset Fig. 3.12
and σsit). The best fit is obtained from the Tikhonov algorithm but without de-
tecting the bimodal nature of the original data. Analyzing experimental data by
using the two numerical methods (Fig. 3.13) works equally well for both tech-
niques and delivers similar results for the relaxation time distribution functions.
On the long time side of L(τ) the Tikhonov algorithm can be easily disturbed by
artifacts due to electrode polarization and the conductivity contribution.

In summary the Tikhonov algorithm has the advantage that it permits the de-
termination of the relaxation time distribution functions from the measured
dielectric data without any model assumptions. However, it does not deliver
additional information in comparison to the conventional Havriliak/Negami-
fits. Concerning the power to discriminate between neighboring relaxation
processes it does not provide any advantage or an enhanced resolution.

In order to ease the analysis of dielectric spectra which are composed of closely
adjacent relaxation processes van Turnhout and Wübbenhorst [43] suggest one an-
alyzes the frequency dependence of the derivative ∂ε′/∂ logω. For a Debye-process

(3.31)

is derived. The following features hold: (i) A relaxation peak in ε′′gives a mini-
mum in ∂ε′/∂ log ω. (ii) Because of the squared ε′′ in Eq. (3.31) the minimum is
narrower than the peak in ε′′. Therefore, strongly overlapping relaxation peaks
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Fig. 3.12. Deconvolution of a model spectrum consisting of two relaxation processes whose
difference in relaxation times is 0.4 decades. Details are explained in the text. The spectra
(open squares) are fitted with one HN-function (top), two HN-functions (center), and with the
Tikhonov algorithm (bottom). On the left side are the spectra and on the right side there are
the relaxation time distribution functions. σsit denotes the standard deviation of the fits. As a
guide to the eye the points of the relaxation time distribution for the Tikhonov algorithm are
connected by lines. The quality of the fits is indicated by the standard deviation σsit and can
moreover directly deduced from the insets



are better resolved; this is supported by the fact that the discussed derivative can
be regarded as the simplest approximation of the relaxation time spectrum [1].
(iii) Conductivity contributions according to ε′′ ~ 1/ω do not play any role be-
cause for such a dependence the real part ε′ is independent of frequency.
Therefore electrode polarization and Maxwell/Wagner effects can be analyzed
in more detail [43].
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Fig. 3.13. Dielectric spectrum of Benzoin isobutylether (BIBE) in a porous glass with 7.5 nm
pore diameter at 250 K (left side). Top: the data analysis is shown using two HN-functions (dot-
ted curve) and a conductivity contribution (dashed line). The solid curve is the resulting sum.
Bottom: the spectra are analyzed using the Tikhonov algorithm. On the right side the relax-
ation time distribution functions are shown



A theoretical comparison of the position of maximum loss ωp and the fre-
quency of the minimum of ∂ε′/∂ log ω is presented in [43] for HN-functions
with γ = 1 (symmetrical relaxation function). For the HN-function

(3.32)

holds. Concerning the definition of Ψ(ω) see Table 3.1. Figure 3.14 compares ε′′
and the derivative ∂ε′/∂ log ω for the HN-function with two different sets of pa-
rameters (symmetric and asymmetric broadening). This figure shows that the
maximum positions for both quantities occur exactly at the same frequency po-
sition. Moreover it also becomes obvious that the half-width of the derivative is
always smaller than the half-width of the loss peak.

The power of the proposed approach is demonstrated in Fig. 3.15 where the
imaginary part ε′′(ν) of a liquid crystalline side group polymethacrylate with
mesogenic groups for different measuring temperatures is shown (for more de-
tails see [44]). Only for the highest temperature two relaxation peaks are de-
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Fig. 3.14. Comparison of ε′′(ω) (dashed line) and ∂ε′/∂ logω (solid line) calculated according
to the HN-function with β = 1 and γ = 0.2. This inset shows the chart for β = 0.8 and γ = 1. For
all calculations Δε = 1 and τHN = 1 is assumed



tectable. The relaxation peak at the higher frequency is assigned to the α-relax-
ation which corresponds to micro-Brownian motion of the polymer backbone
segments (dynamic glass transition). The peak at lower frequencies is called δ-
relaxation which is due to rotational fluctuations of the mesogenic units around
its short axis.At lower temperatures it appears as a weak shoulder overlapped by
a conductivity contribution. At the lowest temperature (T = 359.1 K) the α-re-
laxation peak is broadened and therefore it is difficult to extract the relaxation
rate for this process.Figure 3.15b gives the derivative ∂ε′/∂ log ν for the same tem-
peratures displaying a well defined minimum for the δ-process. Furthermore the
relaxation rate for the α-process can be identified unambiguously.

To extend this approach analogously to Eq. (3.17)

→ min (3.33)

can be minimized. Such an approach allows one to estimate the dielectric relax-
ation strength and the shape of a relaxation region in addition to the relaxation
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Fig. 3.15. Dielectric spectra
for a liquid crystalline side
group polymer (the che-
mical structure is given in
the inset): a log ε′′ vs logν
for different temperatures:
(�) :393.8 K, (�) :373.8 K,
(�) :359.1 K; the different
relaxation processes are in-
dicated; b representation of
the data shown in a as
∂e¢/∂ log ν vs log ν



rate. Some further examples for the application of this method can be found 
in [45].

3.3
Fluctuations of Mobile Charge Carriers

According to Maxwell’s equations the current density j = σ*E and the time 

derivative of the dielectric displacement are equivalent where

σ*(ω) is the complex conductivity (see Chap. 1). Hence for sinusoidal electrical
fields E(ω) = E0eiω t and ε*(ω) and σ*(ω) are related to each other by

(3.34a)

The real and imaginary part of σ*(ω) is given by

(3.34b)

For pure electronic conduction no contribution arises to ε′ while 

increases linearly with decreasing frequency. σ0 is the (electronic) d.c.-conduc-
tivity. Hence in the conductivity representation (see Eq. 3.34) for electronic con-
duction the real part σ′(ω) is constant (σ0) and the imaginary part σ′′ increases
linearly with frequency.

According to Eq. (3.22) the dielectric properties for a electronic conduction
can also be expressed in the modulus representation. For its imaginary part

(3.35)

is obtained. Equation (3.35) is similar to the imaginary part of M*(ω) for a
Debye-like relaxation process and peaks at ωMτCond = 1 with τCond = ε0ε∞ /σ0.
Therefore from the position of maximum loss ωM the d.c.-conductivity can be
estimated. The corresponding real part of the modulus increases from zero to
M∞ = 1/ε∞. In addition to complex conductivity the electric modulus represen-
tation is also applied frequently for the analysis of the data obtained for con-
ducting systems. Figure 3.16 shows a theoretical example for two values of con-
ductivity. Deviations from Eq. (3.35) can be described by model function as de-
scribed in Sect. 3.2.1 like the Cole/Davidson- (Eq. 3.3) or the Fourier-trans-
formed KWW-function (Eq. 3.10). The d.c.-conductivity σ0 can be estimated by

(3.36)

where 〈τ〉 is a mean (characteristic) relaxation time for conductivity which can
be defined in accordance with Eq. (3.28). It was argued that ε∞ varies only weakly
from system to system (typical values are in the range from 2 to 20) and σ0 and
its temperature dependence should be mainly due to that of 〈τ〉.
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In disordered systems the charge transport takes place due to hopping con-
duction [46]. Moreover the motion of a charge in these systems is accompanied
by an electrical relaxation: an ionic or electronic (in case of a polaron) charge is
surrounded by negative or positive counter charges.A hop of a charge carrier to
a new site can only lead to a successful charge transport if the polarization cloud
follows. Otherwise the charge carrier will jump back with a high probability.
This mutual movement of the charge carrier and the surrounding polarization
cloud requires an electrical relaxation time τσ . If the frequency of the outer elec-
trical field is higher than 1/τσ its effect on the charge transport averages out. For
frequencies lower than 1/τσ the relaxation of the polarization cloud is in phase
with the outer electrical field. For that case the field supports the propagation of
the charges. Hence this electrical relaxation gives rise to a contribution in the
complex dielectric function which increases with decreasing frequency. This is
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Fig. 3.16. a Theoretical example for a complex dielectric function with a pure ohmic contri-
bution: σ0/ε0 = 1 (dashed line), σ0/ε0 = 104 (solid line), ε′ = 5. b Real part M ′ and imaginary
part M ′′ of the complex electric modulus according to the complex dielectric function given
in a): σ0/ε0 = 1 (dashed line), σ0/ε0 = 104 (solid line)



the essence of the Debye/Hückel/Falkenhagen theory [47–49]. It explains the ex-
perimental observation that for electrolytes the real part ε′ increases with de-
creasing frequency. (Additionally one has to expect electrode polarization ef-
fects in ionic conductors.) Within this phenomenological picture there is no
need to treat the d.c.- and a.c.-conductivity in disordered systems as separate
processes as sometimes discussed in the literature (see for instance [50–52]).

It is remarkable that the complex conductivity σ* is similar in its frequency-
and temperature (including also charge carrier concentration) dependence for a
broad variety of quite different materials,e.g., ionic glasses, ion conducting poly-
mers, electron conducting conjugated polymers, or electron conducting carbon
black composites (see Chap. 12 and, for instance, [50–56]).

As example spectra of the zwitter-ionic polymer poly{3-[N-(ω-methacrylo-
gloxyalkyl)-N,N-dimethyl ammonio]propane sulfonate} doped with 100 mol %
NaI] presented in ε * and σ * are shown in Figs. 3.17 and 3.18 (for details see
Chap. 12 and [57]). The imaginary part ε′′ increases with decreasing frequency
due to conduction (see Fig. 3.17).Also the real part increases due to electrical re-
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Fig. 3.17. Complex dielec-
tric function of a zwitter-
ionic polymer poly{3-[N-
(ω-methacrylogloxyalkyl)-
N,N-dimethyl ammonio]
propane sulfonate} doped
with 100 mol% NaI at the
indicated temperatures. The
lines are fits of Eq. (3.39) to
the data. The fit parameters
are given in table 3.2 of the
Appendix. The dashed line
indicates the contribution
due to electrode polariza-
tion



laxation phenomena (see Fig 3.17 and inset of Fig. 3.17). At lower frequencies 
(ω < 104 rad s–1) this relaxational contribution to ε′ is superimposed by elec-
trode polarization effects (see Sect. 3.4.2).

For the real part σ′(ω) on the low frequency side a plateau value is obtained
which can be extrapolated to the d.c.-conductivity σ0 for ω → 0 (see Fig 3.18).At
a critical frequency ωc = 2πνc the dispersion of σ′sets in. The latter can be de-
termined by smoothing the data and calculating numerically the maximum in
∂2σ′/∂ω2. The imaginary part of the complex conductivity decreases with de-
creasing frequency (see Fig. 3.18). The increase at low frequencies again indi-
cates electrode polarization which will be discussed in Sect. 3.4.2.

According to Barton/Nakajima/Namikawa [58] (BNN-relationship)

(3.37)

holds. (For further details see Chap. 12.) For ω > ωcσ′ increases strongly with
frequency. This behavior is quite general and is found for a variety of semi-con-
ducting systems as discussed in Chap. 12 (see also [58, 59]).

In addition to complex permittivity and conductivity Fig. 3.19 gives the com-
plex modulus representation for the data present in Fig. 3.17. It is demonstrated

ω σc ~ 0
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Fig. 3.18. Complex conduc-
tivity for the data presented
in Fig. 3.17. Lines are due to
fits of Eq. (3.39) to the data.
The fit parameters are given
in table 3.2 of the Appendix



that the increase in ε′′ with decreasing frequency is transformed into a peak 
in M ′′.

Model functions like KWW- or the Cole/Davidson-function transformed into
the conductivity representation have been used to analyze the frequency depen-
dence of the complex dielectric conductivity or modulus.A critical discussion of
this procedure can be found in [50–52, 60] and Chap. 12. Neither the KWW- nor
the Cole/Davidson function can describe the data in the whole frequency range
[60]. Jonscher [61, 62] proposed the following equation (later modified [63])

(3.38)

for the frequency dependence of the real part of the complex conductivity.
In Eq. (3.38) τ is a time constant for conductivity relaxation related to ωc. For 
ω � 1/τ Eq. (3.38) gives a power law characterized by s (0 < s ≤ 1) while for 
ω � 1/τ the d.c.-conductivity σ0 is recovered. Equation (3.38) fits the data rea-
sonable well especially for ω � 1/τ [51, 58, 60] but it lacks any theoretical foun-
dation.

The random free energy barrier model as developed by Dyre [64] which as-
sumes that conduction takes place by hopping of charge carriers in a spatially

′ = + = +σ ω σ ω σ ωτ( ) [ ( ) ]0 0 1A s s
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Fig. 3.19. Complex electric
modulus for the data pre-
sented in Fig. 3.17. Lines are
due to fits of Eq. (3.39) to
the data. The fit parameters
are given in Appendix 3.2.
Taken from [57] with per-
mission



randomly varying energy landscape provides a basic to analyze conduction phe-
nomena on a theoretical level. Within the Continuous-Time-Random Walk
(CTRW) approximation [65] the following expression for the complex conduc-
tivity σ *(ω) is obtained [64]

(3.39a)

where τe is the attempt frequency to overcome the largest barrier determining
the d.c.-conductivity. Splitting into real and imaginary parts delivers

(3.39b)

(3.39c)

Equation (3.39) is used to fit the data present in Figs. 3.17, 3.18, and 3.19 (the
electrode polarizations were modeled within the fractal model; see Sect. 3.4.2,
Eq. 3.48). The estimated parameters are given in Appendix 2. The spectra (both
real and imaginary part) are well described in its frequency- and temperature
dependence using only two adjustable parameters.
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Fig. 3.20. Proof of the BNN-relationship: � – data for the zwitter-ionic system (see Fig. 3.16)
The line is a linear regression to these data. The inset compares relaxation times (or frequen-
cies) for conduction estimated with different methods. Taken from [57] with permission
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From the fits according to Eq. (3.39) the d.c.-conductivity σ0 and the electri-
cal relaxation time τe are obtained. As shown in Fig. 3.20 the BNN-relation (see
Eq. 3.37) is well fulfilled. It indicates that d.c.- and a.c.-conduction are based on
the same mechanism of charge transport.

3.4
Separation of Charges

Charge carriers can be blocked at inner dielectric boundary layers (Maxwell/
Wagner/Sillars polarization [2, 3]) on a mesoscopic scale or at the external elec-
trodes contacting the sample (electrode polarization) on a macroscopic scale.
In both cases this leads to a separation of charges which gives rise to an addi-
tional contribution to the polarization. The charges may be separated over a
considerable distance. Therefore the contribution to the dielectric loss can be
by orders of magnitude larger than the dielectric response due to molecular
fluctuations.

3.4.1
Mesoscopic Scale: Maxwell/Wagner/Sillars Polarization

Maxwell/Wagner polarization processes have to be taken into consideration
during the investigation of inhomogeneous materials like suspensions or col-
loids [66], biological materials [67], phase separated polymers, blends, crys-
talline or liquid crystalline polymers (see Chap. 13). They play also an important
role in investigating the dielectric behavior of molecules in confining space (see
Chap. 6). As an example of the influence of Maxwell/Wagner polarization
Fig. 3.21 shows the real part of the complex dielectric function for a liquid crys-
talline side group polymer (see also Fig. 3.15). In the liquid crystalline state the
material has a nanophase separated structure (smectic layers) which disappears
above the phase transition. At the internal phase boundaries charges can be
blocked which gives rise to a Maxwell/Wagner polarization. That causes a strong
increase in ε′ with decreasing frequency. Above the phase transition the phase
boundaries disappear and therefore the charges cannot be blocked anymore and
ε′ is reduced compared to the liquid crystalline state. In the inset of Fig. 3.21 the
dielectric loss is plotted vs frequency for the same temperatures as for ε′. Also
the slope of the conductivity contribution is influenced by the Maxwell/Wagner
process. In the isotropic state the conductivity is nearly ohmic while in the li-
quid crystalline state with a phase separated structure the frequency depen-
dence of the conductivity is weaker.

The most simple model to describe an inhomogeneous structure is a double
layer arrangement where each layer is characterized by its permittivity εi and by
its relative conductivity σri. That model is sketched in Fig. 3.22 together with the
equivalent circuit. For the complex dielectric function one gets

(3.40a)˜ ( ) ˜ ˜ε ω ε ε
ω τ

* = +
+∞

Δ
1 i MW



Equation (3.40a) is similar to Eq. (3.1) but the parameters have a completely dif-
ferent meaning and physical foundation. For D1 = D2 it holds ε̃∞ = ε1ε2/(ε1 + ε2) 

and . For the relaxation time τMW of the interfacial 

polarization

(3.40b)τ ε ε ε
σ σMW = +

+0
1 2

1 2r r
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Fig. 3.21. ε′ vs logarithm of frequency for the side group polymer given in Fig. 3.15: � 408.8 K
(isotropic state), � 398.85 K (smectic A phase). The inset shows the dielectric loss for the same
temperatures

Fig. 3.22. a Two dielectric layers in series. εi and σri are the corresponding dielectric permit-
tivities and conductivities. b Equivalent circuit where A is the diameter of the electrodes and
Di is the spacing of the layers

(a) (b)



is obtained. The relaxation time scales inversely with the conductivity of the
system. That means that Maxwell/Wagner effects are more pronounced for
conductive materials. This quite simple example demonstrates that the dielec-
tric response of an inhomogeneous medium can be frequency dependent al-
though none of the individual components has frequency dependent dielectric
properties. The frequency dependence can be similar to an orientational polar-
ization.

A more molecular point of view to treat interfacial polarization phenomena
was developed by Maxwell [68] and generalized by Wagner [2] and Sillars [3]
later. Maxwell considered a spherical particle with a dielectric permittivity ε2
and the radius R suspended in an infinitely extended medium characterized by
ε1 (see Fig. 3.23a) [67]. The electric potentials caused by an electric field E out-
side and inside the sphere Ψ1 and Ψ2 can be calculated by solving of the corre-
sponding Laplace equations:

(3.41)

where ∇2 is the Laplace operator.The solution of Eq. (3.41) is straightforward us-
ing spherical coordinates. Taking further into consideration that the potentials
must be continuous at the boundary of the sphere, i.e.

(3.42)Ψ Ψ Ψ Ψ
1 2 1
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Fig. 3.23. a Spherical parti-
cle to derive Maxwell’s
equations for a suspension.
b Model to derive the mix-
ture equations. The small
particles are the same as
sketched in a



holds for r = R, one ends up with

(3.43a)

(3.43b)

To calculate the properties of a suspension in an effective medium approach N
small spheres with a radius R discussed above are embedded in a large sphere
with a radius R′ (see Fig 3.23b).According to Eq. (3.43a) for the potential ΨP out-
side the large sphere

(3.44a)

holds where εM is the homogeneous permittivity of the large sphere considered
as an effective medium. On the other hand ΨP can be also expressed as the sum 4

of the potentials due to the N small particles

(3.44b)

Clearly the potentials calculated by Eqs. (3.44a) and (3.44b) must be equal which
leads to

(3.45a)

where ρ = NR/R′ is the volume fraction of the small particles. Only for small 
ρ εM increases linearly with the volume fraction according to

(3.45b)

That approach was improved by Wagner [2] considering the permittivity as
complex quantity. Later Sillars [3] generalized the treatment to particles with an
ellipsoidal shape. The theory was further extended to high concentration of
fillers [66] and to particles surrounded by a (conducting) layer. For a deeper dis-
cussion see Chap. 13.

Analyzing dielectric measurements in terms of Maxwell/Wagner processes
one has to keep in mind that the shape of the particles and their properties must
be known to obtain reliable results.
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4 It was assumed that the small particles do not interact with each other. That means that the
concentration should be not too high.



3.4.2
Electrode Polarization

Electrode polarization 5 is an unwanted parasitic effect during a dielectric ex-
periment because it can mask the dielectric response of the sample. It occurs
mainly for moderately to highly conducting samples and influences the dielec-
tric properties at low frequencies. Both the magnitude and the frequency posi-
tion of electrode polarization depend on the conductivity of the sample and can
result in extremely high values of the real and imaginary part of the complex di-
electric function. In Fig. 3.24 the complex dielectric function is plotted for
poly(propylene glycol) with a molecular weight of 1000 g mol–1 complexed with
0.1 mol% LiClO4 in the frequency range from 10–1 Hz to 109 Hz. At low frequen-
cies the real part increases strongly with decreasing frequencies up to very high
values which cannot be explained by molecular relaxation processes. Such a be-
havior is a clear sign of electrode polarization.

The molecular origin of that effect is the (partial) blocking of charge carriers
at the sample/electrode interface. This leads to a separation of positive and neg-
ative charges which gives rise to an additional polarization. The theoretical
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5 It should be noted that in contrast to molecular fluctuations and charge transport, electrode
polarization is a macroscopic phenomenon.

Fig. 3.24. Real part ε′(open circles) and imaginary part ε′′(open squares) of complex dielectric
function for poly(propylene glycol) with a molecular weight of 1000 g mol–1 complexed with
0.1 mol %LiClO4 at T = 259.1 K. The strong increase of ε′ at low frequencies is due to electrode
polarization



treatment of electrode polarization goes back to Warburg [69] and Fricke [70],
the latter having already predicted the frequency dependence of the complex di-
electric function due to electrode polarization.

In the framework of a simple model the blocking of charges at the sample/elec-
trode interface can be described by an electrical double layer with an effective
spacing characterized by its Debye length LD. This double layer causes a large ca-
pacitance in series to the investigated sample. The time dependence6 of the elec-
trode polarization is due to charging and discharging of that double layer. The
model given in Fig. 3.22 can be used to estimate the effect of electrode polariza-
tion. From Eq. (3.40b) for the characteristic time constant of that process τEP

(3.46)

can be estimated for D � LD where σ0 is the d.c.-conductivity of the system.
Equation (3.46) shows that the influence of electrode polarization on the measured
complex dielectric function increases with increasing conductivity σ0 because the
effect is shifted to higher frequencies. On the other hand with increasing thickness
D of the sample the process of electrode polarization shifts to lower frequencies.
Therefore electrode polarization can be distinguished from the bulk behavior of a
sample by studying the effects of changing the electrode materials and/or of the
sample thickness on the frequency dependence of the dielectric function.

For a discussion of the dielectric properties of the sample alone the measure-
ments have to be corrected for electrode polarization effects. That can be dif-
ficult because the capacitance CEP and the impedance Z*

EP due to electrode po-
larization can be extremely large especially for high conducting samples or
materials in aqueous solution. Different techniques to correct for electrode po-
larization have been discussed by Schwan [71–74]. All of them are based on dif-
ferences in the model description of the electrode polarization process (chang-
ing of the equivalent circuit) or the experimental estimation of its parameters
and subtracting it from the raw data.

The first approach called substitution method is more or less related to mea-
surement techniques. A sample with unknown dielectric properties is replaced
by a known sample. The reference sample must be chosen in such a way that it
mimics the ionic nature of the sample to investigate. In general that seems diffi-
cult to realize and can be used only for model systems. A deeper discussion
about the reliability of this method can be found in [72, 74].

Because electrode polarization is sensitive to the sample thickness some cor-
rection for electrode polarization can be done by varying the thickness (or more
general the geometric dimensions) of the sample. If Z*

i = Z*
p + Z*

Si denotes the im-
pedance of a measurement i where Z*

p and Z*
Si are the impedances due to electrode

polarization and due to the sample then the difference of two measurements

(3.47)Z Z Z ZS S1 2 1 2
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D
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6 One has to note that electrode polarization is not a relaxation process. Therefore the time
constant of that process should not be called a relaxation time.



is independent of electrode polarization. That method is accurate if it is assumed
that electrode polarization does not vary with the electrode distance which can
be checked by investigating a series of samples with different thickness. In the
case of Z*

p � Z*
Si the subtraction procedure can lead to substantial errors.

The double layer model for electrode polarization discussed above leads to a
Debye-like frequency dependence of this process (see Eq. 3.40a). Therefore in
agreement with the ideas developed in Sect. 3.2.1 the frequency dependence of
the electrode polarization can be described by a model function or by an appar-
ent conductivity (see Eq. 3.18). Due to the fractal nature of the electrode surfaces
[75] only in rare cases is a Debye-like frequency dependence for the electrode
polarization found. Often fractal power laws for the frequency dependence for
the complex dielectric function are observed (see for instance [70, 74]). Fractal
power laws also follow from different theoretical treatments of electrode polar-
ization [70, 75]. Therefore, to correct the measurements for electrode polariza-
tion one can assume

(3.48)

where λ (0 < λ ≤ 1) is a parameter describing the fractal character of the under-
lying process and εs is the permittivity which is due to orientational polariza-
tion. Equation (3.48) can be included the fitting procedures in the same manner
as discussed in Sect. 3.2.1 to separate the electrode polarization from dipolar re-
laxations. Applications of this equation are used in Chap. 12 analyzing the data
for semiconducting polymer/salt systems.

3.5
Conclusion – How to Analyze Dielectric Spectra

The following rules may be of help in analyzing dielectric spectra:

1. Check whether the dielectric response of the sample under study is domi-
nated by mobile or bound charge carriers, i.e., whether the conductivity con-
tribution or molecular relaxation processes preponderates.

2. Samples which are characterized by molecular relaxation processes should be
analyzed using generalized relaxation functions as outlined in Sect. 3.2.1. The
main information which can be extracted is the relaxation time τ(T), the di-
electric strength Δε(T), and the shape parameters n(T), m(T) of the relax-
ation time distribution function. Hence the relaxation process is character-
ized by four independent parameters. The relaxation time distribution func-
tion can be obtained as well by employing the (model-free) Thikonov regu-
larization technique (see Sect. 3.2.2). Possible non-linearities have to be
checked; this is especially important in case of collective fluctuations as they
occur in (anti)-ferroelectric liquid crystalline systems.

3. In case of a dominating conductivity contribution the data may be repre-
sented in ε *(ω), σ *(ω), or M*(ω). From fits based on a random free-energy
barrier model as developed by Dyre the direct current (d.c.) conductivity σ0

′ − = ′′ ∼ >− −ε ω ε ω ε ω ω ω τλ λ
EP EP EPfor( ) ; ( ) /s A 1
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and the electrical relaxation time τe can be deduced. Ionic and electronic
charge carriers have in principle a similar frequency and temperature depen-
dence. Electrode polarization effects are only to be expected for materials
with a high concentration of ionic charge carriers. The possibility of a non-
linear response of the sample must be checked.
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Appendix 3.1. Fit parameters

Table 3.1. Shape Parameter m and n for different monomers and polymers: Coordinates for
Fig. 3.6

Nr. Material T[K] m n Ref.

1 Poly(methylacrylate) 303.2 0.8 0.254 [76]
2 Poly(isobutyl methacrylate) 375.9 0.724 0.354 [77]
3 Poly(n-hexyl methacrylate) 305.8 0.678 0.409 [77]
4 Poly(n-butyl methacrylate) 332.1 0.676 0.356 [77]
5 Poly(nonyl methacrylate) 315.9 0.790 0.411 [77]
6 Poly(cyclohexyl methacrylate) 394.2 0.701 0.215 [77, 78]
7 Polyacetaldehyde 276.6 0.699 0.508 [79]
8 Polystyrene >377.0 0.75 0.320 [80]
9 Poly(methyl methacrylate) 345.1 0.572 0.213 [81]

10 Oligo(methyl methacrylate) 283.2 0.552 0.259 [81]
11 Oligo(vinyl acetate) 275.9 0.674 0.309 [81]
12 Poly(p-chloro styrene) 412.2 0.733 0.389 [82]
13 Poly(o-chloro styrene) >404 0.850 0.340 [80]
14 Poly(p-chloro styrene) >366 0.600 0.200 [83]
15 Copolymer from phenyl 418.1 0.940 0.311 [83]

methacrylate and acrylnitrile
16 Poly(bisphenol-A-carbonate) 437 0.795 0.225 [9]
17 Poly(vinyl formal) 403.1 0.584 0.458 [84]
18 Poly(vinyl acetal) 373.1 0.782 0.296 [84]
19 Poly(vinyl butyral) 358.1 0.770 0.304 [85]
20 Epoxy resin 1 373.1 0.237 0.219 [86]
21 Epoxy resin 2 291.1 0.506 0.247 [86]
22 Epoxy resin 3 328.1 0.497 0.133 [86]
23 Poly(vinyl octanate) 267.1 0.886 0.424 [87]
24 Poly(vinyl decanate) 270.9 0.770 0.493 [88]
25 Poly(bisphenol-A-isophthalate) 464.1 0.607 0.261 [9]
26 PET amorphous 350.8 0.810 0.370 [88]
27 PET crystalline, 29% 361.4 0.360 0.360 [88]
28 Polyurethane 1 264.9 0.485 0.175 [29]
29 Polyurethane 2 304.4 0.435 0.150 [29]
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30 Polyurethane 3 341.3 0.540 0.285 [29]
31 Poly(vinyl acetate) 342 0.875 0.465 [89]
32 Glycerol 200 0.97 0.58 [15]
33 Propylene glycol 175 1 0.61 [15]
34 Salol 290 1 0.8 [90]
35 Propylene carbonate 175 1 0.7 [90]

Table 3.2. Parameter of the fits of the random free energy barrier model for conductivity [64]
to the data of a zwitter-ionic polymethacrylates poly{3-[N-(ω-methacrylogloxyalkyl)-[N,[N-
dimethyl ammonio]propane sulfonate} doped with 100 mol% NaI

T [K] σ0 [S cm–1] τe [s] A [(rad s–1)λ] λ

396 1.9 × 10–7 3.6 × 10–6 2.4 × 106 1.32
391 5.6 × 10–8 1 × 10–5 7 × 104 1.03
382 1.3 × 10–8 4 × 10–5 6 × 102 0.55
373 1.3 × 10–8 1.8 × 10–4 – –
364 4.4 × 10–10 6.4 × 10–4 – –
355 6.8 × 10–11 4.2 × 10–3 – –
346 8.6 × 10–12 4 × 10–2 – –

List of Abbreviations and Symbols

a Constant
D Sample thickness
i Imaginary unit i = √4–1
L Dielectric relaxation time distribution
LD Thickness of the Debye layer
m, n Low and high frequency slope of the HN-function
M*, M ′, M ′′ Complex electric modulus, real and imaginary part of the

complex modulus
Ms, M∞ ;

s Exponent characterizing the frequency dependence of
the conductivity

t Time
Z* Impedance
β, γ, βKWW Shape parameter of the Cole/Cole-, Cole/Davidson-,

HN-and KWW-function
Γ () Gamma function
ε*, ε′, ε′′ Complex dielectric function or permittivity, real and

imaginary part of the complex dielectric function
εS, ε∞ ; ε ε ω

ωτ
∞ = ′lim ( )

�1
ε ε ω

ωτ
S = ′lim ( )

�1

M M∞ ∞= ′ =lim ( ) /
ωτ

ω ε
�1

1M Ms S= ′ =lim ( ) /
ωτ

ω ε
�1

1
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Δε = εS – ε∞ Dielectric strength
ε0 Dielectric permittivity of vacuum,

ε0 = 8.854 × 10–12 As V–1 m–1

λ Fractal parameter for electrode polarization; Regulariza-
tion parameter

ν, ω Frequency, radial frequency
νp, ωp Relaxation rate at maximal loss
σ *, σ′, σ′′ Complex conductivity, real and imaginary part of the

complex conductivity
σ0 d.c.-conductivity
τ Relaxation time
τD, τCC, τCD, τHN, τKWW Relaxation time of Debye-, Cole/Cole-, Cole/Davidson-,

HN- and KWW-function
τe Relaxation time for conductivity relaxation
τMW, τEP Relaxation time for the Maxwell/Wagner process and for

electrode polarization

a.c. Alternating current
BNN Barton/Nakajima/Namikawa
CC Cole/Cole
CD Cole/Davidson
d.c. Direct current
HN Havriliak/Negami
KWW Kohlrausch/Williams/Watts
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4 The Scaling of the Dynamics of Glasses 
and Supercooled Liquids

F. Kremer · A. Schönhals

4.1
Introduction

Despite the fact that glasses are materials which have been available since the
rise of mankind and despite the fact that they play an essential role in modern
technology their physical understanding is still controversial and remains an
unresolved problem of condensed matter physics [1, 2, 3a–d]. The most promi-
nent features observed when a glass-forming liquid or polymer melt cools down
is the rapid increase of the characteristic relaxation time and the strong non-
Debye behaviour of the relaxation function. This has been observed by a mani-
fold of different experimental methods including mechanical-dynamical spec-
troscopy [4], ultrasonic attenuation [5], light [6] and neutron scattering [7] (see
Chap. 18), NMR spectroscopy [8] (see Chap. 17) and especially broadband di-
electric spectroscopy [9–33].

In the high temperature limit the dielectric relaxation time has a typical value
of about τ∞ ≅ 10–13 s, describing local orientational fluctuations. In this range the
viscosity of the liquid has a value of about 10–2 to 10–1 poise. With decreasing
temperature both the relaxation time and the viscosity increase strongly and can
be approximated by the empirical Vogel-Fulcher-Tammann (VFT)-equation
[34a–c] 1

(4.1)

where ν∞ = (2πτ∞)–1, D is a constant and T0 denotes the Vogel temperature.
(Sometimes T0 is also called ideal glass transition temperature.) The degree of
deviation from an Arrhenius-type temperature dependence provides a useful
classification of glass forming systems [35]. Materials are called “fragile” if their
ν(T) dependence deviates strongly from an Arrhenius-type behaviour and
“strong” if ν(T) is close to the latter. As a quantitative measure of “fragility” the
parameter D in Eq. (4.1) can be used [35]. At the calorimetric glass transition Tg
ν (Tg) and the viscosity η(Tg) have reached a typical value of ~10–2 Hz and
~1013 poise, respectively. In general, T0 is found to be approximately 40 K below
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1 A more refined analysis based on the derivate with respect to temperature (see below)
proves that the VFT-equation is a coarse-grained description only.



Tg. Thus, the change in the dynamics of the glass-forming processes spans more
than 15 decades.

The divergence of Eq. (4.1) at T = T0 is also supported by the so-called
Kauzmann paradox occurring in the entropy determined by measurements of
the specific heat [36–40]. If the entropy of the supercooled liquid is extrapolated
to low temperatures, it seems to become identical to that of a crystal or even
smaller at T = T0. In some theories (like the Gibbs-DiMarzio model [41] for
polymers) the Kauzmann paradox is resolved by a phase transition. However,
the physical meaning of the divergence of ν (T) at T = T0 remains unclear.
Because of the universality of Eq. (4.1) T0 should be regarded as a characteristic
temperature for the dynamic glass transition.

The glassy dynamics is often discussed in a simplified picture. A molecule
fluctuates in the cage of its neighbours. Its “rattling” motion is assigned to a fast
secondary β-relaxation which takes place on a time scale of 10–10 s to 10–12 s fol-
lowing an Arrhenius-type temperature dependence

(4.2)

where EA is the activation energy, kB the Boltzmann constant and ν∞ the relax-
ation rate in the high temperature limit. The reorientations of the molecules
forming the cage corresponds to the dynamic glass transition or α-relaxation
obeying a VFT-temperature dependence. This relaxation process must be – at
least to some extent – cooperative; i.e. the fluctuations of the molecules forming
the “cage” cannot be independent from each other. The extension of the size of
such “cooperatively rearranging domains”[41, 42] is one of the central (and con-
troversial) topics of glass research.

The relaxation function of the α-relaxation is usually broadened. Its high fre-
quency side often exhibits two power laws. In the case of glycerol this was ob-
served already by Davidson and Cole [43] and interpreted as caused by high fre-
quency vibrations. It is nowadays established for a variety of glass-forming (low
molecular weight and polymeric) materials [21, 33, 44–46]. Novel experiments
[30, 50, 51] indicate that one should consider the high-frequency contribution
(“wings”) as a type of secondary relaxation (see also Chap. 5). On the other
hand, Chamberlin [47–49] has shown that the scaling of the temperature de-
pendence (VFT-dependence) of the α-relaxation as well as the existence of two
power laws on the high frequency side can be quantitatively comprehended
based on a mean field theory applied to small finite systems.

Many systems show additionally a slow secondary β-relaxation (with an
Arrhenius-type temperature dependence). This process being observed for relax-
ation rates ~ <108 Hz can often be assigned to intramolecular fluctuations.
However, there are several examples like the low-molecular weight liquid ortho-
terphenyl (OTP) [11, 12] or the main chain polymer poly(ethylene terephthalate)
(PET) [33] where such an interpretation is not possible without ambiguity.
Therefore, it was argued by Goldstein and Johari [11,12] that the slow β-relaxation
should be regarded as a precursor for the dynamic glass transition. The slow β-re-
laxation separates from the α-process in the frequency range from 107 to 108 Hz

ν ν( ) exp T E
k T

A

B
= −⎛

⎝⎜
⎞
⎠⎟∞
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(T ≈ 1.2 Tg). There are several scenarios in the literature about the separation of
the α- and β-relaxation (see also Chaps. 5 and 7). Light and neutron scattering ex-
periments find in that temperature region characteristic anomalies of the Debye-
Waller-factor. Furthermore a breakdown of the Stokes-Einstein equation which
links rotational and translational diffusion is observed [54]. In the THz regime a
further molecular process is observed,the “boson peak”[37] which has many sim-
ilarities with the Poley absorption [52, 53]. Its molecular interpretation is contro-
versial as well [55–59]. At ultra-slow relaxation rates (5–8 decades below the dy-
namic glass transition) fluctuations of clusters exist [60, 61].

In recent years growing evidence was found that the dynamics in supercooled
liquids is spatially heterogeneous. When a liquid is cooled far below its melting
point, the dynamics in some regions of the probe can be orders of magnitude
faster than in adjacent regions only a few nanometers away. This is experimen-
tally proven by several approaches such as multidimensional NMR [62], dielec-
tric non-resonant spectral hole burning [63] (see Chap. 10), solvation dynamics
[64] (see Chap. 15) and optical photobleaching [65]. The reader is referred to the
reviews of Sillescu [66] and Ediger [67].

In summary, glassy materials show a subtle dynamics which is at present not
well understood. Dielectric spectroscopy with its extraordinary frequency range
(10–6 Hz to 1013 Hz) is an ideal tool to study this dynamics. State of the art re-
sults will be presented in this and the following chapter by Lunkenheimer and
Loidl. The former will focus on the frequency range below 1010 Hz while the lat-
ter will discuss primarily novel results at higher frequencies. In detail in this
chapter the following questions will be addressed: (i) what is the scaling of re-
laxation processes with temperature, (ii) is time-temperature superposition in
general valid for (dielectric) relaxation processes, (iii) are there characteristic
temperatures in the scaling of the dynamic glass transition, (iv) what is the mol-
ecular origin of the “high-frequency” wing which is observed in the dynamic
glass transition of many (low molecular weight and polymeric) systems, (v)
does the slow-β-relaxation obey the predictions of the mode-coupling theory as
studied for the case of poly(ethylene terephthalate)?

4.2
Theories Describing the Scaling of the Dynamics 
in Glass-Forming Systems

The fluctuations of a molecular system being connected to a heat bath can be de-
scribed in the simplest case by a double minimum potential. Assuming that the
material specific potential barrier is temperature independent, the fluctuations
are determined by the dynamic equilibrium between the (at least) two substates
and for the relaxation rate ν an Arrhenius-type temperature dependence is ob-
tained (Eq. 4.2). It is characteristic for secondary relaxation processes like the
slow and the fast β-relaxation (Fig. 4.1b). In glass forming systems close to the
calorimetric glass transition the situation is more complex. There are several
different concepts and theories to understand the molecular dynamics based on
thermodynamic and/or kinetic considerations. One example for the extension
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Fig. 4.1. Scheme of the dynamics taking place in glass-forming liquids: a imaginary part ε′′ of
the complex dielectric function vs frequency for two temperatures T1 and T2 – the dynamic
glass transition (“α-relaxation”), the slow β-relaxation, the fast β-process and the boson peak
are shown (not all of these four loss processes are necessarily present in a glass-forming sys-
tem); b activation plot (relaxation rate vs inverse temperature) of the loss processes shown in
a; c calorimetric determination of the glass transition temperature (specific heat at constant
pressure) cp vs inverse temperature for a certain cooling rate



of the simple double minimum potential to glass-forming systems is the energy
landscape model discussed by Angell [68] or Stillinger [69, 70]. In this section
the free volume theory, the concept of cooperativity and the mode-coupling 
theory (MCT) will be introduced briefly.

The empirical VFT-dependence (Eq. 4.1) can be justified by two theoreti-
cal approaches, the Adam-Gibbs model [42] and the free volume theory as de-
veloped by Doolittle [71] and Cohen [72, 73]. The latter is based on four as-
sumption

1. To every molecule or segment of a polymer chain a local volume V can be at-
tributed.

2. If V is larger than a critical value Vc the surplus can be considered as “free”
Vf = V–Vc .

3. The mechanism of molecular transport is a jump over a distance corre-
sponding to the size of the molecule VM (~hard core volume). Such a process
is possible only if the free volume Vf ≥ V* ≈ VM where V* is the minimal free
volume required for a jump of a molecule (or segment) between to sites

4. The molecular rearrangement of free volume does not “cost” free energy.

Its statistics follows a Boltzmann distribution being normalised by the (con-
stant) total free volume of the system.A molecule or a polymer segment changes
its position via jumps only if the necessary free volume is provided. Hence for
the jump rate 1/τ

(4.3)

is obtained where –Vf is the averaged free volume. Assuming that the relative 
averaged free volume –f = –Vf /V (V: total volume) depends linearly on temperature

–f (4.4)

while is temperature independent results in a VFT-equation. αf is the

thermal expansion coefficient of the free volume and fg the relative free volume
at Tg. Comparison with Eq. (4.1) delivers

(4.5)

In the framework of the free volume concept T0 is the temperature at which –Vf
vanishes. One has to note that in this simple model no characteristic length scale
is involved. Furthermore all transport properties should have the same temper-
ature dependence because the jump between holes is the only transport mecha-
nism. Thus a decoupling of rotational and translational diffusion cannot be ex-
plained within this model. Cohen and Grest [73] extended this approach by con-
sidering solid- and liquid-like clusters in a percolation approach.

The approach of Adam and Gibbs [42] assumes the existence of “Co-
operatively Rearranging Regions (CRR)” being defined as the smallest volume
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which can change its configuration independent from neighbouring regions.
Adam and Gibbs related the relaxation time to the numbers of particles (mole-
cules for a low molecular liquid, segments for a polymer) z (T) per CRR by

(4.6)

where ΔE is a free energy barrier for one molecule. z(T) can be expressed by the
total configurational entropy Sc(T) as z(T) = Sc(T)/(N kB ln2) where N is the to-
tal number of particles and kB ln2 the minimum entropy of a CRR assuming a
two-state model. Using thermodynamic considerations Sc(T) can be linked to
the change of the heat capacitance Δcp at the glass transition by

(4.7)

With T2 = T0 and Δcp ≈ C/T from Eqs. (4.6) and (4.7) the VFT-dependence follows.
At T0 the configurational entropy vanishes and the size of a CRR diverges as

. The Adam-Gibbs model does not provide information about

the absolute size of a CRR at Tg.
In his fluctuation approach Donth [74, 75a,b] developed a formula which

connects the height of the step in cp and the temperature fluctuation δT of a CRR
at Tg with the correlation length ξ as

(4.8)

where ρ is the density and Δ(1/cp) the step of the reciprocal specific heat (if
cV ≈ cp is assumed). Experimentally δT can be extracted from the width of the
glass transition [76, 77]. Recently, it became possible to extract δT directly form
thermal heat spectroscopy measurements [78, 79]. A similar formula can be de-
rived using energy fluctuations instead of entropy fluctuations [66].

Within the fluctuation approach for the temperature dependence of ξ

(4.9)

is obtained. A similar equation was derived by Kirkpatrick and Tirumalai [80]
using scaling arguments.

The mode-coupling theory (MCT) of the glass transition (for reviews see
[81–84]) is an essentially hydrodynamic approach being based on a generalised
non-linear oscillator equation

(4.10)
d

d

d

d

d

d
d

2

2
2 2

0

0
Φ

Φ
Φ Φq

q
q

q

t
qt

t
t

t

t
m t

( )
( )

( )
( ) 

( )
+ + + − =∫Ω Ωζ τ

τ
τ

τ

ξ ( ) ~

( )
 

T

T T

1

0

2
3−

ξ
ρ δ

3
2

2

1
~

( / )

( )
V

k T c

T
B g p

CRR =
Δ

z T
C T T

( ) ~
( )

1

0−

S T
c

T
Tc

p

T

T

( )  = ∫
Δ

2

d

1
τ

~exp 
( )−⎡

⎣⎢
⎤
⎦⎥

z T E
k TB

Δ

104 4 The Scaling of the Dynamics of Glasses and Supercooled Liquids



where the normalised density correlation function Φ(t)q is defined as

(4.11)

where Δρq(t) are density fluctuations at a wavevector q, Ω is a microscopic os-
cillator frequency and ζ describes a frictional contribution. While the first three
terms of Eq. (4.10) correspond to a damped harmonic oscillator the fourth term
contains a memory function mq(t–τ). The physical idea of this memory term
can be visualised for a hard-sphere system which interacts only by elastic scat-
tering. For low densities the collisions at two different points in space-time are
independent from each other. Hence mq(t) ~ δ(t) with δ(t) being the Dirac-
function. With increasing density the collisions become correlated. This results
in the “cage effect” mentioned above. At a short time scale a particle is enclosed
in the transient cage of its neighbours. The correlated motions within the cage
lead to a strong increase of the internal friction. On a longer time scale the cages
are destroyed by diffusional rearrangements and hence the friction decreases.
As a consequence the total frictional losses in the system become time depen-
dent. This is considered by the integral term in Eq. (4.10)2.

To solve Eq. (4.10) requires an ansatz for mq(t). As already shown by
Leutheuser [81] and Bengtzelius et al. [82] a simple Taylor-expansion of m leads
to a relaxational response of Φq having some similarity with the dynamic glass
transition. Assuming mq(t) = v1Φq(t) + v2Φ2

q (t) (F12-model [83]) delivers a two-
step decrease of the correlation function Φq(t). The faster contribution is inter-
preted in terms of a β-relaxation while the slower component is attributed to the
dynamic glass transition (α-relaxation). Its relaxation time diverges at a critical
temperature Tc where a phase transition from an ergodic (T > Tc) to a non-er-
godic (T < Tc) state takes place. In detail this (idealised) version of MCT makes
the following predictions:

1. For T > Tc the relaxation time τα of the α-relaxation scales according to

(4.12)

where γ is a constant.
2. The relaxation function of the α-relaxation can be described by
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with 0 < βKWW ≤ 1, where Φ0 is the amplitude of the α-relaxation. For T > Tc
the relaxation time distribution should be temperature independent, i.e.
time-temperature-superposition should hold.

3. Above and close to the critical temperature Tc the minimum of the suscepti-
bility ε″min, ωmin between the α-relaxation and the β-relaxation should follow
a power law

(4.14)

4. The scaling of the α- and β-relaxation follows a master function

(4.15)

with exponents a and b that are connected by

(4.16)

where Γ is the Γ-function.
5. These exponents also determine the temperature dependence of the fre-

quency of the minimum of the susceptibility and of the frequency of the max-
imum ωmax of the α-relaxation

(4.17)

(4.18)

The dynamic glass transition spans an extraordinary wide time scale bridging
microscopic (10–11 s) and ultraslow fluctuations (106 s). In order to analyse its
temperature dependence in detail it is conclusive to calculate the derivative of
the relaxation rate with respect to 1/T. For the VFT-equation (Eq. 4.1), the
Arrhenius dependence (Eq. 4.2) and the temperature dependence suggested by
MCT (Eq. 4.11) for T > Tc, the following formulas hold:

– VFT:

(4.19)

– Arrhenius:

(4.20)
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– MCT:

(4.21)

Hence in a plot of (–d logv/d(1/T))–1/2 vs 1/T the VFT dependence shows up as a
straight line.The derivative plots enable to analyse in detail the scaling with tem-
perature (Fig. 4.2). This is especially true for the high temperature regime. With
modern equipment (having a temperature stability of typically ± 0.02 K, see
Chap. 2) it is possible to trace the evolution of the dielectric spectra in steps of

d
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ν γ
1 12T
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−
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Fig. 4.2. a The scaling behaviour as predicted by the Arrhenius-equation (Eq. 4.2), the Vogel-
Fulcher-Tammann equation (VFT) (Eq. 4.1) and the mode-coupling theory (MCT) (Eq. 4.12).
The glass transition temperature Tg is indicated. b Differential quotient (–d(log(ν))/
d(1/T))–1/2 × 100 for the functionalities shown in a



one degree or less. By that experimentally difference quotients Δ(–logv)/Δ(1/T)
can be determined and compared with the analytical derivatives.

4.3
Temperature Dependence of the Dynamic Glass Transition

The dynamic glass transition is determined by intermolecular interactions. It
shows up in different quantities as density fluctuations (as measured with (light)
scattering techniques),dielectric relaxation or the viscosity. In the following sev-
eral typical low molecular weight glass forming systems will be compared: or-
tho-terphenyl (OTP), salol, glycerol, propylene carbonate, propylene glycol and
poly(propylene glycol).While orthoterphenyl and salol can be considered as van
der Waals liquids, despite the fact that salol has H-bonds (binding primarily
within a molecule), glycerol and propylene glycol are typical H-bond forming
liquids. To compare directly the scaling behaviour of a low molecular glass-form-
ing liquid with that of a polymer poly(propylene glycol) with a molecular weight
of 4000 g mol–1 is chosen as well.

The dynamic glass transition in ortho-terphenyl (OTP) was measured 
by light scattering techniques, dielectric spectroscopy and the viscosimetry
(Fig. 4.3a,b). All methods deliver within experimental accuracy a similar de-
pendence in the entire temperature range (unfortunately OTP has weak dielec-
tric relaxation processes, so that the spectra above 106 Hz cannot be measured
with sufficient accuracy.). A weak Arrhenius-like secondary relaxation is ob-
served as well. Its molecular assignment (if it exists) is not known. Analysing
the temperature dependence in the derivative plots (Fig. 4.3b) proves that it is
not possible to describe the experimental data adequately by use of one VFT-
equation. On the other hand it would be not possible to replace the VFT-de-
pendence by an Arrhenius function as one might expect from the raw data in
Fig. 4.3a.

For salol as well it is found that density fluctuations, dielectric relaxation 
and viscosity scale with each other in the entire temperature range (Fig.
4.4a). The data at temperatures >300 K can be equally well described by the
Arrhenius equation and the MCT-ansatz (Eq. 4.12). The derivative plot
(Fig. 4.4b), however, proves that the Arrhenius-fits fails. As in OTP it is not pos-
sible to describe the temperature dependence with one VFT-fit in the entire tem-
perature range.

For glycerol (Fig. 4.5a) the data at temperatures ≥270 K seems to follow
equally well – a VFT-, an Arrhenius- or – a MCT-fit. However, from the derivative
plot (Fig. 4.5b) one must conclude that neither an Arrhenius- nor an MCT-
ansatz describe the temperature dependence correctly within the limits of ex-
perimental accuracy. Instead it is possible to fit the data in the entire tempera-
ture range by use of two VFT-equations (VFT1 and VFT2).

In propylene carbonate (Fig. 4.6a) the situation is similar to that in glycerol.
Neither an Arrhenius- nor the MCT-ansatz are adequate fits (Fig. 4.6b). Two 
VFT dependencies are necessary to describe the data in its temperature depen-
dence.
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Fig. 4.3. a Activation plot (logνmax vs 1000 T–1) for ortho-terphenyl (OTP) as obtained from
Havriliak-Negami fits – dielectric α-relaxation [32b] (open circles); dielectric β-relaxation
[11] (open triangles); the α-relaxation as measured with Photon-Correlation and Brillouin-
Spectroscopy [32c] (filled squares) and the viscosity (108 × η [poise]) [32c] (crosses). The er-
ror bars are smaller than the size of the symbols if not indicated otherwise. Solid line (VFT1):
VFT-fit with logν∞ = 21.3, DT0 = 1820 K, T0 = 168 K; dashed line (Arrhenius 1): Arrhenius fit
with logν∞ = 12.1, EA/kB = 980 K; solid line (VFT2): VFT-fit with log ν∞ = 11.0, DT0 = 225 K,
T0 = 242 K; dashed line (Arrhenius2): Arrhenius-fit with logν∞ = 15.0, EA/kB = 2543 K.
b Difference quotient (–Δ(log(νmax))/Δ(1/T))–1/2 vs 1000/T for the dielectric and the viscosity
data shown in a



Figure 4.7 compares the temperature dependence of the relaxation rate of the
α-relaxation of propylene glycol with its polymeric pendant poly(propylene gly-
col). For both materials the curved trace of the relaxation rate vs inverse tem-
perature is observed. Due to the increased intramolecular interaction the relax-
ation rate for polymeric material is shifted to higher temperatures. The applica-
tion of the described derivation technique shows that for both systems the tem-
perature dependence of the relaxation rate of the α-relaxation can be described
by a high and a low temperature VFT-equation. Hence with regard to the tem-
perature dependence of the relaxation rate there is no essential difference be-
tween the low molecular weight and the polymeric glass-forming system.

A dielectric relaxation process is not only characterised by the relaxation rate
but also by its dielectric strength and by the shape of the relaxation time distri-
bution function. In the following the temperature dependence of these two
quantities will be discussed for the α-relaxation.

Figure 4.8a shows (TΔε)2 vs temperature for propylene carbonate, propylene
glycol, glycerol and for salol. According to the Onsager-Kirkwood-Fröhlich ap-
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Fig. 4.4. a Activation plot
of salol. The dielectric α-
relaxation [32b] (open cir-
cles), the α-relaxation
measured with light scat-
tering (Photon-Correla-
tion-Spectroscopy and
Brillouin-Scattering) [32c]
(open diamonds) and the
viscosity (multiplied by
107.75⋅η [poise]) (filled tri-
angles) (taken from [32c].
The error bars are smaller
than the size of the sym-
bols if not indicated other-
wise. Solid line (VFT1):
VFT-fit with (logν∞ = 24,
DT0 = 2070 K, T0 = 141 K;
dashed-dotted line: MCT-
fit with logν∞ = 10.1, γ =
1.72, Tc = 270 K; dashed-
line: Arrhenius-fit with
logν∞ = 11.9, EA/kB =
928 K. Solid line (VFT2):
VFT-fit with logν∞ = 10.5,
DT0 = 225 K, T0 = 224 K.
(For the fits the dielectric
data were used only.
b Difference quotient
(–Δ(log(νmax))/Δ(1/T))–1/2

vs 1000/T for the dielectric
data shown in a



proach (see Chap. 1) that quantity should be independent of temperature.
However, Fig. 4.8a shows that (TΔε)2 has a strong temperature dependency
which can not be explained by the temperature dependence of the density.
Moreover one finds that the temperature dependence of Δε changes in the tem-
perature range where the transition from the low temperature VFT behaviour to
a high temperature VFT- or to an Arrhenius-dependence is observed. The
change in the temperature dependence of (TΔε)2 is more pronounced for the van
der Waals liquids. If dipole fluctuations and density fluctuations are coupled one
would expect a similar behaviour for the product TΔε as predicted for the Debye
Waller factor. Figure 4.8a does not show the functional form expected from MCT
[83, 84], i.e. TΔε ~ (Tc – T)1/2 for T < Tc and T Δε ≈ constant for T > Tc [29].

The shape parameter β of the Cole-Davidson function shows a pronounced
temperature dependence as shown for glycerol, propylene glycol and propylene
carbonate (Fig. 4.8b). This holds for the vast majority of glass-forming (low mol-
ecular weight and polymeric) systems thus proving that time-temperature su-
perposition is in general not fulfilled. Also the MCT-prediction of Eq. (4.12) is
not valid. Hence the construction of so-called master-plots is a coarse-grained
description of relaxation processes only.
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Fig. 4.5. a Activation plot
for glycerol. Data taken
from [32b]. The 
error bars are smaller than
the size of the symbols if
not indicated otherwise.
Dashed line: Arrhenius fit
with logν∞ = 16.9,
EA/kB = 2650 K. Dashed-
dotted line: MCT fit with
logν∞ = 10.4, γ = 5.5, Tc =
218.5 K. Solid line: VFT-
fits (VFT): logν∞ = 13.7,
DT0 = 952.1 K, T0 =
130.7 K; (VFT1): logν∞ =
12.3, DT0 = 532 K, T0 =
170.2 K; (VFT2): logν∞ =
14.3, DT0 = 1065 K, T0 =
126 K. b Experimentally
determined difference
quotient (–Δ(log(νmax))/
Δ(1/T))–1/2 · 100 vs 1000/T.
The lines describe the fits
shown in a
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Fig. 4.6. a Activation plot for propylene carbonate. Data taken from [32b]. The error bars are
smaller than the size of the symbols if not indicated otherwise. Dashed line: Arrhenius fit with
log ν∞ = 11.7, EA/kB = 640 K. Solid line (VFT1): VFT fit with logν∞ = 10.7, DT0 = 163 K, T0 =
153 K. Dashed dotted line: MCT fit with log ν∞ = 10.1, γ = 1.7, Tc = 199 K. Solid line (VFT2):
VFT fit with logν∞ = 13.4, DT0 = 416 K, T0 = 131 K. b Experimentally determined difference
quotient (–Δ(log(νmax))/Δ(1/T))–1/2 · 100 vs 1000/T. The lines describe the fits shown in a.
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Fig. 4.7. a Activation plot for propylene glycol (open triangles) and the polymeric pendant
poly(propylene glycol) (inverted open triangles).The error bars are smaller than the size of the
symbols if not indicated otherwise.Solid lines (VFT2):VFT-fits with logν∞ = 13.7,DT0 = 940 K,
T0 = 114.6 K for propylene glycol and logν∞ = 11.1, DT0 = 401 K, T0 = 169 K for poly(propy-
lene glycol)). Solid lines (VFT1): VFT-fits for the upper temperature range with logν∞ = 10.8,
DT0 = 176,4 K; T0 = 211 K for propylene glycol and logν∞ = 10.4, DT0 = 182 K, T0 = 211 K for
polypropylene glycol. b Difference quotient (–Δ(log(νmax))/Δ(1/T))–1/2 · 100 vs 1000/T. The
lines describe the fits shown in a



114 4 The Scaling of the Dynamics of Glasses and Supercooled Liquids

Fig. 4.8. a (T Δε)2 vs T; (open circles) glycerol, (open squares) propylene glycol, (open dia-
monds) propylene carbonate, (open triangles) salol (data taken from [15]). The error bars are
smaller than the size of the symbols if not indicated otherwise. The critical temperatures Tc of
the MCT are indicated for different materials. Taken from [29] with permission. b Shape pa-
rameter β for (open circles) glycerol, (open squares) propylene glycol and (open diamonds)

propylene carbonate from the Cole-Davidson function vs Tε ω ε ε
ωτ β
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The static quantity dielectric strength Δε and the dynamic variable mean re-
laxation rate vmax reflect different properties of the same underlying motional
process. Hence both should be correlated in their temperature dependence. In
Fig. 4.9 Δε is plotted vs log vmax for various glass formers. Two well separated re-
gions are observed which can be approximated by a linear dependence of Δε vs 
log vmax. The intersection of both defines – model-free – a crossover frequency vB
between 107 and 108 Hz indicating a change in the dynamics of the α-relaxation.
This takes place at a temperature TB far above the glass transition temperature Tg.
Similar crossover relaxation rates vB respective temperatures TB are observed for
a manifold of glass-forming systems of completely different molecular structure
(low molecular weight and polymeric systems, van der Waals liquids but also hy-
drogen bonded systems) proving that it is a general feature of the dynamic glass
transition [86]. The existence of a crossover temperature TB can be well compre-
hended within the framework of cooperativity models of the dynamic glass tran-
sition. The dielectric strength Δε is determined by the dipole-dipole correlation
function containing both self-correlation and cross-correlation (with neighbour-
ing dipolar units) terms. If cooperative interactions become important, cross-cor-
relations are no longer negligible. This is the case for T < TB where TB marks the
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Fig. 4.9. Δε vs log νmax for (open triangles) propylene glycol, (inverted open triangles)
poly(propylene glycol) and (open diamonds) propylene carbonate and (open squares) salol
(data taken from [15]). The error bars are smaller than the size of the symbols if not indicated 
otherwise. The lines are fits of linear equations to the different sets of the data. The crossover
temperature TB is indicated for both materials



onset of cooperativity. It is characterised by a length scale ξ(T) defining the size of
cooperatively rearranging domains. For T > TB the dynamic glass transition can
be regarded as the fluctuation of nearly independent polar units. Hence extrapo-
lating the high frequency dependence for Δε → 0 results in values of about 1013 Hz
which is an upper limit for the relaxation rate (and usually obtained as prefactor
of an Arrhenius- or VFT-equation). For T < TB such an extrapolation delivers un-
reasonable limit frequencies. This reflects the fact that the fluctuating unit is now
the cooperatively rearranging region of size ξ(T). It is evident that a quantitative
description requires to model the intermolecular interactions.

4.4
Scaling of the Relaxation Time Distribution Function 
of the Dynamic Glass Transition

Generalised relaxation functions (like the Cole-Cole, the Cole-Davidson or the
Havriliak-Negami function, see Chap. 3) being characterised by one slope on the
high frequency side of the dielectric loss vs frequency are only at first glance an
adequate description of the dynamic glass transition. A closer examination
shows that strong deviations occur for frequencies ≥100 times the mean relax-
ation rate. They become pronounced with decreasing temperature. This is ex-
emplified for glycerol in Fig. 4.10. Formally it is of course possible to treat the
“high frequency wings” as an additional relaxation process (Fig. 4.11a). This re-
sults – in the case of glycerol – in a temperature dependence of the additional
process which resembles the VFT-behaviour of the dynamic glass transition
(Fig. 4.11b). Hence this process cannot be considered as a simple secondary re-
laxation with Arrhenius-type temperature dependence.

The dynamic glass transition is – according to the MCT [83, 84] – a two-step
process with the Kohlrausch-Williams-Watts (KWW)-function

(4.22)Φ ( ) exp [ ( / ) ],  t t t∼ − ≥τ τα
β

αKWW
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Table 4.1. Fit parameters βKWW and bmeasured as extracted from the slope of the high frequency
wing of the α-relaxation. bMCT is the value deduced using Eqs. (4.16) and (4.24) of MCT

T [K] βKWW bmeasured bMCT

193 0.56 0.23 0.62
203 0.59 0.29 0.66
208 0.60 0.27 0.66
213 0.59 0.33 0.65
218 0.60 0.32 0.66
223 0.60 0.37 0.66
228 0.60 0.38 0.66
233 0.61 0.43 0.66
243 0.65 0.34 0.71
253 0.63 0.38 0.69
263 0.66 0.39 0.72



and a short time region with the von Schweidler law

(4.23)

where βKWW and b are constants. Transformed in the frequency domain this ap-
proach results in a high frequency wing of the dynamic glass transition being
characterised by two power laws having exponents βKWW and b. Hence the con-
stants βKWW and b can be directly deduced from the slopes of the high frequency
wing of the α-relaxation (Fig. 4.10, Table 4.1). According to MCT [83, 84] the
stretched exponential and the exponent-parameter are linked

(4.24)

Thus with the left-hand side of Eq. (4.16) the predictions of MCT for the rela-
tionship between βKWW and b can be examined. Pronounced quantitative dis-
agreement is found (Fig. 4.12b and Table 4.1). The MCT Eqs. (4.16) and (4.24)
predict much larger values of b than observed experimentally.

While for glycerol the “high-frequency wing” is characterised by one slope
(see as well Chap. 5) for salol indeed an additional process is observed. This re-
sults in a curved slope of the “wing” (Fig. 4.13). Unfortunately salol has a strong
tendency to crystallise. It is therefore not a suitable candidate for measurements
in the supercooled liquid regime. For polyalcohols it was shown that from glyc-

β
λKWW = −

−
ln

ln ( )
2

1
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Fig. 4.10. Imaginary part ε′′ of the dielectric function vs frequency at temperatures as indi-
cated in K for glycerol. The solid lines are Havriliak-Negamifits. If not indicated otherwise er-
rors bars are not larger then the size of the symbols
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Fig. 4.11. a Formal description of the high frequency wing by the superposition of two HN-
relaxation processes. The error bars are smaller than the size of the symbols if not indicated
otherwise. The fit parameters for the measurement at 193 K are: first process: Δε = 76, α =
0.91, γ = 0.62, τ = 8.5 s; second process: Δε = 0.8, α = 0.8, γ = 0.3, τ = 8.5 × 10–4 s. At 223 K:
First process: Δε = 59, α = 0.96, γ = 0.62, τ = 1.1 × 10–4 s; second process: Δε = 0.45, α = 0.8,
γ = 0.3, τ = 2.8 × 10–8 s. b Relaxation time for the two relaxation processes (used in Fig. 4.11a
to describe the data) vs inverse temperature. Taken from [33] with permission
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Fig. 4.12. a The high-frequency wing of the dynamic glass transition of glycerol as described
by two power laws. Fit-parameters see Table 4.1. b The relationship between βKWW and b as
suggested by MCT according the Eqs. (4.5) and (4.13). The open circles are the experimental
findings (see Table 4.1)

erol to threitol, xylitol and sorbitol the secondary relaxation changes gradually
from a wing type scenario to a pronounced β-peak [51].

The observation of “high frequency wings” in dielectric relaxation processes
caused Nagel and coworkers [44, 45] to suggest a special scaling: By plotting
w–1log[ε″νmax/(Δεν)] vs w–1(1+w–1) log(ν/νmax) one can show that for a variety
of materials the spectra collapse onto each other. w denotes the half-width of the
loss peak, normalized to that of the Debye function. However, the question re-



mains open, what the physical interpretation of the above quantities is (this
point is even not raised by the authors)? Furthermore one can show that mate-
rials having on the low frequency side of the relaxation function a slope m ≠ 1
do not follow the above-mentioned dependencies. Numerous examples of mate-
rials with m ≠ 1 are known in the literature [87]. (A further discussion of the
high frequency “wings” will be presented in Chap. 5.)

4.5
Scaling of the Dynamic Glass Transition and the Slow �-Relaxation 
in Poly(ethylene terephthalate) (PET)

Poly(ethylene terephthalate) (PET) is a main chain polymer having a dielectri-
cally active α- and β-relaxation process. Their scaling has been used in an MCT
analysis [88]. However, due to the fact that in these studies the dielectric data
were limited to frequencies below 106 Hz, the β-relaxation could be observed to
a reduced fraction only. In covering the frequency range from 10–2 to 109 Hz ex-
perimental data are acquired which enables one to analyse the β-relaxation fully.
Due to the strong tendency of PET to crystallise, the measurements are re-
stricted to temperatures below 367 K [33]. This means that the interesting
regime where α- and β-relaxation merge is not accessible for PET in the pure
amorphous state.

By use of two HN relaxation functions the data (Fig. 4.14) can be described
within the limits of experimental accuracy (solid line in Fig. 4.14). From the fit a
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Fig. 4.13. Imaginary part ε′′ vs frequency for salol at temperatures as indicated in K. The solid
line is a fit according to the Havriliak-Negami equation. If not indicated otherwise errors bars
are not larger then the size of the symbols



precise determination can be obtained for the maximum of the dynamic glass
transition (α-relaxation) and the minimum between the α- and β-relaxation.
The former follows a VFT-dependence, the latter has an Arrhenius-type thermal
activation.

The critical temperature Tc of the MCT can be determined by the power laws
of Eqs. (4.14) and (4.17). A plot of ε″min or ω 2a

min vs T (Fig. 4.16) should give
straight lines intersecting the abscissa at Tc. The solid lines show such a fitting
procedure to the high temperature points (with a = 0.44), yielding a value of
Tc = 355 ± 3 K [33]. It must be noted that the measurement points lie on a con-
tinuously bending curve. Therefore the determination of Tc depends on the tem-
perature range selected for the fit.

The power laws of Eqs. (4.14), (4.17) and (4.18) can be combined to extract the
parameters a and b without explicitly knowing Tc (Fig. 4.17a,b). The propor-
tionality of ε″min to ν2a

min is fulfilled, resulting in a value of a = 0.44 ± 0.09.
The proportionality of ε″min to νmax is also fulfilled (Fig. 4.17b), resulting in a

value for the slope of s = 0.17 ± 0.02. With s and the parameter a (determined in
Fig. 17a) a value for b = (a × s)/(a – s) = 0.30 ± 0.11

0.08 is obtained. A fit of the mini-
mum of the susceptibility between the α- and β-relaxation (Fig. 4.18) with
Eq. (4.15) should give the parameters a and b as well. For the fit data at temper-
atures in the interval of 10 K above Tc are used.The frequency range taken is thus
limited by the logarithmic medium value between the frequency of the mini-
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Fig. 4.14. Imaginary part ε′′ vs frequency for amorphous poly(ethylene terephthalate) (PET)
at temperatures as indicated in K (temperature steps: 2.5 K). The solid line is the fit using two
superimposed Havriliak-Negami relaxation functions. If not indicated otherwise the error
bars are not larger then the size of the symbols. Taken from [33] with permission
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Fig. 4.15. Activation plot for amorphous PET. The solid lines correspond to a fits according to
the VFT-equation (logν∞ = 17.5, DT0 = 754.5 K, T0 = 304 K) and to the Arrhenius equation
(logν∞ = 17.4, EA = 66 kJ mol–1) respectively. Taken from [33] with permission

Fig. 4.16. Determination of the critical temperature Tc assumed by MCT according to Eq.
(4.14) (open circles) and to Eq. (4.17) (open squares). The intersection of the solid lines gives a
value for Tc. Taken from [33] with permission
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Fig. 4.17. a Determination of the exponent parameter a using the power law of Eqs. (4.14) and

(4.17). b Determination of the exponent parameter using the power law of Eqs.
(4.17) and (4.18). Taken from [33] with permission
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mum and the α-relaxation peak on the low and the frequency of the minimum
and the β-relaxation peak on the high frequency side. This gives a value of
λ = 0.83 with parameters a = 0.26 and b = 0.43. Comparing these parameters
with the ones obtained by the power laws (Table 4.2) gives no agreement within
experimental accuracy. Refining the memory Kernel mq(t) in Eq. (4.10) enables
one to extend the MCT approach. This delivers in the “A3-scenario” quantitative
agreement between theory and experiment [89].
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Table 4.2. Fit parameters a and b as deduced from Fig. 4.17a/b. λa and λb correspond to the
right and left side of Eq. (4.16). The data in the second row (“minimum fit”) are the result of a
fit with Eq. (4.15) to the rescaled minimum between α- and β-relaxation (Fig. 4.17). Sample:
amorphous PET

a b λa λb

Power laws 0.44 ± 0.09 0.30 ± 0.11
0.08 0.32 ± 0.32 0.91 ± 0.03

0.07
Minimum fit 0.26 0.43 0.83

Fig. 4.18. Rescaled plot of the minimum between the α- and β-relaxation. The solid line shows
a fit with Eq. (4.15) with λ-constraint of Eq. (4.16) to measurements at temperatures Tc ≤ T ≤
Tc+10. Taken from [33] with permission
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4.6
Conclusions

Broadband dielectric spectroscopy is a versatile tool to analyse details of the
scaling of relaxation processes. Typically four dielectric loss processes are ob-
served in supercooled liquids: the dynamic glass transition (α-relaxation), a
slow secondary relaxation (βslow), a fast secondary relaxation (βfast) and at
1012 Hz the boson peak. Below 1010 Hz primarily the dynamic glass transition
and the βslow relaxation are present. In detail the following conclusions can be
drawn:

1. For all analysed (low molecular weight and polymeric) systems the dynamic
glass transition follows a Vogel-Fulcher-Tammann- – or Williams-Landel-
Ferry – like temperature dependence. A more refined analysis based on de-
rivative plots reveals further details proving that this is a coarse grained de-
scription of glassy dynamics only and that every molecular system has its
own signature in the temperature dependence of the dynamics.

2. In all analysed (low molecular weight and polymeric) systems for the dy-
namic glass transition time temperature superposition is not fulfilled; it can
be regarded as an approximation only.

3. For all analysed systems a change in the temperature dependence of the dy-
namic glass transition is observed at a relaxation rate of about 108 Hz. This
may be interpreted in the framework of the mode-coupling theory as an in-
dication of the development of nonergodicity at Tc but it can be explained as
well as the onset of cooperativity at TB. Hence the dynamic glass transition is
characterised by three temperatures: (I) the temperature for which the high
frequency limit ν∞ is reached, (II) the temperature TB or Tc and (III) the Vogel
temperature T0.

4. The dynamic glass transition often shows an additional contribution
(“wing”) on the high frequency. It has presumably to be comprehended as a
type of secondary relaxation [33, 50, 51]. An alternative explanation is based
on dynamic heterogeneities in the supercooled liquid [47–49].

5. For the case of poly(ethylene terephthalate) (PET) a refined analysis of the
scaling of the dynamic glass transition and the secondary (βslow) relaxation
proves that the predictions of the idealised mode-coupling theory (at least 
in the F1,2 scenario) are not fulfilled. Instead it is suggested that the βslow re-
laxation has to be interpreted as a molecular fluctuation.
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List of Abbreviations and Symbols

A, a, b Constants
D Fragility parameter
EA Activation energy–f Averaged relative free volume
kB Boltzmann constant
mq(t) Memory function for wave vector q
p Constant
Sc Configurational entropy
T Temperature
Tc Critical temperature according to MCT
Tg Glass transition temperature
T0 Vogel temperature (ideal glass transition temperature)
V Volume
Vc Critical free volume
Vf Free volume–Vf Averaged free volume
αf Thermal expansion coefficient for the free volume
β Constant
βKWW Stretching parameter according to Kohlrausch-Williams-Watts

(KWW)
γ Constant
Δcp Specific heat at constant pressure
Δε Dielectric strength
ε*, ε′, ε′′ Complex dielectric function, real and imaginary part
η Viscosity
ν Frequency
νc Critical frequency
νmax Relaxation rate at maximum dielectric loss
ν∞ Relaxation rate for (T → ∞)
ξ(T) Correlation length
ρq Density fluctuation at wave vector q
τa Relaxation time of α-relaxation
Φq(t) Density correlation function for wave vector q
Φ0 Amplitude of the α-relaxation
ω Angular frequency

CRR Cooperatively Rearranging Regions
HN Havriliak-Negami
KWW Kohlrausch-Williams-Watts
MCT Mode-coupling theory
OTP Ortho-terphenyl
PET Poly(ethylene terephthalate)
VFT Volgel-Fulcher-Tammann
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5 Glassy Dynamics Beyond the �-Relaxation

P. Lunkenheimer · A. Loidl

5.1
Introduction

Glassy materials have been used by man since prehistoric times [1, 2] and nowa-
days are ubiquitous in our daily live. There are of course the classical technical
applications in, e.g. architecture (windows), for containers or for optical compo-
nents. However, recently glassy materials have also gained increasing impor-
tance in quite different fields, e.g. communication technique (optical fibres) or
medicine (bioactive implants). The modern definition of glass as a non-crys-
talline solid includes also the large group of the polymers and glass ceramics,
but also more exotic materials as amorphous metals, which are believed to have
a great technological future. Glasslike behaviour is also found in some crys-
talline materials, the so-called plastic crystals and orientational glasses, which at
low temperatures are characterized by static disorder with respect to the orien-
tational degrees of freedom of the translationally ordered molecules [3]. These
materials are often considered as model systems for “conventional” glass form-
ers and they are much simpler to treat in theoretical and simulation approaches
to the glassy state.

Despite a long history of investigation of glassy materials and of the transi-
tion from the liquid to the glassy state, our physical understanding of this phe-
nomenon is poor and commonly considered as one of the great unresolved
problems of condensed matter physics [4–7]. However, during recent years sig-
nificant theoretical and experimental advances have led to a renewed interest in
the physics of glasses, giving rise to the hope that a breakthrough in the under-
standing of the glassy state may be within reach in the near future. Most of the
recent experimental studies of this topic focus on the dynamic behaviour of
glass formers and their high-temperature precursors, the supercooled liquids.
Glassy dynamics exhibits some very intriguing phenomena whose explanation
is a challenge for any theory of the glassy state and the glass transition. For ex-
ample, going from the liquid to the glassy state, the α-relaxation time, charac-
terizing the structural relaxation, changes continuously over many orders of
magnitude (Chap. 4) and it is a major challenge to experimentalists to follow this
huge change from the glass to the liquid state. Stimulated by various new theo-
retical and phenomenological approaches of glassy dynamics, in recent years
the scientific interest has started to focus on the dynamic processes prevailing at
timescales shorter than that of the α-relaxation, e.g. the excess wing or the fast



β-process (see below). Glassy dynamics, including those fast processes, are also
of great technological importance. For example, so-called aging effects, i.e. time-
dependent changes of the properties, can affect the long-time performance of
polymer-based data-storage media. The abovementioned fast processes are of
relevance in the development of low-loss and low-dielectric-constant materials
for applications in high-frequency communication electronics.

Dielectric spectroscopy is one of the most commonly used techniques for the
investigation of the dynamic response of glass-forming materials [e.g.,8–15].An
exceptionally broad frequency range is accessible with this method, which
makes it an ideal tool to follow the α-relaxation dynamics during its many
decade change from Tg, deep into the liquid state (Chap. 4). Moreover, all the ad-
ditional contributions beyond the α-relaxation can be detected in broadband di-
electric spectra of glass-forming materials. In dielectric loss spectra of many
glass-forming materials, some decades above the α-peak frequency νp, an excess
wing (also called “high-frequency wing”) shows up as an excess contribution to
the high-frequency flank of the α-peak [9, 12, 16–19]. Some intriguing scaling
properties of α-peak and excess wing were found by Nagel and co-workers [9].
Despite some theoretical approaches describing the excess wing being proposed
[20–22], up to now there is no commonly accepted explanation of its micro-
scopic origin. In many glass-forming materials, besides the α-peak, further re-
laxation processes lead to additional peaks or shoulders in ε′′(ν), usually located
in the kHz–MHz region. They are termed β-relaxations (or γ, δ, … relaxations if
there are more than one), sometimes with the addition “slow”to avoid confusion
with the fast β-process of mode-coupling theory (see below). It was proposed
that the occurrence of β-relaxations is an inherent property of the supercooled
state [23, 24] but their microscopic origin is still a matter of controversy.

The interest in even higher frequencies in the GHz-THz region was mainly
stimulated by the mode-coupling theory (MCT) of the glass transition [25–28],
which is currently the most promising, but also most controversially discussed
theoretical approach of the glass transition. MCT rationalises the glass transi-
tion in terms of a dynamic phase transition at a critical temperature Tc, signifi-
cantly above Tg, in marked contrast to the “phase transition”at the Vogel-Fulcher
temperature TVF < Tg suggested by the Vogel-Fulcher-Tammann (VFT) behav-
iour of the α-relaxation time (Chap. 4). In the relevant temperature region, the
α-relaxation dynamics are rather fast (τ ≈ 10–10 to 10–6 s). In addition, for the
10–12 to 10–9 s time window, MCT predicts an additional contribution, now com-
monly termed the fast β-process. In addition, various competing theories have
appeared, e.g. the coupling model (CM) [29–31], the frustration-limited domain
(FLD) theory [22, 32] and the model of dynamically correlated domains [20].
Fast processes are also predicted in the CM and in a recent extension of the dy-
namically correlated domain model using the Weiss mean-field theory [21] and
they are also believed to play a role in the FLD theory [22]. In addition, in a re-
cently proposed model fast processes are considered as the relaxation-like part
of vibrational excitations [33]. The most prominent methods used up to now to
investigate the region of the predicted fast processes are neutron and light scat-
tering (see, e.g. [34–38]). Unfortunately, until recently, this region lay just at the
high frequency edge (about 10 GHz) of the range available even in very well
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equipped dielectric laboratories (but see, e.g. [14]). However, recent experimen-
tal advances [39–41] made it possible to obtain continuous dielectric spectra on
glass-forming materials extending well into the relevant region [42–45] and the
detection of fast processes in dielectric spectra of glass-forming materials is
now well established [15, 46, 47].

From light and neutron scattering experiments it is well known that at some
THz the so-called boson peak occurs in the scattering function of glass-forming
materials, which is directly related to the imaginary part of the susceptibility χ ′′.
The boson peak is also detectable by dielectric spectroscopy using infrared tech-
niques [e.g. 46–55]. A variety of explanations of the boson peak have been pro-
posed [e.g. 56–61]. While it seems likely that vibrational excitations are respon-
sible for the boson peak, until now no consensus on a detailed microscopic ex-
planation of this feature was achieved.

The topic of the present chapter will be the dynamic processes taking place at
time scales significantly shorter than that of the α-process, including the excess
wing, the slow β-process, the fast β-process and the boson peak. All these
processes, which seem to be more or less universally present in glassy materials,
have found considerable experimental and theoretical interest during recent years
and it is commonly felt that the explanation of these phenomena is a prerequisite
for the understanding of the glass transition. Some of the presented dielectric
spectra cover a frequency range of nearly 19 decades. Only this extremely broad
dynamic window available in dielectric spectroscopy allows for the investigation
of this large variety of dynamic processes using one experimental probe only.

5.2
Dynamic Processes in Glass-Forming Materials

In this section an overview of the various dynamic features observed in dielectric
spectra of glass-forming materials will be given. Figure 5.1 represents a schematic
plot of broadband loss spectra demonstrating the most common contributions for
two typical cases of glass-forming materials [15]. The α-process leads to a domi-
nant loss peak at νp ≈ ντ = 1/(2π 〈τα〉), with 〈τα〉 the average α-relaxation time.
Figure 5.1 depicts the situation near Tg, with the α-peak situated at a rather low
frequency.With increasing temperature it will rapidly shift to higher frequencies.
As mentioned in the introduction, in addition to the α-relaxation, a variety of
other features show up in broadband dielectric spectra of glasses and supercooled
liquids as indicated in Fig. 5.1. It should be noted that the amplitudes of all these
processes beyond the α-process are rather small compared to the dominating 
α-peak. Nevertheless they have attracted considerable interest in recent years 
and the understanding of their microscopic origin is considered as a prerequisite
for a thorough understanding of the glass transition and glass state.

If mobile charge carriers are present, conductivity contributions lead to a di-
vergence of ε′′(ν) for low frequencies (ε′′ ~ σ′/ν, Chap. 1). Their amplitude can
vary extremely for different glass formers and in some cases can completely sup-
press other features in the spectra. Because of this non-universal nature of con-
ductivity contributions, they have been omitted in Fig. 5.1.
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At frequencies some decades above νp the empirical functions used for the de-
scription of the α-peak (Chap. 3) fail and in many glass formers an “excess 
wing”shows up (Fig.5.1a). It can be reasonably well described by a second power
law, ε′′ ~ ν –b with b < β [12, 17–19, 62], in addition to the power law ν –β, com-
monly found at ν > νp. This excess contribution was already noted in the early
work of Davidson and Cole [16] and was found in a variety of glass-forming ma-
terials [9, 12, 17–19]. Some microscopic explanations for its occurrence have
been proposed in [20–22]. A very interesting property of the excess wing was
found by Nagel and co-workers [9]: by an appropriate scaling of the axes, it is
possible to collapse the ε′′(ν)-curves, including the excess wing, for different
temperatures and even for different materials onto one master curve. This find-
ing led to the notion that the excess wing is part of the α-relaxation. The applic-
ability of this so-called Nagel scaling has been controversially discussed during
recent years [63–73]. Many efforts have been made to check for its validity in a
variety of materials [e.g. 63, 64, 66, 68, 69, 74, 75]. Moreover, using low-tempera-
ture extrapolations based on these scaling properties, the approach of b = 0 for
a temperature near TVF was proposed [13]. It was argued that this constant loss
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Fig. 5.1. Schematic view of the frequency dependent dielectric loss in glass-forming materials
as observed in extremely broadband measurements [15]. Two typical cases are shown, namely
the response of: a glass formers showing an excess wing; b glass formers with a well resolved
β-relaxation peak. The possible contribution of an additional fast process in the minimum re-
gion preceding the boson peak is indicated by the hatched area



behaviour could imply a divergence of the static susceptibility, supporting spec-
ulations about a phase transition near TVF [13].

In many glass-forming materials, a slow β-relaxation shows up as indicated 
in Fig. 5.1b. By considering the detailed molecular structure of a material,
β-processes sometimes can be ascribed to an internal change of the molecular
conformation, e.g. the movement of a molecular side group in a polymer.
However, Johari and Goldstein [23, 24] demonstrated that secondary relaxation
processes are a rather universal property of glass formers and also show up in
relatively simple molecular glass formers, where intramolecular contributions
seem unlikely. Also in polymers without rotatable side groups β-processes were
found [10]. This led to the notion that these so-called Johari-Goldstein β-relax-
ations may be inherent to glass-forming materials in general [23, 24]. However,
the microscopic processes behind this kind of β-relaxations are still controver-
sially discussed (see, e.g. [19]). It is commonly assumed that the excess wing and
the Johari-Goldstein β-relaxations are due to different processes [9, 19] and even
the existence of two classes of glass-formers was suggested – “type A” without a
β-process but showing an excess wing (corresponding to Fig. 5.1a) and “type B”
with a β-process (Fig. 5.1b) [19].While this classification will be used in the fur-
ther course of the present chapter, to denote quickly systems with clear excess
wing or β-relaxation, however, one has to state clearly that it may be somewhat
oversimplifying: There are examples that do not fit into this scheme, e.g. in [19]
the simultaneous occurrence of both features in one material was proposed and
also Salol (Chap. 4) and ethanol (Sect. 5.4.2) are difficult to be clearly classified
as Type A or B. In addition, it seems possible that excess wing and β-relaxation
are due to the same microscopic process [12, 76–80]. From an experimental
point of view, recently some strong hints have emerged that the excess wing is
simply the high-frequency flank of a β-peak, hidden under the dominating 
α-peak [81].

At some THz a second loss peak shows up that can be identified with the so-
called boson peak known from neutron and light scattering [35, 37]. The boson
peak is a universal feature of glass-forming materials [46–55] and corresponds
to the commonly found excess contribution in specific heat measurements at
low temperatures [2, 82]. A variety of explanations of the boson peak has been
proposed, e.g. in terms of the soft potential model [56, 57], phonon localization
models [58, 59], or a model of coupled harmonic oscillators with a distribution
of force constants [60]. The occurrence of the boson peak was also modelled
within the MCT [61]. The term “boson peak” is originally defined for the scat-
tering function S, which, by means of the fluctuation-dissipation theorem [83],
is in good approximation connected to the imaginary part of the susceptibility
via χ′′ = ε′′ ~ Sν. However, often the term “boson peak” is also used for the cor-
responding peak in χ′′(ν) and this notation will be followed in the present work.
Its name originates from the temperature dependence of its intensity, observed
in the scattering experiments, which can be explained assuming Bose-Einstein
statistics. It should be noted that it has been known for many decades [84] that
dipolar liquids show an infrared absorption-peak in the THz region, termed
Poley absorption [85, 86]. It was interpreted in terms of librational motions of
the dipoles [87, 88]. One has to be aware that the boson peak, defined in S(ν),
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may correspond to a shoulder only in the absorption α(ν), which is roughly pro-
portional to Sν 2. Nevertheless it seems likely that Poley absorption and the bo-
son peak are due to the same microscopic process [53, 54].

Between the α-peak and the boson peak, obviously a minimum in χ′′(ν) must
exist, as found in a variety of scattering experiments and recently also in ex-
treme broadband dielectric experiments [e.g. 14, 42, 44, 45].As mentioned in the
Introduction, the interest in this region was mainly stimulated by the MCT
[25–28], which predicts that a fast process (called fast β-relaxation, to distin-
guish it from the slow Johari-Goldstein β-relaxation) will lead to significant ad-
ditional contributions in this minimum region. The experimental results indeed
provide evidence for a fast process in this region, as the spectral response near
the minimum cannot be explained assuming a simple superposition of α-peak
(including excess wing) and boson peak. This is schematically indicated by the
hatched area in Fig. 5.1a,b.

Finally, in the infrared region various resonance-like features can be ex-
pected, which are due to phonon-like modes and vibrational and rotational ex-
citations of the molecules. These features are totally decoupled from the glass
transition and not further considered in the present work.

5.3
Broadband Dielectric Spectra of Glass-Forming Materials

In the present section we will show dielectric spectra on a variety of materials
that are typical members of different classes of glass formers and summarize the
main experimental findings. Most of these results have been published previ-
ously [15, 42–47, 62, 66, 67, 69, 81, 89–94]. In the following sections the processes
beyond the α-relaxation will be discussed in more detail.

Broadband dielectric spectra are provided for the molecular glass formers
glycerol (Tg ≈ 185 K), propylene carbonate (PC, Tg ≈ 159 K), and ethanol (Tg ≈
97 K) and for the ionically conducting glass-former [Ca(NO3)2]0.4[KNO3]0.6
(CKN, Tg = 333 K). These materials can easily be vitrified and have glass transi-
tion temperatures that lie in a convenient temperature region (150 K–350 K).
They cover a rather wide range of fragilities in the “strong-fragile” classification
scheme introduced by Angell [95]. Glycerol, PC and CKN are among the most
thoroughly investigated glass formers. In addition, we will show spectra for the
plastic crystal ortho-carborane, in which the plastic phase also can be super-
cooled. The molecules of ortho-carborane and the investigated molecular glass
formers have relatively large dipolar moments, which is a prerequisite for di-
electric measurements. In CKN, the dielectric experiments directly couple to the
ionic conductivity as elaborated in more detail below.

In Figs. 5.2 and 5.3, spectra of the real part of the dielectric function ε′ and the
dielectric loss ε′′ of glass-forming glycerol and PC are shown for various tem-
peratures. Both materials are low molecular-weight organic glass formers with
relatively simple molecular structure, a group of materials that is often chosen
for experimental investigations of glassy dynamics.While for PC intermolecular
interactions are mainly due to the relatively weak van der Waals forces, the hy-
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drogen bonds in glycerol lead to the formation of a molecular network. PC is a
rather fragile glass former (fragility parameter 1 m = 104 [96]); glycerol (m = 53
[96]) can be characterized as moderately strong. Despite these differences, the
permittivity spectra of both materials look qualitatively similar: The spectra of
ε′′(ν) (Figs. 5.2b and 5.3b) follow the schematic behaviour of Fig. 5.1a, i.e. they
are typical “type A” glass formers in the classification scheme of [19]. ε′′(ν) ex-
hibits asymmetrically shaped α-relaxation peaks. They are accompanied by re-
laxation steps in ε′(ν) as seen in Figs. 5.2a and 5.3a. Changing the temperature
by about a factor of two, both features shift by 14 decades of frequency, which
mirrors the dramatic slowing down of the structural α-dynamics during the
transition from the low-viscosity liquid to the glass. The regime around νp can
be described by the Cole-Davidson (CD) function (Chap. 3), as shown by the
lines in Figs. 5.2 and 5.3. A more detailed treatment of the α-relaxation dynam-
ics revealed by these results can be found in [15, 47, 92].

At frequencies ν >νp, ε′′(ν) follows a power law ε′′ ~ ν –β. At higher frequen-
cies deviations from this power law occur. At high temperatures (T ≥ 273 K for
glycerol, T ≥ 203 K for PC), ε′′(ν) shows a smooth transition into a minimum.At
lower temperatures an excess wing develops showing up as a second power law,
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Fig. 5.2. Frequency dependence of the real a and the imaginary part b of the dielectric per-
mittivity in glycerol at various temperatures [17, 42, 46, 94]. The lines are fits of the region near
νp with the CD function, performed simultaneously on ε′ and ε′′

1 The fragility parameter is defined by m = d logτ/d(Tg/T) at T = Tg [96].



ν –b with b < β before the minimum region is reached. The exponent b increases
with increasing temperature and at high temperatures the excess wing seems to
merge with the α-peak. The excess wing is accompanied by an additional de-
crease in ε′(ν). This can be inferred from the overestimation of the value of ε∞
by the fits with the CD function in Figs. 5.2a and 5.3a. The excess wing will be
discussed in detail in Sect. 5.4.

In the GHz-THz frequency region a minimum in ε′ ′(ν) is observed for both
materials. With decreasing temperature, its amplitude and frequency position
decreases and it becomes significantly broader. In this region there is evidence
for an additional contribution by a fast process as will be discussed in detail in
Sect. 5.5.1. For glycerol, in the THz region a peak shows up. The peak frequency
is temperature independent within the experimental error; its amplitude in-
creases weakly with temperature. Corresponding to the peak in ε′′(ν), ε′(ν) ex-
hibits a step-like decrease near 1 THz (Figs. 5.2a and 5.3a). For 363 K no mini-
mum and no peak but only a shoulder is detected, due to the close vicinity of α-
and THz-peaks. The situation is similar in PC at 293 K. Despite that in PC the
THz-region has been investigated at room temperature only, it can be antici-
pated that at lower temperatures the shoulder will develop into a peak too. In
both materials this peak is located at the same frequency as that found in χ′′(ν)
from light and neutron scattering experiments [97–99] (see Sect. 5.5.2) and
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Fig. 5.3a,b. Frequency dependence of the real a and the imaginary part b of the dielectric per-
mittivity in PC at various temperatures [45, 47]. The solid lines are fits of the region near νp
with the CD function, performed simultaneously on ε′ and ε′′. The dashed line in the boson
peak region is drawn to guide the eyes



thereby can be identified with the boson peak. It should be noted that the in-
crease of ε′′(ν) towards the boson peak is much steeper in glycerol than in PC.
A more detailed discussion of the boson peak will be given in Sect. 5.5.3. In glyc-
erol at frequencies around 10 THz some resonance-like features appear, which
mark the onset of the regime of intramolecular excitations.

In Fig. 5.4, dielectric loss spectra of glass-forming ethanol are shown for var-
ious temperatures [93]. Ethanol (m = 52 [100]) belongs to the group of primary
alcohols. In primary alcohols, due to the single hydroxyl group, no network can
be formed and most likely in the liquid and glassy states the molecules form
short chains with varying length [101, 102]. The recent scientific interest in
glass-forming ethanol was stimulated by the fact that it can be prepared both in
a structurally disordered glass and in an orientationally disordered, plastic crys-
talline state. Various experimental investigations of both states of ethanol
[103–108] have enhanced our understanding of the importance of orientational
degrees of freedom, also in structurally disordered supercooled liquids and
glasses. In the context of the present work, glass-forming ethanol is of interest
due to its interesting excess wing properties [93]. In Fig. 5.4 at temperatures 
96 K ≤ T ≤ 106 K the typical excess wing is observed and at first glance ethanol
seems to be another example of a typical “type A” glass former [107, 108].
However, the high frequency measurements above 1 MHz reveal a shoulder in
the excess wing region. This result strongly suggests that the excess wing in
ethanol is in fact due to a β-relaxation process. This finding will be discussed
further in Sect. 5.4.2. In addition, at low temperatures and frequencies above the
excess wing region, ε′′(ν) starts to rise again and finally, below 60 K, a second re-
laxation peak shifts into the frequency window [107, 108] (inset of Fig. 5.4).
Overall one has three relaxation processes in glass-forming ethanol – the α-
process, a β-process causing the excess wing and a low temperature γ-process.
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Fig. 5.4. Frequency dependent dielectric loss of glass-forming ethanol for various tempera-
tures [93]. The solid lines are fits with the sum of a CD and a CC function, performed simulta-
neously for ε′′ and ε′ (not shown). For 96 K and 126 K, the dashed lines show the two con-
stituents of the fits. The inset gives a separate view of the low-temperature results. (From [93].
Copyright (2000) by the American Physical Society)



However, it should be mentioned that in other primary alcohols three relaxation
processes have been detected too [109–111] and that, e.g. in 1-propanol the
dominating relaxation peak was assumed not to be connected with the struc-
tural α-relaxation (for a more detailed discussion see [93]).As measurements of
supercooled ethanol in the submillimeter and infrared region have not been
performed yet, no information about the minimum and boson peak is available
for this material.

Figure 5.5 shows the dielectric loss spectra of glass-forming CKN for various
temperatures. CKN (Tg = 333 K, m = 94) is a typical ionically conducting glass
former. Its dielectric loss spectra are dominated by a huge increase towards low
frequencies. This behaviour can be ascribed to conductivity contributions from
ionic transport. If, e.g. a frequency-independent conductivity, σ(ν) = σdc, is as-
sumed, ε′′~σdc/ν is expected. At the lowest frequencies the high-temperature
curves show a transition to a weaker frequency dependence. This is a common
behaviour for ionic conductors and ascribed to electrode polarization effects
(“blocking electrodes”) [112,113].Electrode polarization also leads to very large
values of ε′ for low frequencies as seen in the inset of Fig. 5.5. There are various
theoretical models of ionic conductivity that also make distinct predictions on
its frequency dependence [e.g. 114–117]. In [118] conductivity data on CKN
were analysed in terms of the “jump-relaxation model” [116, 117] and indeed a
good agreement with theoretical predictions was stated. In the present work, we
refrain from a detailed analysis of the ionic conductivity in CKN. At high fre-
quencies, the conductivity contribution is of less importance. Here, ε′′(ν) in
CKN has a shallow minimum, similar to the findings in the molecular glass-for-
mers glycerol and PC (Figs. 5.2b and 5.3b).

As discussed in Chap. 3, the use of the modulus representation was proposed
[112] to suppress the contributions from conductivity and electrode polariza-
tion. In Fig. 5.6 the imaginary part of the electric modulus is shown for various

140 5 Glassy Dynamics Beyond the α-Relaxation

Fig. 5.5. Dielectric loss of CKN for various temperatures [43, 44, 92]. The inset shows ε′(ν) for
three temperatures



temperatures as calculated from the measured ε′(ν) and ε′′(ν). Figure 5.6 reveals
overall characteristics, quite similar to that found in the molecular glass form-
ers, Figs. 5.2–5.4. Well pronounced α-peaks show up and a minimum is revealed
at high frequencies. The high-frequency deviations from the CD-fits (solid
lines), seen, e.g. at 325 K, may also indicated the presence of an excess wing. In
addition to the CD-fits, fits with the Fourier transform of the KWW-function are
also included in Fig. 5.6 (dashed lines), which lead to a somewhat better de-
scription near the peak, but exhibit stronger deviations at high frequencies.
More information on the α-process in CKN can be found in [43, 92]. The results
in the minimum region will be discussed in Sect. 5.5.1. In Fig. 5.6 infrared data
are missing and therefore the boson peak is not seen. Infrared data on CKN, up
to 1.5 THz, were reported in [14] and indeed a saturation of ε′′(ν) at highest fre-
quencies, indicative of the presence of a boson peak was observed.

In Fig. 5.7 the frequency dependent dielectric loss of plastic-crystalline ortho-
carborane is shown. In plastic crystals (also called rotor crystals or glassy crys-
tals) the centres of mass of the molecules form a regular crystalline lattice but
the molecules are disordered with respect to the orientational degrees of free-
dom. The carborane molecule, B10C2H12, forms an almost regular shaped icosa-
hedron whose corners are occupied by ten boron and two carbon atoms. The
icosahedron is surrounded by 12 outward-bonded hydrogen atoms. For ortho-
carborane the two carbon atoms occupy adjacent positions. Overall, the carbo-
rane molecules are nearly spherically shaped and therefore experience little
steric hindrance for reorientational processes, thus favouring the forming of a
plastic-crystalline phase. Near 275 K, ortho-carborane undergoes a phase tran-
sition where the reorientational motion is partly restricted [119–123]. The com-
plete orientational order reported at T ≤ 165 K [121, 124] can be easily sup-
pressed by moderate cooling rates, i.e. the spectra at T ≤ 165 K have been mea-
sured in a supercooled orientationally disordered state. From the temperature
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Fig. 5.6. Imaginary part of the electric modulus of CKN for various temperatures [43, 92]. The
solid lines are fits of the α-peak with the CD function, the dashed lines are fits with the Fourier
transform of the KWW law



dependence of the α-relaxation time [89] and from calorimetric [124] measure-
ments a “glass” temperature, Tg ≈ 134 K can be deduced.

The spectra in Fig. 5.7 reveal well developed α-relaxation peaks, shifting
through the frequency window with temperature. However, there is no trace of
an excess wing or a β-peak! In contrast, the high frequency power law of the α-
peaks extends over up to eight decades of frequency. The dashed lines are fits
with the CD-function, which leads to a very good description of the data up to
10 GHz. More details on the α-relaxation in ortho-carborane can be found in
[89]. Similar to the structurally disordered materials (Figs. 5.2, 5.3 and 5.5),
ε′′(ν) of ortho-carborane exhibits a minimum near some 100 GHz. In addition,
a nearly temperature independent peak near 2 THz shows up, in analogy to the
boson peak observed in the structural glass formers glycerol and PC (Figs. 5.2
and 5.3). These high-frequency features will be discussed in Sect. 5.5. Finally, at
frequencies above 10 THz sharp resonance-like peaks show up which can be as-
cribed to intramolecular excitations of the carborane molecule [119].

Overall, the dielectric loss spectra presented in this section reveal a variety of
features that seem to be common to all supercooling materials: the α-relaxation
peak, the minimum, the excess wing (with the exception of the plastic-crys-
talline ortho-carborane) and the boson peak. In the following sections the latter
three features will be discussed in more detail.

5.4
The Excess Wing

As noted in Sect. 5.3, a well developed excess wing shows up in the spectra of
glycerol and PC (Figs. 5.2 and 5.3). In contrast, this feature is only weakly seen in
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Fig. 5.7. Dielectric loss of ortho-carborane for various temperatures [66, 67, 100, 139]. To
maintain readability, at ν > 400 MHz the data are shown as solid lines and at ν > 3 THz only
data for 282 K are shown. The dashed lines are fits of the α-peak with the CD function



the modulus spectra of CKN (Fig. 5.6). In ethanol (Fig. 5.4) it is obviously due to
a β-relaxation and in the plastic crystalline ortho-carborane there is no excess
wing at all (Fig. 5.7). Therefore in the following we will mainly discuss the results
in glycerol and PC.

5.4.1
Scaling and Divergent Susceptibility

As mentioned in Sect. 5.2, it has been demonstrated [9] that the excess wing and
α-peak region in the dielectric loss spectra of many glass-forming liquids
exhibit quite intriguing scaling properties. Nagel and co-workers found that 
the ε′′(ν)-curves for different temperatures and different materials, including
the wing, can be scaled onto one master curve by plotting Y: = w–1 log10 [ε′′νp/
(Δε ν)] vs X: = w–1(1 + w–1) log10 (ν/νp). Here w denotes the half-width of the 
loss peak, normalized to that of the Debye-peak, νp is the peak frequency and Δε
the relaxation strength. One has to state clearly that the Nagel-scaling is phe-
nomenological with no underlying physical model. In addition, during the last
years some criticism of the Nagel-scaling arose concerning its validity [63–67]
and accuracy [64, 65, 68, 69] and also some minor modifications of the original
scaling procedure have been proposed [64]. Nevertheless, it is clear that the
Nagel scaling indeed works quite well in many materials.

As an example, in Fig. 5.8 the Nagel scaling is applied to the loss data in glyc-
erol and PC shown in Figs. 5.2 and 5.3. To maintain readability, for each mater-
ial curves for three different temperatures only are shown. In addition, only data
points up to the onset of the ε′′(ν) minimum are included. The present data have
not been corrected for conductivity contributions, the correct procedure being
controversially discussed in the context of small deviations from a master curve,
reported for low values of X [70–73]. Figure 5.8 reveals a good scaling of the data
in glycerol and PC up to X ≈ 9. Only at very high values of X, small deviations
from a single master curve show up (inset), admittedly of somewhat restricted
significance (see error bars in the inset of Fig. 5.8). Further broadband mea-
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Fig. 5.8. Frequency depen-
dent dielectric loss of glyc-
erol at 195 K, 223 K and
363 K (circles) and PC at
158 K, 173 K and 253 K (tri-
angles) [69], scaled accord-
ing to Nagel and co-workers
[9]. For the meaning of the
axes, see text. The inset
shows a magnified view of
the high-frequency region.
(From [69] with permission
from Taylor and Francis
Ltd., www.tandf.co.uk/jour-
nals)



surements in other glass-forming liquids shall clarify if these deviations indicate
a general failing of the Nagel-scaling at high frequencies.

The presence of a second power law, ε′′ ~ ν –b, at the high frequency flank of
the α-peak is a prerequisite for the applicability of the Nagel scaling. Therefore
the ethanol data of Fig. 5.4 at T ≥ 126 K that reveal a clear shoulder cannot be
scaled in this way. However, the low-temperature data also cannot be scaled [93]
and ethanol seems to be an example of a glass-forming liquid where the Nagel
scaling clearly fails. The spectra of plastic crystalline ortho-carborane (Fig. 5.7)
also do not follow the Nagel scaling as was demonstrated in [67, 69]. This be-
haviour is due to the complete absence of the excess wing in this material, also
corroborated by recent NMR experiments [125]. Interestingly it was found that
the excess wing is absent in various other plastic crystals, too [66, 100]. Up to
now, to our knowledge there is only one report of the successful scaling of di-
electric loss data in a plastic crystal (cyclo-octanol) [75]. However, it was shown
[126] that in cyclo-octanol the apparent excess wing was due to a secondary re-
laxation. Only if data up to sufficiently high frequencies are used are deviations
from the ν –b power law detected [126] and a failing of the scaling revealed [67].
Overall the excess wing in its original sense – a second high-frequency power
law as part of the α-peak – seems to occur in structurally disordered materials
only. However, even there this notion can be doubted as will be seen in
Sect. 5.4.2.

The scaling of α-peak and excess wing in various glass-forming liquids sug-
gests a close correlation of both features. Especially, making certain assumptions,
it was suspected [13, 18] that the wing exponent b should become zero for a lim-
iting relative half width w ≈ 2.6 or an α-peak exponent β ≈ 0.38. Interestingly
such a constant loss behaviour at high frequencies and low temperatures was al-
ready predicted by Angell and co-workers [55, 127, 128], based on an interpola-
tion of conductivity results from low frequency dielectric spectroscopy and far-
infrared experiments. By a low-temperature extrapolation of w (T) and b(T)
curves of various glass formers,Nagel and co-workers argued, that a constant loss
should be reached near the Vogel-Fulcher temperature TVF [13, 18]. If one as-
sumes that the excess wing is a part of the α-peak, such a behaviour would imply
a divergence of the static susceptibility, which is proportional to the area under
the α-peak. This would support speculations about a phase transition from the
liquid to the glass state, underlying the glass transition. However, in the next sec-
tion we will show that it is not so clear that the excess wing is caused by the same
dynamic process as the α-peak. In addition, one has to be aware that there are
problems concerning the Kramers-Kronig consistency of a constant loss behav-
iour and that one may expect a “nearly constant loss” at best.

In Fig. 5.9 the present data on glycerol and PC are checked for a possible de-
velopment of the excess wing into a constant loss near TVF. The open circles
show the parameter βCD from the fits of the α-peak with the CD-function
(Figs. 5.2 and 5.3), which gives a good estimate of the frequency exponent β at 
ν > νp.A linear extrapolation of β(T) leads to values of β(TVF) clearly larger than
0.38 and a rather abrupt change of temperature characteristics at low tempera-
tures has to be assumed to reach this limit. The above approach uses the close
correlation of β and b, implied by the Nagel scaling, to deduce the low-tempera-
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ture behaviour of b from an experimental determination of β.A more direct way
is the investigation of the temperature dependence of the exponent b itself. To al-
low for an unambiguous determination of b at high temperatures,where α-peak,
wing, and the minimum strongly overlap, a parameterisation using the sum of
power laws can be used [62].The resulting b(T) is shown in Fig.5.9 together with
the results of Leheny and Nagel [18]. Due to the larger frequency range available
and the different evaluation procedure we were able to extend the results of these
authors to considerably higher temperatures. For PC (Fig. 5.9b) b(T) can be rea-
sonably well extrapolated to zero at TVF, while this seems not to be the case for
glycerol (Fig. 5.9a). However, as already noted in [18], even if b becomes zero, a
divergent susceptibility will only be reached, if the prefactor of the ν –b power
law, cb(T), does not approach zero for T → TVF. The quantity cb(T) for both ma-
terials is shown in the insets of Fig. 5.9. As indicated by the dotted lines, a defi-
nite statement concerning this point is not possible. The same conclusion can be
drawn from the results on cb shown in [18]. Overall, no clear evidence for a di-
vergent susceptibility at low temperatures can be deduced from an investigation
of the temperature evolution of the excess wing.
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Fig. 5.9. Temperature dependence of the α-peak width-parameter βCD (circles) and the excess-
wing exponent b (squares) for: a glycerol; b PC [69]. b is obtained from fits with a phenome-
nological ansatz comprising a sum of two power laws for the high-frequency wing of the α-
peak and some additional contributions for the ε′′(ν)-minimum [62]. The crosses show the re-
sults reported in [18]. The solid lines demonstrate possible low-temperature extrapolations of
b(T). TVF is indicated by the dashed lines. The insets show the prefactor of the power law cbν –b

used for the description of the excess wing. The dotted lines in the insets demonstrate that it
is not possible to draw definite conclusions concerning a non-zero value of cb at TVF



5.4.2
The Excess Wing – a �-Relaxation?

Comparing the typical loss spectra of glass-formers showing an excess wing
with those showing a β-relaxation (Fig. 5.1a,b), it seems natural to explain both
on the same footing: in materials with an excess wing, a β-relaxation could be
present, too, although with a relaxation time that is much closer to the α-relax-
ation time than in materials with a well resolved β-peak. Then the excess wing
may be simply the high-frequency flank of the β-peak which itself is submerged
under the much stronger α-peak. Such a scenario was considered in some ear-
lier publications [12, 76–80, 92, 129]. Some hints for the validity of this scenario
can be obtained from the results in glass-forming ethanol [93]. As mentioned in
Sect. 5.3, in this material the excess wing seen at low temperatures (Fig. 5.4) is re-
vealed to be due to a β-relaxation by the occurrence of a shoulder in the high-
temperature spectra. In this way glass-forming ethanol seems to represent a lim-
iting case between the schematic spectra shown in Fig. 5.1a,b. However, one
should be aware that for the explanation of dielectric results in other primary al-
cohols an alternative assignment of the various relaxation processes was pro-
posed [109–111].

In materials following the behaviour depicted in Fig. 5.1a, of course α-peak
and excess wing can always formally be fitted by a sum of two relaxation peaks
[12, 77–79, 92, 130]. However, such fits cannot prove that a relaxation process
causes the excess wing. An experimental proof for a second relaxation can only
be provided by the detection of a shoulder or even a second peak in the loss
spectra.A possible way to check for the presence of a β-peak in excess-wing sys-
tems as glycerol and PC is the measurement of dielectric spectra at low temper-
atures, extending to very low frequencies. It is a well-established experimental
fact that in materials with a well resolved β-relaxation, its time scale successively
separates from that of the α-relaxation with decreasing temperature. However,
in glass formers without a well resolved β-peak, very low temperatures, below 
Tg, may be necessary to observe this separation. However, below Tg, aging effects
start to play a role. Aging occurs when the sample has fallen out of thermody-
namic equilibrium, i.e. simply stated, after cooling, the molecules move so slowly
that they do not reach a new equilibrium position during reasonable observa-
tion times. Therefore in those materials, only after very long aging times below
Tg may the α-peak have shifted to sufficiently low frequencies for a β-peak to be-
come visible.

In Fig. 5.10 loss spectra for PC and glycerol are shown at a temperature some-
what below Tg for different times after reaching this temperature [81]. In the fre-
quency window of Fig. 5.10, mainly the excess wing is seen, the α-peak leading
to the somewhat steeper increase observed at the lowest frequencies (compare
Figs. 5.2 and 5.3). During aging, when thermodynamic equilibrium is being ap-
proached, the α-peak can be assumed to shift to lower frequencies. Finally, in
equilibrium, when the maximum separation of α- and β-peaks is reached, the
presence of a β-peak may become more clearly visible. Indeed in Fig. 5.10 after
the maximum aging times of five weeks, the excess wing has developed into a
shoulder! This behaviour strongly supports the assumption that a β-relaxation
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is responsible for the excess wing in glycerol and PC. In Fig. 5.11 it is shown for
PC that the ε′′(ν) curve at 152 K, obtained after maximum aging time
(Fig. 5.10a), can be successfully described assuming the sum of a CD (for the α-
peak) and a CC function (for the β-peak). Also the spectra at higher tempera-
tures can be described in this way as demonstrated for two temperatures in
Fig. 5.11. For glycerol similar results have been obtained [81]. Very recently a
similar aging experiment was also performed for glass-forming propylene gly-
col [130]. Again, under aging the excess wing was observed to develop into a
shoulder, caused by a β-relaxation.

Further evidence supporting the explanation of the excess wing by a β-relax-
ation can be found in the literature. For example, some admittedly vague indi-
cations for a shoulder in the excess wing region can be found in the low temper-
ature spectra reported in [12, 18, 46, 47, 68, 80, 131]. However, often it is not clear
if equilibrium was indeed reached in these studies. In this context it is of inter-
est that there are some recent reports of strong β-relaxations being detected af-
ter rapid quenches into a non-equilibrium low-temperature state [80, 132].
Therefore it is very important to state that the shoulders observed in the wing
region in glycerol and PC (Fig. 5.10) were measured in thermodynamic equilib-
rium [81]. Using a “difference isochrone” method, Johari and Pathmanathan
[133] also found evidence for a β-relaxation in various glass formers with an ex-
cess wing. And finally also from other experimental methods such as calorime-
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Fig. 5.10. Frequency depen-
dent dielectric loss of:
a PC; b glycerol for different
aging times t, indicated in
the legend [81]. The lines
connect the symbols for 
t ≤ 106 s. The spectra for the
maximum aging time of
106.5 s have been taken in an
extended frequency range.
(From [81]. Copyright
(2000) by the American
Physical Society)



try [134] and nuclear magnetic resonance [135] β-relaxations in excess-wing
glass formers were found.

Fits of the loss spectra in glycerol and PC with the sum of a CD or KWW and
a CC function reveal a β-relaxation time τβ (t) that shows significant deviations
from Arrhenius behaviour [92, 130]. This is astonishing as the β-relaxation
times, determined in glass formers with well resolved β-peaks (“type B” [19]),
are believed to follow commonly an Arrhenius behaviour. However, it may be re-
marked that this notion to a large extend is based on non-equilibrium results,
obtained below Tg. Irrespective of this objection, there is no principal reason
that the β-process dynamics should always show Arrhenius behaviour. If the ex-
cess wing is indeed due to a β-relaxation, the difference between glass formers
showing a well pronounced β-relaxation and those showing an excess wing
(“type B” resp. “A” in [19]) may be caused just by the temperature evolution of
the β-dynamics: in the first materials it is rather weak, presumably Arrhenius,
leading to a clear separation of both relaxation times at low temperatures which
enables a clear detection of the β-peak. In contrast, in the latter materials the re-
laxation time of the β-process may more closely follow that of the α-process
(which is non-Arrhenius, Chap. 4) and only the high-frequency flank of the β-
peak – the excess wing – is visible (except at low temperatures after aging). Such
an uncommon temperature dependence of τβ was already suspected by Johari
and Goldstein to explain the apparent absence of a β-relaxation in some glass-
formers [23].

In this context it shall be mentioned that the above scenario is consistent with
the recently found correlation of τβ (Tg) and the Kohlrausch-exponent βKWW(Tg)
describing the width of the α-peak [136]: glass formers without a well-resolved
β-relaxation (“type A”) have relatively large βKWW which, within this correlation,
implies a close vicinity of τα and τβ – the β-peak becomes submerged under the
α-peak. In [136] a possible explanation of this correlation within the framework
of the coupling model was proposed and even the Nagel-scaling may be ex-
plained in this way [78]. Finally, a recent extension of the Weiss mean-field the-
ory for finite systems using the model of dynamically correlated domains [21,
137] also seems to be able to explain the present spectra, including the excess
wing. Interestingly, within this framework the occurrence of an excess wing is
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Fig. 5.11. Frequency depen-
dence of ε′′ of PC for three
temperatures. The solid
lines are fits with the sum of
a CD and a CC function
[81]. The dashed lines are
the CD, the dotted lines the
CC contributions to the to-
tal fit curves



attributed to a superposition of peaks or shoulders, which are present in addi-
tion to the α-peak, in good accord with the scenario developed above.

5.5
The High-Frequency Response

5.5.1
The �� (�)-Minimum

As mentioned in Sect. 5.3, irrespective of any theoretical models, a minimum in
ε′′(ν) always can be expected at frequencies between the excess wing or β-peak
region and the well known excitations in the infrared region (boson peak and
intramolecular excitations) [48–55]. It was noted in the introduction, that this
region found much interest during recent years due to new developments in the
theory of the glass transition, the most prominent being the MCT of the glass
transition [25–28] (see also Chap. 4, Sect. 4.2). However, for dielectric spec-
troscopy the relevant frequency region of 1 GHz–1 THz is difficult to access.
Consequently, mainly the susceptibility deduced from light and neutron scatter-
ing experiments was used for a comparison with the theoretical predictions (e.g.
[34–38]). Indeed evidence for the presence of a fast process in this region and
partly a good agreement of the susceptibility spectra with the MCT predictions
was found. However, the applicability of the MCT for glass-forming materials,
especially at low temperatures near Tg, is still a matter of debate. The MCT pre-
dicts that for all experimental methods that couple to density fluctuations, a
shallow susceptibility minimum should be present, exhibiting some universal
properties (see Sect. 5.5.1.2). Therefore the absence of a high-frequency mini-
mum in dielectric spectra up to some 10 GHz [11, 12, 138] was one of the main
points of criticism concerning the MCT and even led to the conjecture that there
might be no ε′′(ν)-minimum at all [5, 11, 14, 138]. However, more recent investi-
gations in an extended frequency range [14, 42, 44, 45, 90] provided clear evi-
dence for the existence of a minimum in ε′′(ν) of glass-forming materials in the
GHz–THz range, which now is a well established experimental fact. However, the
true question of course should not be the occurrence of a minimum per se,
which is a natural consequence of the existence of excitations in the sub-MHz
and the THz range, but its spectral form, which will be analysed in detail in the
two following subsections.

For the ionically conducting glass former CKN, the question arises what rep-
resentation, dielectric permittivity or modulus is best suited for an analysis of
the high-frequency response. There are some reasons speaking in favour of an
analysis of the dielectric permittivity: the results from light and neutron scat-
tering reported in literature are usually analysed in terms of a susceptibility and
not in terms of a modulus. In addition, to enable a comparison with the results
for molecular glass formers, where the permittivity is usually considered as the
appropriate quantity, the permittivity should be preferred. Therefore, in the fol-
lowing also for the ionically conducting glass formers, only the permittivity will
be considered.
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5.5.1.1
Phenomenological Description

The most naive assumption for the spectral form of the dielectric loss in the
minimum region is a simple crossover from the α-peak or the excess wing to the
boson peak. For the low frequency wing of the minimum a sublinear power law
describing the excess wing (or the high-frequency flank of a β-peak) can be as-
sumed. For the low frequency wing of the boson peak a linear or steeper increase
of ε′′(ν) [or χ′′(ν), determined from scattering experiments] is commonly
found for a variety of glass formers [35, 36, 48, 50]. Also, χ′′(ν) must increase
steeper than linearly towards the boson peak, in order for a peak to appear in the
scattering function, S ~ χ′′/ν, from light or neutron scattering experiments
where the boson peak was first observed [36]. Therefore the ansatz

(5.1)

with b < 1 and n ≥ 1 can be used. In the insets of Figs. 5.12 and 5.13 the region of
the ε′′(ν)-minimum is analysed using this ansatz with the smallest possible
value of n = 1. Clearly the experimentally observed minimum is too shallow to
be explained in this way. If larger values for n are chosen, the fits will become

′′ = +−ε ν νc cb
b

n
n
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Fig. 5.12. Dielectric loss 
of: a glycerol; b PC in the
minimum and boson peak
region [42, 45–47, 94]. The
solid lines are fits with the
MCT prediction, Eq. (5.4),
with a = 0.325, b = 0.63 for
glycerol and a = 0.29, b = 0.5
for PC. For the lowest tem-
peratures, the increase
towards the boson peak
approaches power laws 
ε′′~ν 3 for glycerol and 
ε′′~ν for PC as indicated 
by the dashed lines. The
dotted line in b is drawn to
guide the eyes. The insets
demonstrate for two tem-
peratures each, that the sim-
ple superposition ansatz,
Eq. (5.1), is not sufficient 
to explain the shallow mini-
mum



even worse. This empirical finding clearly proves, independent from any model
assumptions, that in the region of the ε′′(ν)-minimum an additional fast process
contributes significantly to the dynamics of the investigated structural glass 
formers.

In the plastic crystalline ortho-carborane (Fig. 5.7), an evaluation with Eq.
(5.1) reveals small deviations in the minimum region, which may be indicative
of contributions by a fast process also in this orientationally disordered mater-
ial [100, 139]. However, due to the somewhat restricted database in the minimum
region, it is difficult to make a clear statement. In plastic crystalline cyclo-oc-
tanol, a somewhat stronger evidence for a fast process has been found [126, 140].

The simplest way to take account of the detected additional intensity in the
minimum region of glass formers is the addition of a constant loss, εc, to
Eq. (5.1):

(5.2)

The introduction of a constant loss was early promoted by Angell and co-work-
ers [51, 127, 128] who composed broadband absorptivity plots from dielectric
and far infrared experiments and concluded that there is a background absorp-
tion, linear in frequency, which corresponds to a constant loss contribution in
ε′′(ν). Indeed many indications for an approach of a constant loss at high fre-
quencies and low temperatures were found in various, mainly ionically con-
ducting, glass formers [e.g. 52, 141–150], but also in crystalline materials [e.g.
141, 142, 151–153]. Despite a variety of explanations for the constant loss being
proposed [e.g. 52, 143, 145, 146, 149, 150], it has to be stated that the microscopic

′′ = + +−ε ν ε νc cb
b

c n
n
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Fig. 5.13. Dielectric loss of CKN at high frequencies for various temperatures [43, 44]. The
solid lines are fits with MCT, Eq. (5.4), with a = 0.3 and b = 0.54. In the inset it is demonstrated
that the superposition ansatz, Eq. (5.1), cannot take account of the shallow minimum



origin of this phenomenon is still unclear (it should be noted that due to the al-
ready mentioned problems concerning the Kramers-Kronig consistency, in fact
only an approximate constant loss behaviour can be expected). Usually, the con-
stant loss is detected at relatively low temperatures, below Tg, only. For the ex-
planation of the shallow ε′′(ν)-minimum it has to be assumed that the constant
loss is still important, even well in the liquid region. Here it may be superim-
posed by the α- and boson peak wings, which prevents its detection in “pure”
form and leads to the observed shallowness of the minimum (compared with
Eq. 5.1). This hypothetical contribution obviously cannot be identified with the
constant loss that was assumed to be approached by the excess wing for much
lower temperatures near TVF [13, 18] (see Sect. 5.4.1).

For glycerol and CKN it was shown in [42, 45] that the minimum region of
ε′′(ν) can be reasonably well described by Eq. (5.2) at high temperatures.
However, for low temperatures a description of the minimum region with
Eq. (5.2) fails: the transition from the minimum to the boson peak is too smooth
to be fitted by a sum of the constant loss and a relatively steep ν n-increase to-
wards the boson peak. For PC the situation is similar. A way out of this problem
is the addition of another power-law increase with an exponent near 0.3. Such a
power law was found in some glass formers, in addition to the constant loss
[145, 146, 150, 154] and claimed to be ubiquitous, at least in glassy ionic conduc-
tors [150]. If one finally assumes a sum of a CD and a CC function for the de-
scription of the α-peak and the β-peak/excess-wing region (see Sect. 5.4.2), one
arrives at

(5.3)

Here “CD” and “CC” schematically denote ε′′(ν), obtained from the CD and CC
formulae (Chap. 3, Sect. 3.2).

In Fig. 5.14, fits with Eq. (5.3) are shown as solid lines for PC [92].
Equation (5.3) enables a good description of the experimental data, extending
over the impressive range of 17 decades of frequency. Also for glycerol, fits with
similar quality can be obtained [92]. For CKN the ε′′(ν)-minimum can well be
described with the last three terms in Eq. (5.3) [92]; at lower frequencies con-
ductivity contributions become dominant. In [129] the CKN data from our
group have been analysed in a similar way. However, one has to state that the
number of parameters involved in the fitting with Eq. (5.3) is quite large and,
while it cannot be excluded that this simple superposition ansatz is correct, the
success of these fits does not provide a real proof for its validity.Also, one should
mention that it is not so clear if a simple additive superposition of different con-
tributions to ε′′(ν) is really justified [155–157].

5.5.1.2
Mode-Coupling Theory

The mode-coupling theory ([25–27], for reviews see [28, 158, 159]) is based on a
generalized oscillator equation of motion for the density autocorrelation func-

′′ = + + + +ε ε ν νCD CC c n
nc c3

0 3.
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tion Φq(t) (see Chap. 4, Sect. 4.2). The damping term comprises a contribution
that itself depends on the autocorrelation function, which leads to a non-linear
feedback mechanism. The MCT equations are solved self-consistently after
making some approximations for the damping term. For details on the theoret-
ical basis of MCT the reader is referred to the review articles [28, 158, 159]. MCT
explains the glass transition in terms of a dynamic phase transition at a critical
temperature Tc, significantly above the glass temperature Tg. For temperatures 
T > Tc, the presence of two dynamic processes, with quite different time scales,
is predicted. The fast process can be roughly ascribed to the “rattling”movement
of a particle in the transient “cage” formed by its neighbours. The slow process
corresponds to the well-known α-relaxation, associated with the forming and
decay of the cage involving the cooperative movement of many particles. For all
experimental methods sensitive to density fluctuations, both processes should
be visible in the spectra of the imaginary part of a generalized susceptibility χ′′
(ε′′ for dielectric spectroscopy). For T < Tc, the original version of MCT, the so-
called idealized MCT, predicts a transition into a nonergodic “glass” state with a
complete arrest of the α-relaxation. However, this is at variance with the exper-
imental observations where the α-relaxation is detected well down to Tg and be-
low. Therefore, in the so-called extended MCT additional hopping processes are
considered that enable a diffusive motion out of the cages even below Tc, thereby
restoring ergodicity. Within extended MCT, the meaning of Tc is a crossover-
temperature between the dominating cage effect well in the liquid state and ac-
tivated hopping processes in a more solid-like state below Tc. What makes MCT
(and especially its simplest form, the idealized MCT) so attractive for the exper-
imentalist is the large range of rather simple predictions, covering almost all as-
pects of the dynamic response of glass-forming materials. This should allow for
rigid experimental tests of its validity.
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Fig. 5.14. Frequency dependence of ε′′ of PC for various temperatures [45,47].The dashed line
in the infrared region is drawn to guide the eye. The solid lines are fits with Eq. (5.3) [92]



One of the main outcomes of the MCT is the prediction of additional contri-
butions in the region of the ε′′(ν)-minimum, due to the cage effect. Within ide-
alized MCT, for T above but near Tc, the minimum region can be approximated
by the sum of two power laws:

(5.4)

where νmin and εmin denote position and amplitude of the minimum, respec-
tively. The power law ν –b is often referred to as the von-Schweidler law, the power
law ν a as the critical law. Within MCT, the temperature independent exponents
a and b are related to each other by the exponent parameter λ and the exponent
a is restricted to values below 0.4. Thus at frequencies above the minimum,ε′′(ν)
should show a significantly sublinear increase. Within MCT, the minimum re-
gion is denoted as the β-relaxation window, despite no peak (as for conventional
relaxation contributions) being expected. This MCT β-relaxation regime should
not be confused with the much slower Johari-Goldstein β-relaxations and there-
fore often the term fast β-process is used to denote the MCT-related pheno-
menon.

In Figs. 5.12 and 5.13 the high frequency region of ε′′ is shown for glycerol,
PC and CKN, fitted with the MCT prediction, Eq. (5.4). For PC (Fig. 5.12b), a con-
sistent description of the ε′′(ν)-minima at T ≥ 193 K is possible with λ = 0.78
[45, 47], independent of temperature, which implies a = 0.29 and b = 0.5 (solid
lines in Fig. 5.12b). The fits provide a good description of the data from 1–2
decades below νmin up to the boson peak frequency.The critical law is nicely seen
between νmin and the boson peak frequency. The deviations of experimental 
data and fits, seen at low frequencies, can be ascribed to the growing importance
of the α-relaxation. The simple interpolation formula, (Eq. 5.4), is only valid in
the vicinity of the minimum. For T < 193 K the increase towards the boson peak
becomes too steep to be fitted with the constraint a < 0.4. As mentioned above,
Eq. (5.4) should be valid at T > Tc only, which gives a first hint on the magnitude
of Tc. Recently a more sophisticated analysis of the present data has been per-
formed, using a schematic two-correlator model within the framework of ex-
tended MCT [160]. The value λ = 0.75 obtained from this analysis is of similar
magnitude as the present result.

In Fig. 5.12a the MCT-fits of ε′′(ν) of glycerol are shown with λ = 0.705 (a =
0.325, b = 0.63) [42, 45]. The MCT fits seem to be limited at high frequencies by
a superimposed very steep increase towards the boson peak, which is not taken
into account by the MCT interpolation formula, Eq. (5.4) [42, 45]. In PC this con-
tribution seems to be of less importance. This is in accord with the finding of
Sokolov et al. [161] that the amplitude ratio of boson peak and fast process is
largest for strong glass formers (within the classification scheme introduced by
Angell [95], glycerol being significantly stronger than PC. From Fig. 5.12a it
seems likely that in glycerol, at least at low temperatures, position and amplitude
of the minimum are only weakly influenced by these contributions. For glycerol
an evaluation of the light and neutron scattering results with idealized MCT is
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hampered by the even stronger boson peak contribution [97]. However, in [162]
light scattering results [97] were analysed using a more sophisticated MCT ap-
proach, including the boson peak.

In CKN,consistent fits of the experimental data with Eq. (5.4) are possible, too
[44] (Fig. 5.13), leading to λ = 0.76 (a = 0.3, b = 0.54). The deviation of experi-
mental data and fits at low frequencies can be ascribed to conductivity contri-
butions in this ionic conductor, which lead to a divergence of ε′′ for low fre-
quencies. For all materials investigated, the values of λ deduced from the present
results are of similar magnitude as the results from other experimental tech-
niques [98, 99, 162–164].

In contrast to light or neutron scattering, by dielectric spectroscopy also the
real part of the susceptibility, ε′, is directly accessible.A calculation of ε′(ν) from
ε′′(ν), which can be done using the Kramers-Kronig relation, is always ambigu-
ous as in principle it requires an infinite frequency range. Therefore the ε′(ν)
data provide valuable additional information about the high frequency dynam-
ics. As an example, in Fig. 5.15, ε′(ν) is shown for the high frequency region in
glycerol. The lines are fits with the MCT prediction,

(5.5)

with fe a constant. In the fitting procedure, for a, b, νmin and εmin the values ob-
tained from the fits of ε′′(ν) were used. As seen in Fig. 5.15, despite fe being the
only free fitting parameter, a good agreement of experimental data and fits 
can be stated.Also in PC and CKN the experimental data are consistent with the
theoretical prediction [92].

MCT predicts a critical temperature dependence of the ε′′(ν)-minimum near
Tc. For T > Tc, according to idealized MCT, the following relations should hold:
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Fig. 5.15. ε′(ν) of glycerol at
high frequencies [92]. The
solid lines are fits with the
MCT prediction, Eq. (5.5)
with fe the only free param-
eter. The other parameters
have been taken from the
fits of ε′′(ν) (Fig. 5.12a)



(5.6)

(5.7)

In addition, the α-relaxation rate should also exhibit critical behaviour

(5.8)

In Fig. 5.16, the temperature dependencies of ε 2
min, ν 2a

min and vτ
1/γ are shown for

glycerol, PC and CKN.According to Eqs. (5.6)–(5.8), these representations can be
expected to lead to straight lines extrapolating to Tc. Indeed, for the investigated
materials all three data sets can be consistently described with Tc ≈ 187 K for PC
[45, 47], Tc ≈ 262 K for glycerol [42, 45] and Tc ≈ 375 K for CKN [44] as indicated
by the solid lines. For temperatures near Tc, the data partly deviate from the pre-
dicted behaviour.Within MCT this can be ascribed to a smearing out of the crit-
ical behaviour due to hopping processes, which are considered in extended ver-
sions of MCT.

The present results for Tc are located within the range of values determined
with other techniques [98, 99, 164–166], except for glycerol, where a Tc lying be-
tween 223 and 233 K was stated in [162]. In addition, a recent more sophisticated
analysis of the present results in PC led to a Tc of 180 K [160]. As mentioned
above, the relations at Eqs. (5.6)–(5.8) should hold only for T > Tc. However, crit-
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Fig. 5.16. Temperature dependence of: a, d, g the amplitude εmin; b, e, h the position νmin of the
ε′′(ν)-minimum; c, f, i the α-relaxation rate ντ of glycerol, PC, and CKN [42, 44, 45, 47, 94]. εmin
and νmin have been taken from the fits with Eq. (5.4), shown in Figs. 5.12 and 5.13.
Representations have been chosen that should result in straight lines according to the predic-
tions of the MCT, Eqs. (5.6), (5.7) and (5.8). The solid lines demonstrate a consistent extrapo-
lation for all three quantities to a Tc of 262 K for glycerol, 187 K for PC and 375 K for CKN



ical laws are well known to fail too far above the critical temperature. Therefore
it is difficult to choose the correct temperature range to be used for the deter-
mination of Tc, which may lead to some uncertainties concerning the value of Tc.
In addition, as mentioned above, Eqs. (5.4) and (5.5) are approximations only
and the temperature and frequency region where their application is justified is
difficult to determine [99, 160, 167]. Therefore, overall the significance of the pa-
rameters obtained from the above presented most simple kind of analysis within
MCT should not be overemphasized.

Finally, it should be mentioned that idealized MCT predicts a significant
change in the behaviour of ε′′(ν) at Tc [28]: for T < Tc, instead of a minimum,
ε′′(ν) should follow two power laws, ε′′ ~ ν a for ν > νk and ε′′ ~ ν for ν < νk.
This so-called “knee” should also exhibit critical behaviour. There was consider-
able controversy in literature concerning the presence or absence of this unusual
feature in neutron and light scattering data [138, 168–171]. In the present results
in all materials investigated no evidence for a knee is obtained. In [171] the ab-
sence of the knee was ascribed to hopping processes, which are not included in
idealized MCT.

5.5.1.3
Other Models

It was mentioned in the introduction that fast processes are also considered in
some other models for the dynamic response of glass formers. In the CM of Ngai
[29–31] the molecular units are predicted to exhibit a transition from an expo-
nential fast relaxation to a slower KWW relaxation due to the onset of coopera-
tive motion at a crossover time tc. Continuity of the relaxing function (the po-
larization in our case) at tc implies a correlation of the relaxation times of both
processes and the relaxation time of the fast process can be calculated from the
KWW parameters of the α-process. It was shown [47, 92] that for glycerol, PC
and CKN the fast process of CM is located at much lower frequencies than the
ε′′(ν)-minimum and therefore additional contributions, e.g. a constant loss
(Sect. 5.5.1.1), have to be invoked for the explanation of the excess intensity in
this region.

In the FLD model [22, 32] a “narrowly avoided critical point” at a temperature
T* above the melting point is postulated. The theory is based on the assumption
that there is a locally preferred structure (LPS) that, however, is not able to tile
space periodically. Without this geometrical constraint the system would con-
dense into the LPS at T*. In real systems somewhat below T*, frustration-limited
domains with the LPS are formed. In the FLD model the α-relaxation is identi-
fied with the restructuring of the FLDs and occurs on a length scale given by
their characteristic size. Within the FLD framework there is a second length
scale, the correlation length ξ of the locally preferred structure. It was argued
[22, 32] that the experimentally observed fast β-processes may be ascribed to
fast relaxations taking place on this smaller length scale of the FLD model.
However, up to now a theoretical elaboration of the fast processes within FLD
theory is missing.
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Recently, a model was proposed considering a low-frequency relaxation-like
part of the vibration susceptibility function, assumed to be responsible for the bo-
son peak [33]. This relaxation-like response was shown to arise from the anhar-
monicity of vibrations. For the imaginary part of the susceptibility it should lead
to an additional peak with ε″ ~ vα and ε′′ ~ ν–1 at its low and high frequency side,
respectively. For the absolute value of the exponent α, reasonable values ranging
between 0.375 and 1 were given in [33], depending on the system. While no peak
is seen between α- and boson peak in the present spectra, its ν–1-wing may be ob-
scured by the dominating boson peak at higher frequencies. Indeed, the spectra in
glycerol give the impression of a boson peak with a steep (~ν 3) low-frequency
wing, superimposed to a more shallow power law (Fig. 5.12a). In contrast in PC
(Fig. 5.12b) a smooth transition of ε′′(ν) from the minimum to the boson peak
with only one power law (~νn, n ≤ 1) is observed, which seems unlikely to result
from the superposition of the vα-wing of the fast β-process and the low frequency
wing of the boson peak (steeper than ν1, see above).

Very recently, by extending the Weiss mean-field theory to finite systems
(clusters) and combining it with a model for the size dependence of the relax-
ation rate [20], it was possible to explain a considerable part of the present spec-
tra of glycerol, including the ε′′(ν)-minimum [21]. Within this framework it is
assumed that the basic thermodynamic units, the so-called aggregates, are sub-
divided into strongly interacting clusters which are statistically indistinguish-
able. From the distribution of the aggregate sizes and the size dependence of the
relaxation rate of particles in an aggregate, a non-Debye α-peak and an excess
wing are predicted. In addition, peaks or shoulders can arise at high frequencies
due to the fact that only integer values of m, the number of molecules per clus-
ter, are possible. This means that these high frequency features reflect the dy-
namic response of dimers, trimers, quadrimers, etc. [137].

5.5.2
Comparison with Light and Neutron Scattering

The present high frequency dielectric results enable a direct comparison of the
dielectric susceptibility with that determined from the scattering experiments.
Of the glass formers investigated in the present work, susceptibility data from
scattering experiments are available for glycerol, PC and CKN. In Fig. 5.17 the di-
electric loss spectra of glycerol and PC are compared with the imaginary part of
the susceptibility, determined from neutron and light scattering data [97–99,
172].As the scattering results give no information on the absolute magnitudes of
χ′′, the data sets have been arbitrarily scaled to yield a comparable height of the
α-peak. The dielectric and light scattering results are qualitatively similar show-
ing an α-peak, a minimum and a boson peak. The frequency range of the neu-
tron scattering results is somewhat restricted but the minimum also is nicely
seen. For CKN, ε′′(ν) is compared to χ′′(ν) from neutron [173] and light scat-
tering [164] in Fig. 5.18. As no α-peak is seen in ε′′(ν), the curves were scaled to
a similar amplitude of the minimum. Again the data from the different methods
agree qualitatively (except for the missing α-peak in ε′′(ν)).
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In Fig. 5.17a, for glycerol the α-peak frequencies at 363 K from light scatter-
ing and dielectric spectroscopy are nearly identical. In contrast, for PC
(Fig. 5.17b) the α-peaks from dielectric spectroscopy are located at a signifi-
cantly lower frequency. Also earlier investigations of glycerol revealed very sim-
ilar α-relaxation times from different methods [174–177]. In contrast, in glass-
forming PC there is a difference in the absolute values of the α-relaxation times
determined from different experimental methods [98]. Presumably the hydro-
gen bonds between neighbouring molecules in glycerol lead to a strong coupling
of reorientational and translational motions of the molecules. In contrast, in the
van-der-Waals bonded glass former PC, reorientational and translational de-
grees of freedom seem to decouple partly. However, the different relaxation
times in PC exhibit a common temperature behaviour, i.e. can be transferred
into each other by a temperature independent factor [98]. This finding is in
agreement with the prediction of MCT that in Eq. (5.8) only the prefactor should
depend on the experimental probe. For both materials the α-peak determined
from light scattering is broader and exhibits a larger asymmetry.

Figure 5.17 reveals that for glycerol and PC the peak seen in the dielectric
loss at some THz is approximately located at the same frequency as that de-
tected by neutron and light scattering. Therefore, as mentioned above, this peak
can be identified with the boson peak. However, for the dielectric results the ra-
tio of the boson peak and α-peak amplitudes is much smaller than for the scat-
tering results. A similar behaviour was also found in our experiments on Salol
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Fig. 5.17. Frequency depen-
dence of the imaginary part
of the susceptibility of: a
glycerol; b PC as obtained
with different experimental
methods. The symbols (ex-
cept for the lozenges) repre-
sent the present dielectric
results, those from light
scattering are shown as
solid lines [97, 98, 172]. The
lozenges show the neutron
scattering results from [97,
99]. The light and neutron
scattering data sets have
been vertically shifted to
give a comparable intensity
of the α-peak



[91] and in numerical molecular-dynamics simulations of various glass-form-
ing systems [178–180]. In addition, the position of the minimum differs be-
tween the different methods, also in accordance with results from molecular
dynamics simulations [178, 180]. In contrast to the two molecular glass form-
ers investigated, in CKN the χ′′(ν)-minimum seems to be roughly located at the
same frequency for all experimental methods (Fig. 5.18). In all glass formers 
investigated, the increase towards the boson peak seems to be quite similar for
all experimental methods, including the much stronger steepness of this in-
crease in glycerol.

Concerning the MCT, it is one of its main predictions that the same parame-
ters Tc and λ should arise from all observables coupling to the density fluctua-
tions [28, 158, 159]. This is indeed the case for PC and CKN, but so-far unclari-
fied for glycerol (see Sect. 5.5.1.2). In glycerol and PC, dielectric spectroscopy
mainly probes orientational degrees of freedom, which are not taken into ac-
count by MCT in its original form. In contrast, in CKN all experimental probes
can be assumed to couple to translational motions. Therefore it may be sus-
pected that the differences between the results from the different experimental
methods, seen in glycerol and PC, are due to the coupling to different degrees of
freedom and to the different tensorial properties of the experimental probes
[178]. In recent theoretical works, MCT was generalized by incorporating orien-
tational degrees of freedom [167, 181, 182]. It was shown, that the larger ratio of
α- and boson peak amplitude revealed by the dielectric results, the larger width
of the α-peak seen in light scattering and the differences in the α-peak fre-
quency in PC can be qualitatively understood in this way [167, 182]. In addition,
very recently a simultaneous analysis of the present results in PC and those from
light and neutron scattering was performed [160]. Using a schematic two-corre-
lator model within the framework of extended MCT including hopping
processes, it was shown that it is possible to explain the different minimum
positions obtained from different experimental methods, as observed in
Fig. 5.17 [160].
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Fig. 5.18. Frequency depen-
dent dielectric loss of CKN,
compared to the imaginary
part of the susceptibility as
determined from light (solid
lines) [164] and neutron
scattering (dashed lines)
[173]. The data sets from
neutron and light scattering
have been vertically shifted
to yield a comparable inten-
sity in the minimum region



5.5.3
The Boson Peak

Here we will refrain from comparing the experimental results with the many dif-
ferent theoretical models dealing with the boson peak, mentioned in Sect. 5.2.
However, some interesting experimental facts shall be emphasized in the fol-
lowing. The high-resolution FIR measurements performed in glycerol seem to
reveal a double-peak structure in the boson peak region, with peaks located at
about 1.8 THz and 3.5 THz (Fig. 5.12a). In the FIR absorbance-spectra of glyc-
erol, reported in [53], there are indications for a double peak, too (in α(ν) in fact
the first peak shows up as shoulder only) and also the “fine structure” above
about 5 THz is observed. To a lesser extend the double-peak structure is also
seen in the light [97] (Fig. 5.17a) and the neutron scattering results [97]. Also in
many other (but not all, e.g. PC [98, 99]) glass-forming materials such a two-
peak structure in the THz region has been observed using scattering methods
(e.g. [36, 37, 183–185]). In addition, in glycerol, at the low frequency flank of the
boson peak two regimes can be distinguished: just above νmin, there is a rather
shallow increase of ε′′(ν), which at high temperatures can be described by the
critical law of MCT (Fig. 5.12a). However, at higher frequencies a very steep in-
crease appears, approaching ε′′ ~ ν 3 for T → Tg (dashed line in Fig. 5.12a). In
contrast, in PC only one power law, ε′′ ~ ν –a, is seen simultaneously forming the
high-frequency wing of the minimum and the low-frequency wing of the peak
at 1 THz. It seems that in glycerol the fast process, giving rise to the shallow min-
imum in ε′′(ν) is obscured at higher frequencies by a strong boson peak contri-
bution and that this is not the case for PC. This behaviour may be related to the
empirical finding by Sokolov et al. [161] that for stronger glass formers (m ≈ 53
for glycerol and m ≈ 104 for PC [96]) the amplitude-ratio of boson peak and fast
process is higher.

In the plastic crystal ortho-carborane at about 1.7 THz a boson peak is ob-
served, too (Fig. 5.7). It is remarkable that its high frequency flank is extremely
steep. Ortho-carborane has a cubic crystal structure and therefore its phonon
spectrum should exhibit contributions from acoustic phonons only. If one as-
sumes a disorder-induced coupling of the electromagnetic waves to all
phonons within the Brillouin zone [48, 49, 82], it may be suspected that the bo-
son peak in ortho-carborane is disorder allowed and reflects the complete
phonon density of states. In supercooled liquids and glasses sound waves still
exist and can propagate. However, these acoustic modes are strongly coupled to
relaxational excitations. It is this hybridisation which makes the acoustic
phonon density of states accessible for dielectric spectroscopy and which yields
a strongly enhanced density of states at low frequencies. In harmonic solids, as-
suming that the Debye approximation is valid, a quadratic frequency depen-
dence is expected. This certainly is not the case in disordered solids and any
coupling with relaxations or low level molecular excitations will yield a
strongly enhanced density of states, which shows up as an excess heat capacity
(close to 30 K) in thermodynamic experiments and which certainly will con-
tribute to the boson peak. Of course numerous models exist which also can ex-
plain the boson peak. However, already the above naive and rather hand waving
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arguments give a reasonable explanation for both the existence of the boson
peak and its “dipolar” character.

5.6
Conclusions

In the present chapter, dielectric permittivity spectra of various members of
quite different classes of glassy materials have been presented. By the combina-
tion of a large variety of dielectric and optic techniques, broadband spectra cov-
ering up to 19 decades of frequency were obtained. A rich variety of universal
dynamic features is revealed by these spectra, which reflects the “zoo” of differ-
ent dynamic processes that play a role in glassy dynamics. In the present chap-
ter we have concentrated on the processes at frequencies beyond the α-relax-
ation, including the excess wing, the ε′′(ν)-minimum and the boson peak, which
have attracted increasing interest in recent years. By dielectric spectroscopy it is
possible to follow the development of all these features, from temperatures deep
in the liquid state down to below Tg, using one experimental probe only.

The following picture of glassy dynamics evolves from these results: aside of
the α-relaxation, with its tremendous continuous slow down when approaching
Tg, in most structural glass formers at T > Tg there is either the clear signature
of a slow β-relaxation peak (“type B” [19]) or an excess wing (“type A”). Our re-
sults, obtained in glycerol and PC after long-time aging at T < Tg (Sect. 5.4.2),
strongly suggest that the excess wing observed in “type A” glass formers is due
to a β-relaxation, which is a common feature in these materials, too. There are
also materials that cannot be clearly classified as “type A” or “B”, e.g. glass-form-
ing ethanol. Here the excess wing, observed in certain temperature regions, can
be clearly identified to be due to a β-relaxation, too.

The β-relaxation, causing the excess wing, can be assumed to be of the Johari-
Goldstein type [23, 24], inherent to the structurally disordered state. However, in
materials without a well developed β-relaxation peak, the relaxation time of the
β-process may more closely follow that of the α-process (and thereby exhibit
marked deviations from Arrhenius behaviour) than in “type B” systems and
therefore show up as an excess wing only. Various microscopic explanations of
the β-relaxation phenomenon have appeared (e.g. [19, 20, 23, 24, 78, 136]) and
also for the different separation of α- and β-peak in “type A” and “type B” glass
formers a theoretical explanation has been proposed [78, 136]. Even for the so-
far unexplained scaling, introduced by Nagel and co-workers [9], by which the
α-peak and the excess wing in many (but not all) “type A” glass formers can be
collapsed onto one master curve, an explanation assuming a β-relaxation as the
true origin of the excess wing seems possible [78]. Some plastic crystals also
show clear signatures of β-relaxations [100, 126, 139, 186, 187], however, usually
with rather weak amplitudes only, but in others there is neither a β-relaxation
nor an excess wing [66]. Obviously, in this kind of disordered materials the oc-
currence of a Johari-Goldstein β-relaxation is not a common property and also
the Nagel-scaling is violated [69, 139]. It seems that structural disorder is closely
related to the occurrence of both phenomena.
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At frequencies beyond the excess wing, respectively the slow β-relaxation
regime, in the GHz–THz frequency range, an ε′′(ν)-minimum appears. In the
structural glass formers there is clear evidence for additional intensity in this re-
gion, indicating the presence of a fast process, sometimes called fast β-process
(Sect. 5.5.1). A phenomenological ansatz, involving the sum of power laws, in-
cluding a constant loss contribution can take account of the observed spectra,
but a theoretical foundation of this model is still in its beginning stages. The
MCT provides a microscopic explanation for the fast process in all glass form-
ers investigated. Already the idealized version of the MCT can partly describe
the experimental results and for PC it was shown that a more sophisticated
analysis is able to describe the experimental data in an impressively wide fre-
quency and temperature range [160]. Also the differences, revealed by the 
susceptibilities from dielectric, neutron and light scattering experiments
(Sect. 5.5.2) in the investigated molecular glass formers seem to be understand-
able within recent extensions of MCT that take into account orientational de-
grees of freedom [167, 181, 182]. Another microscopic approach of the high-fre-
quency dynamics in glass formers is provided by an extension of the Weiss
mean-field theory for finite systems using predictions of the dynamically corre-
lated domain model [21]. Within this framework, recently part of the present
spectra of glycerol were successfully described [21] and also our results in PC
seem to be consistent with this model [137].

At frequencies around THz the boson peak shows up. However, in glycerol
(Fig. 5.12a) and other glass formers [36, 37, 183–185] in this region in fact a dou-
ble-peak structure is observed.Also there are marked differences in the increase
of ε′′(ν) towards the boson peak for different glass formers (e.g. Fig. 5.12). In the
plastic crystalline ortho-carborane the boson peak may simply reflect the
acoustic-phonon density of states. Further systematic experimental work is nec-
essary to clarify whether the boson peak is indeed a universal property of glass-
forming materials or if there may be different microscopic origins for the ap-
pearance of one or several peaks at frequencies around THz.

Overall, broadband dielectric results on glass-forming materials reveal many
characteristic, partly intriguing properties of glass-forming materials, e.g. the
excess wing with its scaling properties, the additional intensity in the minimum
region and the boson peak. The microscopic understanding of many of these
phenomena is still controversially discussed, and much work, both experimen-
tal and theoretical, will have to be done to reach a consensus. In our view, MCT
provides the most consistent picture of glassy dynamics, offering explanations
for the largest variety of experimental facts, including the high-frequency
processes. Even so, certainly many questions need to be addressed in more de-
tail, e.g. the behaviour near and below Tc, or the occurrence of Johari-Goldstein
β-relaxations. However, also more experimental work is needed, e.g. concerning
the boson peak region and the filling of the “gaps” in the GHz region at low tem-
peratures. Nevertheless, the recent tremendous theoretical and experimental
progress in this very lively field of solid state physics gives rise to the hope that
these and other open questions will be solved in due course, finally arriving at a
consistent picture of the glass transition and glass dynamics.
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List of Abbreviations and Symbols

a exponent of MCT critical law
b power-law exponent of excess wing; also exponent of von-Schweidler

law
cb prefactor of excess-wing power law
cn prefactor of left wing of boson peak
c3 prefactor of ν 0.3 power law
m fragility parameter
n power-law exponent of left wing of boson peak
S scattering function
T temperature
tc CM crossover time
Tc MCT critical temperature
Tg glass temperature
TVF Vogel-Fulcher temperature
w half width of loss peak
β power-law exponent of α-peak at ν >νp
βCD width parameter of CD function
γ MCT critical exponent
Δε relaxation strength
εc constant loss
εmin amplitude of loss minimum
ε′ real part of dielectric permittivity 
ε′′ imaginary part of dielectric permittivity (dielectric loss)
λ MCT exponent parameter
ν frequency
νk MCT knee frequency
νmin frequency of loss minimum
νp α-peak frequency
ντ 1/(2π 〈τα〉)
σdc d.c. conductivity
σ′ real part of conductivity
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τα α-relaxation time
τβ β-relaxation time
χ′′ imaginary part of susceptibility

CC Cole-Cole
CD Cole-Davidson
CKN [Ca(NO3)2]0.4[KNO3]0.6
CM coupling model
FIR far infrared
FLD frustration-limited domain
KWW Kohlrausch-Williams-Watts
LPS locally preferred structure (FLD theory)
MCT mode-coupling theory
PC propylene carbonate
VFT Vogel-Fulcher-Tammann
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6 Molecular Dynamics in Confining Space

F. Kremer · A. Huwe · A. Schönhals · S.A. Różański

6.1
Introduction

The molecular and collective dynamics in confining space is determined by the
counterbalance between surface- and confinement effects [1]. The former re-
sults from interactions of a host system with guest molecules which take place
at the interface between both, the latter originates from the inherent length scale
on which the underlying molecular fluctuations take place. Surface effects cause
a decrease while confinement effects are characterised by an increase of the mol-
ecular dynamics with decreasing spatial dimensions of the confining space
(Fig. 6.1). Hence in glass-forming systems [2–7] for the calorimetric glass tran-
sition temperature an increase resp. a decrease is observed. It is evident that this
counterbalance must depend sensitively on the type of confined molecules
(glass-forming liquids, polymers, liquid crystals), on the properties of the (in-
ner) surfaces (wetting, non-wetting) and on the architecture of the molecules
with respect to the walls (grafted, layered or amorphous systems).

Confining geometries [8–23] can be realised in various ways: by containing
the system under study in zeolites, in nanoporous sol-gel glasses, in mesoporous

Fig. 6.1. Scheme of the 
molecular dynamics in
confining space as a coun-
terbalance between surface
and confinement effects



membranes, in block copolymers, etc. With its extraordinary dynamic range (in
frequency and intensity) broadband dielectric spectroscopy enables one to un-
ravel the subtle interplay between surface- and confinement effects and to con-
tribute to basic questions such as for instance (i) is there an inherent lengthscale
of cooperativity in glass forming liquids and how does it vary with temperature,
(ii) what is the effect of a lubricant layer in order to decouple the dynamics of a
liquid from a solid wall, (iii) what is the difference between H-bond forming and
van-der-Waals liquids, (iv) what is the dynamics of polymers in confining space
and (v) how is the molecular and collective dynamics of liquid crystals influ-
enced in mesoporous membranes?

6.2
H-Bond Forming and van-der-Waals Liquids in Zeolitic 
and Nanoporous Media

6.2.1
Glycols in Zeolites and Nanoporous Sol-Gel Glasses

Zeolites [24, 25] offer the unique possibility to vary the dimension and the topol-
ogy of spatial confinement on a sub-nanometer scale in controlled manner.
Silica sodalite consists of identical, so-called β-cages, with an inner diameter of
0.6 nm. Ethylene glycol (EG) is one of the structure-directing agents which con-
trol the formation of silica sodalite [26, 27]. Exactly one EG molecule becomes
occluded in one sodalite cage during synthesis and cannot escape from it unless
the cage is thermally decomposed [27]. Silicalite-I, zeolite beta and AlPO4-5 have
channel-like pore systems (see Fig. 6.2). In silicalite-I, consisting of pure SiO2,
rings of ten Si and ten O atoms form a three-dimensional pore system with 
two types of elliptical channels having cross-sections of 0.56–0.53 nm and
0.55–0.51 nm [24]. In zeolite beta (12-ring system) the channels in [100] and [10]
directions have a cross-section area of 0.76 nm × 0.64 nm, whereas the channels
in the [1] direction have smaller pores (0.55 nm × 0.55 nm) [28]. The Si:Al ratio
of the sample was 40 to reduce the number of counter-ions in the channels.
AlPO4-5 has a one-dimensional pore system. In this aluminophosphate, the
channels with diameters of 0.73 nm are arranged in a hexagonal array. To realise
larger pore diameters, sol-gel glasses (Geltech Inc., USA) with pore sizes of
2.5 nm, 5.0 nm, 7.5 nm and 20 nm and a narrow pore size distribution can be
used.

Besides sodalite which is already loaded with EG after synthesis, all
nanoporous hosts are heated to 600 K with a temperature increase of 20 K h–1

and evacuated at 10–5 mbar for 36 h to remove water and other volatile impuri-
ties. Afterwards the zeolitic host systems are filled with EG from the vapour
phase in a closed vacuum chamber at 448 K. The samples are cooled down to
room temperature and remain in the vacuum chamber for 24 h before the di-
electric measurements are carried out.

Isothermal data (Fig. 6.3) of the dielectric loss ε′′ are fitted by a superposition
of a Havriliak and Negami (HN) relaxation function and a conductivity contri-
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bution [29, 30]

(6.1)

In this notation, ε0 is the vacuum permittivity, σ0 the d.c.-conductivity and Δε
the dielectric strength. α and γ describe the symmetric and asymmetric broad-
ening of the relaxation peak. The exponent s = 1 holds for pure electronic con-
duction; deviations (s < 1) are observed for ionic charge carriers which cause
electrode polarisation or Maxwell-Wagner polarisation effects. The factor a has
the dimension (Hz)–1 (rad Hz)S. The uncertainty in the determination of logτ is
≤ 0.1 decades and less than 5% for Δε. Due to the fact that ε′ and ε′′ are con-
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Fig. 6.2. Scheme of the zeolitic host systems in which the guest molecule ethylene glycol was
confined: a silica sodalite (SiO2) has cubic cages with a lattice constant of 0.89 nm. The cages
are connected by channels with a diameter of 0.28 nm. Only one molecule is confined to each
cage; b silicalite consists of pure SiO2 and has a three-dimensional pore system with two dif-
ferent types of elliptical channels having cross sections of 0.56 nm × 0.53 nm and 0.55 nm ×
0.51 nm; c zeolite beta is an aluminosilicate with a three-dimensional pore system having
cross sections of 0.76 nm × 0.64 nm in the [100] and [010] directions and a diameter of
0.55 nm in the [001] direction; d AlPO4-5 is an aluminophosphate with one-dimensional chan-
nels (diameter 0.73 nm) arranged in hexagonal array. Taken from [1] with permission



nected by the Kramers-Kronig relations, a fit in ε′ does not improve the accu-
racy. From the fits according to Eq. (6.1) the relaxation rate 1/τmax can be de-
duced which is given at the frequency of maximum dielectric loss ε′′ for a cer-
tain temperature. A second way to interpret the data is the use of a relaxation
time distribution function L(τ) of Debye relaxators with relaxation times τ. The
imaginary part of the dielectric function is expressed by

(6.2)

where εs and ε∞ denote the low- and high-frequency limit of the permittivity.
L(τ) can be extracted numerically from the data [31] or calculated (analytically)
from the fit with HN-functions [29, 30]. To characterise the temperature depen-
dence of the relaxation behaviour, the averaged logarithmic relaxation time
logτmed is calculated

(6.3)

logτmed equals logτmax if the peak of a relaxation process is symmetrically broad-
ened. The calculation of logτmed can be done only with high accuracy if the re-
laxation time distribution function is known in a broad range. For that reason
logτmax is determined for molecules confined to zeolites (where the frequency
range is limited) and logτmed is calculated if the nanoporous sol-gel glasses are
used as host.

Figure 6.3 shows the dielectric spectra for ethylene glycol (EG) confined to
different zeolitic host systems at 160 K. The relaxation rates τ –1

max for EG in the
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Fig. 6.3. The dielectric loss ε′′ vs frequency for ethylene glycol (EG) being confined to zeolitic
host systems as indicated.The solid lines are a superposition of a Havriliak-Negami-relaxation
(dashed line) and a conductivity contribution (dotted line). Taken from [1] with permission
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zeolitic host systems differ by up to six orders of magnitude: In zeolites with
smaller pores (silicalite and sodalite) the relaxation rates of EG are significantly
higher compared to zeolite beta and AlPO4-5. Especially for EG in sodalite, the
relaxation strength is comparatively weak. This is caused by EG molecules which
are immobilised due to the interaction with the zeolitic host matrix. Figure 6.4
shows the relaxation rate as a function of inverse temperature for EG as bulk liq-
uid and confined to zeolites. EG in zeolite beta (solid triangles) and in AlPO4-5
(open triangles) has a relaxation rate like the bulk liquid (squares) following the
temperature dependence according to the empirical Vogel-Fulcher-Tammann
– (VFT-) equation [32–34]

(6.4)

where A is a prefactor, D is the fragility parameter and T0 is the Vogel tempera-
ture. The relaxation rates of EG in silicalite and sodalite show an Arrhenius-type
temperature dependence.

The single molecule relaxation of EG in sodalite is at T ≈ 155 K about six or-
ders of magnitude faster compared to the bulk liquid. Its activation energy is 
26 ± 1 kJ mol–1 and corresponds to the value for bulk EG at high relaxation rates
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Fig. 6.4. The relaxation rate
vs inverse temperature for
ethylene glycol being con-
fined to different zeolitic
host systems as indicated.
The errors are smaller than
the size of the symbols.
Taken from [1] with permis-
sion



(29 ± 2 kJ mol–1) [35]. The relaxation process of EG in silicalite has a larger acti-
vation energy (35 ± 2 kJ mol–1) which is still smaller than the apparent activa-
tion energy (tangent to the VFT-temperature dependence) of the bulk liquid
close to Tg. Its Arrhenius-like temperature dependence resembles the single
molecule relaxation of EG in sodalite.

Figure 6.5 shows the normalised relaxation peaks for all samples at 165 K as
calculated from the fits. Compared to a Debye process (solid curve) even the
bulk liquid and the single molecule relaxation (EG in sodalite) are broadened.
The distributions for EG in the other zeolitic host systems show very pro-
nounced broadening at both low and high frequencies.

To study the molecular arrangement of the molecules in confining space, the
molecular simulation program Cerius2 is used on a Silicon Graphics workstation
to model a finite zeolite crystal with four unit cells surrounded by vacuum.By “fill-
ing” the pores with EG a completely loaded nanoporous host/guest-system can be
simulated and structural parameters like distance between molecules,density and
length of H bonds can be determined. The simulations were carried out using
three different force fields: The Dreiding force-field [36], the force-field Burchardt-
universal [37,38] and the consistent force-field cff 91.The three force-fields provide
the same results within the uncertainty for the quantities shown in Table 6.1.

The computer simulations of EG in zeolitic host systems show that in silicalite
the molecules are aligned almost single-file-like along the channels and that in
zeolite beta and in AlPO4-5 two EG molecules are located side by side in the chan-
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Fig. 6.5. Normalized relax-
ation process for a Debye
process (solid line), for EG
bulk (solid squares) and
confined to zeolite beta
(open triangles), silicalite
(open circles), sodalite (open
diamonds) and AlPO4-5
(solid triangles) at 165 K.
The curves are calculated
from the Havriliak-Negami-
fit parameters. Taken from
[1] with permission



nels (Fig. 6.6). However, neither for the distance between molecules nor for the
average length of hydrogen-bonds or the density is a significant change found be-
tween the bulk liquid and the molecules in the restricting geometry (Table 6.1).
However, for the number of neighbouring molecules (coordination number) a
pronounced difference is observed (Fig. 6.7): the coordination number of 11 cor-
responds to the maximum value in the case of the random close packing model
[39] and is found for the bulk liquid within a radius of r = 0.66 nm. Within that
EG in zeolite beta and in AlPO4-5 has only five neighbouring molecules. As
AlPO4-5 has one-dimensional channels and no intersections between them in
contrast to zeolite beta the dimensionality of the host system seems to play only
a minor role for the dynamics of H-bonded guest molecules. Further reduction
in the channel size (as in the case of silicalite) decreases the average number of
neighbouring molecules by about 1. This results in a sharp transition from a liq-
uid like dynamics to that of single molecules. In AlPO4-5 only two molecules are
located side by side in the one-dimensional channels, hence the interactions are
dominated by the nearest neighbouring molecules and an ensemble as small as
six EG molecules is sufficient to show a liquid-like dynamics.

In order to analyse the dielectric properties of the heterogeneous systems un-
der study,effective medium theory has to be applied ([40],Chap.13). It takes into
account that the local electric field and the polarisation depend not only on the
external electric field but also on the microstructure (topology, filling factor) of
the sample. For spherical inclusions in a diluted system (having two components
with dielectric functions ε*

1 and ε*
2) with a volume filler factor f the Maxwell-

Garnett formula is used [41]

(6.5)

For ellipsoidal particles the depolarisation factor A has to be taken into ac-
count [42]
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Table 6.1. Distance between the molecules, average length of hydrogen-bonds (O-H ··· O
bonds with a length up to 0.3 nm) and density as calculated from the molecular simulations
for ethylene glycol confined to zeolite beta and silicalite and for the bulk liquid. For the simu-
lation of the bulk liquid a limited volume (6.64 nm3) was filled with EG molecules until the
bulk density of 1.113 g cm–3 was reached. In contrast the densities of EG confined in zeolites
are results of the simulation. The error is mainly caused by the uncertainty in calculating the
accessible volume of the zeolitic channels

Distance between Average length Density (g cm–3)
molecules (nm) of H-bonds (nm)

Bulk liquid 0.42 ± 0.01 0.23 ± 0.02 1.113
Zeolite beta 0.41 ± 0.01 0.25 ± 0.02 1.0 ± 0.1
Silicalite 0.42 ± 0.01 0.24 ± 0.02 1.0 ± 0.1
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Fig. 6.6. Results of computer simulations of the arrangement of ethylene glycol molecules
confined in zeolites. For better visibility the framework of the zeolites is omitted: a sodalite;
b silicalite; c zeolite beta; d AlPO4-5. The orientation has been chosen for picture b and c so
that one of the channels runs along the horizontal direction of the paper plane. In adjacent
channels perpendicular to the paper plane, the molecules appear as stacked on top of one
another



If the axes of an ellipsoid are a, b and c, the depolarisation factor along the a-axis
Aa is defined as

(6.7)

If the inclusions are randomly distributed cylinders, the dielectric function for
all three orientations has to be superposed. One of them is parallel to the elec-
tric field (A = 0) and two are perpendicular (A = 1/2)

(6.8)

For higher concentrations ( f > 0.2) the Hanai-Bruggeman equation is valid [43]

(6.9)

It can be solved analytically. As it is not symmetric in ε1
* and ε2

* it will certainly
fail for f > 0.5. Kamiyoshi modified Rayleigh’s approach, which gives similar re-
sults to the Maxwell-Garnett formula, with an expression for ε* which is sym-
metric in ε1

* and ε2
*. It was deduced especially for powder samples and agrees well
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Fig. 6.7. The average num-
ber of neighbouring molec-
ules (coordination number)
as a function of the radius
of a surrounding sphere as
calculated from the simula-
tions for EG bulk liquid
(squares), EG confined to
zeolite beta (triangles), to
silicalite (circles) and to
AlPO4-5 (solid triangles).
Taken from [1] with permis-
sion
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with experimental results (e.g. for f = 0.5) [44]:

(6.10)

The zeolitic samples consist of three components (see Fig. 6.8). The guest mole-
cules are confined in the channels of the zeolites and the sample itself contains
about 50 vol.% air between the grains of the zeolites. Therefore an effective-
medium analysis in two steps has to be employed: first the guest molecules in the
zeolitic host system are described and in the second step the air is taken into ac-
count. In the first step, Eqs. (6.8), (6.9) and (6.10) are used while in the second
step the assumptions underlying Eq. (6.10) are well fulfilled. The topology of the
pores in zeolite beta and in silicalite cannot be described by a simple model (see
Fig. 6.2).

Figure 6.9a shows the dielectric loss spectra of EG in AlPO4-5 for the three dif-
ferent models and the experimental data. All calculations deliver a Maxwell-
Wagner process at low frequencies. Figure 6.9b presents the peak of the dynamic
glass transition normalised to the maximum of the dielectric loss. Equa-
tions (6.9) and (6.10) show comparable loss spectra whereas Eq. (6.8) results in
a bimodal relaxation peak in contrast to the experimental findings. Figure
6.10a,b shows the relaxation rates and the dielectric strength vs inverse temper-
ature for the models and the experimental data. The error bars result from the
uncertainty in the sample thickness and the volume filler factor of the zeolitic
microcrystals which has a strong influence on the calculated air content of the
samples. Equation (6.8) predicts a relaxation rate which is slightly higher than
the experimental data. For Eqs. (6.9) and (6.10) this shift is about one decade
similar as in [45, 46]. The molecules show a molecular dynamics which is slower
than calculated. This might be caused by the interaction of the guest molecules
with the host system. For the dielectric strength, Eqs. (6.9) and (6.10) agree with
the experimental data. The model for cylindrical inclusions (6.8) predicts a di-
electric strength which is slightly larger.

In summary the models assuming spherical inclusions (Eqs. 6.9 and 6.10) fit
better the experimental data. For ethylene glycol in zeolite beta comparable re-
sults are obtained. There is a difference in the relaxation rates of about one
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Fig. 6.8. Scheme of the sam-
ple capacitor with the
zeolitic sample filled with
ethylene glycol



decade indicating a surface effect. The dielectric strength coincides with the cal-
culations. In general the intrinsic relaxation rate of a filler particle is shifted to
higher relaxation rates in heterogeneous media by not more than one decade.

Hence, the experimental results for silicalite and sodalite cannot be explained
on the basis of an effective medium approach. The dramatic change of the re-
laxation rate of ethylene glycol in silicalite and sodalite is not an effect of the het-
erogeneous mixtures but it is caused by the transition from the liquid state to
that of a single molecule. Effective medium theory predicts for ethylene glycol in
silicalite and sodalite a dielectric strength which is much larger than observed.
The spectra cannot be described by using bulk data and applying effective
medium models.This shows that ethylene glycol in silicalite and sodalite has lost
its bulk like properties.

Controlled porous glasses (Geltech Inc., USA) offer another possibility to re-
alise a confining space [3–13]. They are available with pore sizes of 2.5 nm,
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Fig. 6.9. a Dielectric spectra of ethylene glycol in AlPO4-5 calculated for three different effec-
tive medium models and experimental results as indicated at 170 K. b Normalized peak of the
dynamic glass transition of the spectra shown in a



5.0 nm and 7.5 nm and a narrow pore size distribution. The porous glass is disc-
shaped (diameter 10 mm, thickness 0.2 mm) so the outer surface is negligible
compared to the huge inner surface (520–620 m2g–1). After evacuating the
porous glasses to 10–5 mbar at 570 K for 24 h to remove water and other volatile
impurities, the pores were filled by capillary wetting during 48 h at a tempera-
ture of about 20 K above the melting point of the liquids. For that purpose the
glass-forming liquid was injected in the (closed) vacuum chamber by use of a
syringe. Both sides of the sample disks were covered with aluminium foil (thick-
ness 800 nm) to ensure a homogenous field distribution and were mounted
between gold plated brass electrodes of the capacitor. As H-bond forming liq-
uids the homologous sequence of propylene-, butylene- and pentylene glycol
(PG, BG, PeG) were used having an averaged molecular radius or rm = 0.306 nm,
rm = 0.329 nm and rm = 0.349 nm, respectively.

Figure 6.11a–c shows the relaxation rates of the α-relaxation of the bulk and
confined liquids. No effect of confinement is observed on the relaxation rates of
PG and BG in 7.5 nm and 5.0 nm pores. For PeG the α-relaxation in 7.5 nm and
5.0 nm pores becomes slightly faster compared to the bulk at low temperatures.
In 2.5 nm pores the relaxation rate is slowed down compared to the bulk; this ef-
fect is more pronounced for the larger molecules. The volume corrected dielec-
tric strengths of the α-relaxation of bulk and confined PG, BG, and PeG are
shown in Fig. 6.11d–f. For all liquids the absolute value of the dielectric strength
Δε decreases with decreasing pore sizes, indicating the existence of a fraction of
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Fig. 6.10. a Relaxation rate
vs inverse temperature for
the spectra shown in
Fig. 6.9. The error bars are
smaller than the size of the
symbols. b Dielectric
strength vs inverse tempera-
ture for the spectra shown
in Fig. 6.9. The uncertainty
of the amount of air in the
samples caused the large er-
ror bars. This does not influ-
ence the relaxation rate sim-
ilarly



immobilised molecules which is dielectrically inactive (complete pore filling
was checked by weighing). This layer is caused by H-bonds formed between the
glycol molecules and the inner surface of the sol-gel glass.

For confined PG and BG, the temperature dependence of Δε is comparable to
that of bulk liquids while for PeG, Δε decreases for low temperatures for all pore
sizes. This decrease resp. increase of the relaxation rate may be comprehended
by assuming exchange between the molecules bound to the pore surface (solid-
like layer) and molecules in the centre of pores.

More instructive than the HN-parameters τHN, α and γ is the relaxation time
distribution function L(τ). It can be deduced from the dielectric spectra (see
Chap. 3) either analytically from the HN-fit parameters [29, 30] or by a regular-
isation technique [31]. Figure 6.12 shows the relaxation time distributions of
confined PG at different temperatures. On the long term side a broadening is ob-
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Fig. 6.11. Depiction of: a–c relaxation rate 1/τmax; d–f volume corrected relaxation strength Δε
of the α-relaxation of PG, BG and PeG in pores vs the inverse temperature T. Pore sizes: 2.5 nm
(circles), –5.0 nm (triangles), 7.5 nm (diamonds) and bulk (filled squares). The error is smaller
than the size of the symbols. rM is the mean van-der-Waals radius of the molecules. Taken from
[9] with permission



served with decreasing pore size. For 2.5 nm pores even the maximum is shifted
to lower relaxation times.

The confined molecules can be classified (Fig. 6.13a) according to their dy-
namics into three fractions: (i) liquid-like with relaxation rates as in the bulk, (ii)
interfacial with reduced mobility and (iii) immobilised. Assuming that the den-
sity of the molecules in confinement is only negligibly influenced and that the
dielectric strength is proportional to the number of molecules participating in
a relaxation process, a quantitative three layer model (Figs. 6, 13b and Table 6.2)
can be deduced. Hereby the fraction of immobilised molecules is estimated from
the difference in the dielectric strength which is expected from the filling factor
of the confined molecules and which is measured as the contribution of the in-
terfacial and bulk-like molecules. Considering spherical or cylindrical shape for
the pores delivers similar results. Within the experimental accuracy, no signifi-
cant temperature dependence of the layer structure is found. The layer thick-
nesses rs and ri have only a weak pore size dependence while the radius rb of the
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Fig. 6.12. Relaxation time distribution of the α-relaxation as calculated from Havriliak-
Negami-fits for bulk and confined PG at 195 K, 210 K and 225 K (solid line: bulk; dashed line:
7.5 nm; dash-dotted line: 5.0 nm; dotted line: 2.5 nm pore diameter). Taken from [9] with per-
mission
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Fig. 6.13. a Relaxation time
distribution of an H-
bonded liquid (bulk and
confined to nanopores).
Shaded area with horizontal
lines: bulk-like molecules;
shaded area with inclined
lines: interfacial molecules.
b Sketch of the presumed
spatial relaxation time dis-
tribution in the pores.
Checked: solid-like mole-
cules (thickness rs), inclined
lines: interfacial layer
(thickness ri), and horizon-
tal lines: bulk-like mole-
cules (radius rb). Taken from
[9] with permission

Table 6.2. Thickness of the solid-like layer rs and the radius of the bulk-like phase rb of mole-
cules of PG, BG, and PeG for three different temperatures. The interfacial layer ri = R – rb – rs
is ≈ 0.3 nm for all samples. The absolute error of rs, ri and rb is 0.2 nm

Temperature Pore size PG BG PeG
(K)

R (nm) rb (nm) rs (nm) rb (nm) rs (nm) rb (nm) rs (nm)

225 7.5 2.5 0.8 2.8 0.5 2.8 0.6
5.0 1.5 0.7 1.8 0.5 1.7 0.5
2.5 0.7 0.3 0.7 0.4 0.6 0.4

210 7.5 2.5 0.8 2.8 0.6 2.6 0.8
5.0 1.5 0.7 1.6 0.5 1.6 0.7
2.5 0.7 0.4 0.6 0.4 0.6 0.5

195 7.5 2.4 0.9 2.8 0.6
5.0 1.5 0.7 1.6 0.5
2.5 0.6 0.4 0.6 0.4



bulk-like phase scales roughly with the pores. From the mean van-der-Waals ra-
dius rm and rb the number of bulk-like molecules in the pores can be derived. As
in the experiments with zeolitic host systems it turns out that the number of
molecules which is necessary to perform a bulk-like dynamics is small.

Propylene glycol (PG) is an H-bonded glass forming liquid. Due to the fact
that a freshly prepared SiO2 surface is hydrophilic one has to expect that the PG
molecules form H-bonds with the solid surfaces of the nanoporous system. This
surface interaction can be hindered by a silanization as shown schematically in
Fig. 6.14.

For PG in uncoated nanopores – compared to the bulk liquid – there is a pro-
nounced broadening of the width of the dielectric loss curve and the relaxation
time distribution function (Figs. 6.15a,b, 6.16). Silanization of the inner sur-
faces counteracts this (Figs. 6.15c, 6.16) effect which is – as expected – strongly
temperature dependent and weakens with increasing thermal activation
(Fig. 6.16): at a temperature of 185 K the low-frequency broadening of the re-
laxation time distribution function for PG in uncoated pores is completely re-
moved and the mean relaxation time for PG in coated nanopores becomes even
faster than in the bulk. The broadening is interpreted as caused by interactions
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Fig. 6.14. Scheme of pro-
pylene glycol in the neigh-
bourhood of an uncoated
SiO2 surface (top) and a
silanized SiO2 surface 
(bottom)



of the molecules with the surface [3]. The lubrication hinders the formation 
of H-bonds to the solid wall of the nanoporous ambience, hence decoupling its
dynamics.

To characterise the temperature dependence of the relaxation rate the aver-
aged relaxation time logτmed is calculated as defined in Eq. (6.3). The tempera-
ture dependence follows for all (uncoated and coated) pores the well known
VFT-law (Fig. 6.17). The difference in the relaxation rate of PG in uncoated and
coated pores is maximal for the smallest pore size (2.5 nm) and lowest temper-
ature (≈ 190 K). Despite the fact that due to the silane layer having a thickness of
about 0.4 nm the space for the PG molecules becomes even more confining one
finds a dynamics which is – within experimental accuracy – identical to that of
the bulk liquid.
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Fig. 6.15. The dielectric loss of PG at a temperature T = 210 K: a bulk PG; b PG confined to
2.5 nm uncoated pores; c PG confined to 2.5 nm coated pores. The error of the measured data
is smaller than the size of the symbols, solid line: superposition of a Havriliak-Negami-relax-
ation function (dotted line) and conductivity contribution (dashed line). The inset shows the
resulting relaxation time distribution function L(τ). Taken from [9] with permission



It is well known that for glass forming liquids the product of temperature T
and dielectric strength Δε increase with decreasing temperature [47] (accord-
ing to the Langevin function it should be constant, neglecting density effects).
This effect vanishes for the dynamic glass transition if it takes place in the
nanoporous systems (Fig. 6.18). The fact that the dielectric strength becomes
smaller with decreasing pore diameter is attributed to the change in the surface
to volume ratio of the nanoporous system.

6.2.2
Salol in (Lubricated) Nanoporous Sol-Gel Glasses

Salol (phenyl salicylate) is one of the most studied organic glass forming liquids.
It is regarded as a “quasi”-van-der-Waals molecule despite the fact that it can
form (mainly intramolecular) H-bonds (see scheme in Fig. 6.19). In nanoporous
sol-gel glasses with hydrophilic inner surfaces an interfacial layer (Fig. 6.19) of
molecules in the neighbourhood of the solid wall is established having a dy-
namics which is slowed down compared to the bulk liquid [11a,b].

In the experiment two molecular relaxation processes (I and II) are observed
which can be separated in frequency and fitted by generalised relaxation func-
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Fig. 6.16. Relaxation time
distribution function vs re-
laxation time for propylene
glycol as a bulk liquid (solid
line), in uncoated (dashed
line) and in coated (dotted
line) pores at different tem-
peratures
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Fig. 6.17. The mean relax-
ation rate of propylene gly-
col vs inverse temperature
for the bulk liquid (open cir-
cles, solid curve: VFT-fit)
and for propylene glycol be-
ing confined to uncoated
(solid diamonds) and coated
pores (open triangles) of
different pore diameters as
indicated

Fig. 6.18. Dielectric strength
Δε times temperature T vs
inverse temperature for
propylene glycol as a bulk
liquid (stars) and confined
to silanized pores of a sol-
gel glass having different di-
ameters of 7.5 nm (open cir-
cles), 5.0 nm (cross centred
circles) and 2.5 nm (filled
circles)



tions according to Havriliak-Negami (inset in Fig. 6.20). The dielectric spectra
can be interpreted in terms of a two state model with dynamic exchange be-
tween a bulk-like phase in the pore volume and an interfacial phase close to the
pore wall [10].

The formulae describing the change of polarisation pi in subsystem i form a
set of coupled linear first-order differential equations if pi (t) are purely expo-
nential and if the jump rate cij is time independent

(6.11)
d

d
p t

t
c p ii

ij j
( )

, ,= = 1 2
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Fig. 6.19. Schematic view of a pore filled with a glass forming liquid. The pore walls are cov-
ered by a surface bound layer of molecules, the remaining volume is filled with bulk-like mol-
ecules. Due to H-bonding the salol molecules can directly bind to the SiO2 surface of the inner
walls of the nanoporous system



The polarisation in subsystem 1 changes by internal relaxation with the function
p1(t) and by transfer to and from state 2 as a consequence of jumps

The polarisation in state 2 is described analogously

The number of jumps per unit time is cij Ni, where Ni is the number of particles
in system i; the transferred polarisation for a single particle is pi/Ni. The con-
stant si (i = 1, 2) describe the relaxation rates in the uncoupled system. Both
equations are collected to construct the relaxation matrix

with
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Fig. 6.20. Dielectric loss ε′′ of salol in 7.5 nm pores vs frequency: 245 K (triangles), 265 K
(squares), 285 K (circles), 305 K (diamonds). The error of the measured data is smaller than the
size of the symbols. The inset illustrates the deconvolution of the data for T = 285 K.
Relaxation process I is assigned to fluctuations of bulk-like molecules, process II originates
from molecules close to the inner walls and process III is caused by Maxwell-Wagner-polar-
ization. Taken from [10] with permission



and eigenvalues

Diagonalizing Eq. (6.11) delivers

(6.12)

with βi = Dij pj and the diagonalization matrix

The solution of Eq. (6.12) is

Inserting the relative population numbers one finds

(6.13)

and after transformation back to pi = D–1
ij βj the relaxation functions for states 1

and 2 [10] are obtained:

(6.14)

Their sum p(t) is the total relaxation function of the system

(6.15)

Identical results are obtained by calculating the probability of a particle re-
maining in its original state 1 or jumping to state 2.
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Typical graphs are shown in Fig. 6.21 where the apparent relaxation rate 1/τi
and the apparent relaxational strengths 1/2 N (c/2Q + ΔcΔs/2Qc) are shown in-
dependence on c/s.

Keeping the exchange rate constant and lowering the relaxation rates s1,
s2 = 100 s1 exponentially from left to right (dotted lines) allows one to model the
typical slowing down of relaxation rates with temperature. In Fig. 6.21a the 
single relaxation rates and in Fig. 6.21b the corresponding relaxation strengths
1/2 N (c/2Q + ΔcΔs/2Qc) are shown on logarithmic scale. The apparent shift to
higher relaxation rates is of course only an effect of the artificial separation of
the relaxation processes. Molecules starting in the fast relaxation state do not re-
lax faster by exchange with a slower state. This is easily verified from calculating
the time derivatives of pi(t).

These theoretical results are used to interpret the experimental dielectric data
of salol confined in porous sol-gel glasses (Fig. 6.22). In bulk salol, one observes
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Fig. 6.21. a Apparent relaxation rate 1/τ (in arbitrary units) of two relaxation processes with
relaxation time ratio s2/s1 = 100 at fixed exchange rate c, and s slowing down from left to right.
The dotted lines visualize the assumed exponential decrease of the undisturbed rate s2 and s1.
The relative strengths of the original fast and slow processes are 1:2 (dashed line) and 2:1
(solid line) respectively. (Δc/c = (n1 – n2)/(n1 + n2) = ± 1/2). b The apparent relaxation
strengths Δε, notation as above. The relative strength of the slow process approaches 1, the fast
process strength decays to zero with increasing exchange, irrespective of the strengths of the
uncoupled processes. Taken from [11a] with permission



a single relaxation process. Its relaxation rate decreases with lower temperatures
(according to the VFT equation).When salol is brought into porous glasses with
nanometer pore diameters, new characteristic features are observed. One
process, which can obviously be attributed to the free salol in the pores, shows at
high temperatures a relaxation rate equal to that of the bulk, but with decreas-
ing temperature it becomes faster than the bulk relaxation at the same temper-
atures. A second process, attributed to a layer of surface bound salol, appears at
relaxation rates which are almost two decades slower. At lower temperatures, it
gradually approaches the bulk rate. (A third process at low frequencies, due to
Maxwell-Wagner polarisation, will not be considered here and has been omitted
in the representation.) As temperature decreases, the fast (volume) process loses
its dielectric strength while the second (surface) process gains such that the sum
of both processes roughly follows the temperature curve of the bulk value.

Comparison with Fig. 6.21 suggests the following interpretation: both, the
surface and volume relaxation rates in the pores are fast compared to the molec-
ular exchange process between surface bound and free salol at high tempera-
tures. Their ratio is roughly 1:100. On the basis of relation of pore radii and mo-
lecular sizes (≈ 0.5 nm), one expects that the ratio of free salol in the pores com-
pared to the amount of molecules bound in a monomolecular surface layer is
1:2 and 1:3 for pore diameters of 2.5 nm and 7.5 nm,respectively.This is roughly
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Fig. 6.22. a Relaxation rate
1/τmax. b Volume corrected
dielectric strength Δε of
salol in pores vs inverse
temperature. Pore sizes:
2.5 nm, solid symbols;
5.0 nm, cross centred sym-
bols; and 7.5 nm, open sym-
bols. Different processes:
dynamic glass transition,
circles; interfacial relaxation
process, squares. Bulk salol,
stars



equal to the respective experimental high temperature ratios of the dielectric
strengths. As the temperature is lowered towards the calorimetric glass transi-
tion, dielectric relaxation rates reach the order of magnitude of the exchange
rate between free and surface bound salol, which has a weaker temperature de-
pendence. With decreasing temperature, random exchange between surface
layer and free molecules leads to an apparently faster relaxation of the volume
process compared to the bulk curve, and also to an increased rate of the surface
process, which gradually approaches the bulk curve. The measured relaxation
strengths show exactly the predicted behaviour; the slow process apparently
gains intensity from the fast process. In summary, it is shown that the experi-
mental data obtained for salol in nanoporous sol-gel glasses must be interpreted
in terms of a surface volume exchange of salol molecules on the characteristic
time scale of the dielectric experiment.
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Fig. 6.23. Dielectric loss ε′′ of salol at a temperature T = 253 K. The error of the measured data
(circles) is smaller than the size of the symbols. The dotted and dashed-dotted lines indicate
fits to the data according to Havriliak-Negami functions. The dashed lines correspond to con-
ductivity contributions and loss processes caused by polarisation effects.a Bulk salol: the mol-
ecules form intra-molecular H-bonds, one relaxation process having the characteristic shape
of L(τ) for a bulk glass-forming liquid is observed. b Salol confined to 7.5-nm uncoated pores:
salol molecules in the direct vicinity of the surface form H-bonds to the pore surface result-
ing in an additional interfacial relaxation process (dashed-dotted lines) next to the relaxation
of unbound molecules (dotted lines). The corresponding L[(τ)] has a bimodal shape (solid
line). c Salol confined to 7.5-nm coated pores: the formation of H-bonds is strongly sup-
pressed. The resulting unimodal L(τ) is shifted to shorter relaxation times with respect to the
bulk phase. d, e, f The plots on the right hand side show the relaxation time distributions L(τ)
that correspond to the relaxational processes. The sketches illustrate possible conformations
of the molecules. Taken from [11b] with permission



In order to suppress the formation of an interfacial layer of molecules the in-
ner surfaces of the nanoporous sol-gel glasses can be silanized [11b]. By that the
formation of H-bonds between the salol molecules and the solid surfaces is
strongly hindered. For the dynamics it means that the corresponding interfacial
relaxation process (process II) is no longer observed (compare Fig. 6.23a and e).
It is remarkable that the relaxation time distribution function of unbound mol-
ecules in the silanized pores is only weakly broadened (Fig. 6.23f) compared to
the bulk liquid (Fig. 6.23b). Figure 6.24 shows the relaxation time distribution of
salol confined to silanized pores of different diameter and at varying tempera-
tures. A broadening is observed at high temperatures due to the various unspe-
cific influences of the random confinement. With decreasing temperature L(τ)
shifts to short relaxation times for confined salol. This effect is more pro-
nounced for smaller pores. The analysis of the dielectric strengths shows that
the silane layer has a thickness of 0.38 ± 0.02 nm in all pore sizes.

In order to characterise the temperature dependence, the averaged relaxation
time –logτmed is calculated according to Eq. (6.6). The activation plot of the re-
laxation rate –logτmed is compared for bulk and confined salol in Fig. 6.25. At
high temperatures the relaxation rates of the confined liquids are identical to the
bulk liquid in all pore sizes while with decreasing temperatures the molecules in
the confining geometry fluctuate faster compared to the bulk liquid: i.e. the glass
transition temperature of the confined liquids is shifted to lower temperatures.
This shift is more pronounced for smaller pores.A comparable effect is observed
by means of DSC [11b]. The calorimetric glass transition temperature in the

196 6 Molecular Dynamics in Confining Space

Fig. 6.24. Relaxation time
distribution L(τ) for salol
confined to 7.5 nm (circles),
5.0 nm (cross centred cir-
cles), 2.5 nm (solid circles)
pores with a hydrophobic
coating and bulk salol (solid
line) at different tempera-
tures: a 305 K; b 243 K;
c 223 K. Taken from [11b]
with permission



confining geometry is shifted 8, 11 and 15 K to lower temperatures in the 7.5, 5.0
and 2.5 nm pores, respectively (indicated by arrows in Fig. 6.25).

The confinement effect can be unambiguously explained on the basis of the
cooperativity of molecular reorientations in glass-forming van-der-Waals liq-
uids: At high temperatures the range of cooperativity ξ is smaller than the ex-
tension of the nanoporous restrictions. Hence, no difference between molecules
in the bulk and in confining space has to be expected. With decreasing temper-
ature deviations from the Arrhenius-type temperature dependence occur indi-
cating the onset of cooperativity. The correlation length ξ increases until it be-
comes limited by the pore diameter (“hindered glass transition”) [3, 4]. Because
of the lubricant coating of the inner surfaces, the cooperatively rearranging mol-
ecules in the pores are decoupled from the solid walls and may reorient within
the pore volume. In contrast, the reorientational dynamics in the bulk liquid is
increasingly retarded due to the unhindered growth of ξ. This leads to a faster
dynamics of the confined molecules compared to the bulk liquid.

Following the simple model described above the temperature dependence of
the length scale of cooperativity can be estimated from the pore size dependence
of the shift of the relaxation rate: it starts to increase compared to the bulk rate
when the length scale of cooperativity ξ reaches the size of the confining geom-
etry. For the 2.5 nm pores deviations from the bulk rate are observed at 250 K.At
lower temperatures even for salol in 7.5 nm pores a significant increase of the re-
laxation rate compared to bulk salol is observed so one can estimate the length
scale ξ of cooperativity to be greater than 7 nm in the vicinity of the calorimet-
ric glass transition temperature.
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Fig. 6.25. Activation plot for salol confined to coated pores. 7.5 nm (circles), 5.0 nm (cross cen-
tred circles), 2.5 nm (solid circles), bulk salol (stars). The error of the data is smaller than the
size of the symbols. The arrows indicate the calorimetric glass transition temperatures for sa-
lol in pores of different sizes and bulk salol. Inset: size of cooperatively rearranging domains
ξ vs temperature. Taken from [11b] and modified. The dashed line is a fit



The question arises of whether the confinement effect could be caused by a
pore-size dependent decrease of the density of the confined liquid. This conjec-
ture can be ruled out based on the following consideration: Assuming that the
density and hence the mean relaxation rate 1/τ obeys a VFT law where the Vogel
temperature varies with the pore size in a similar way as the measured calori-
metric glass transition temperature (Fig. 6.26a) the derivative d(log(1/τ))/
d(1000/T) delivers a temperature dependence as shown in Fig. 6.26b. This can be
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Fig. 6.26. a The calculated dependence of the mean relaxation rate vs inverse temperature as-
suming a VFT-law, where T0 is shifted according to the calorimetrically measured shift of Tg.
Solid line: bulk liquid Tg = 222 K; dashed line: salol confined to a silanized sol-gel glass having
a mean diameter of 7.5 nm: Tg = 214 K; dotted line: salol confined to a silanized sol-gel glass
having a mean diameter of 2.5 nm: Tg = 207 K. b The calculated derivative d(log(1/τ))/
d(1000/T) assuming the temperature dependence shown in a. The units are omitted due to
graphical reasons. They are the same like in part c of this figure. c The experimentally deter-
mined difference quotient Δ(log(1/τ))/Δ(1000/T) for the data shown in Fig. 6.25 for the bulk
liquid (solid squares), salol confined to silanized nanopores of 7.5 nm (open squares) and sa-
lol confined to silanized nanopores of 2.5 nm (stars). Taken from [1] with permission



compared with the difference quotient as determined experimentally from the
relaxation rate measured in temperature steps of 0.5 K (Fig. 6.26c). It turns out
that the difference quotient behaves qualitatively different. In the temperature
interval between 333 K and 260 K, the apparent activation energies for the bulk
and the confined (2.5 nm and 7.5 nm) liquid coincide within experimental ac-
curacy. However, for lower temperatures, suddenly the charts bend off; this takes
place for the 2.5-nm pores at 256 ± 3 K and for 7.5-nm pores at 245 ± 3 K. The
temperature dependence is in sharp contrast to the results (Fig. 6.26b) which
one would expect from a dependence like that displayed in Fig. 6.26a, assuming
a weakly varying temperature dependence of the density. In reverse a non-mo-
notonous change of the density seems to be unreliable: instead it is suggested
that the measured confinement effects are caused by the cooperative nature of
the dynamic glass transition. With decreasing temperature the size of coopera-
tively rearranging domains is growing and the apparent activation energy in-
creases. If, due to the confinement of the nanoporous system, further growth is
prohibited, the VFT dependence turns suddenly into an Arrhenius-like thermal
activation.

6.3
Polymers in Zeolitic and Nanoporous Media

6.3.1
Poly(vinylether) in Mesoporous MCM

It is possible to synthesize poly(vinylether)s directly in the channels of
nanoporous zeolites and mesoporous MCM-materials. MCM-materials possess
pores with a diameter in the range from 2 nm up to 8 nm with a narrow pore size
distribution. The framework of these porous materials is an amorphous alumi-
nosilicate. To study the molecular dynamics of polymers in confining space the
following host systems (Fig. 6.27 and Table 6.3) were used: MCM-41 with one-di-
mensional channels and a pore diameter of 3.6 nm and MCM-48 having pores
with a pore size of 2.5 nm and a cubic structure [48, 49].

The polymerisation is started either by an initiator or by silanol groups at the
inner surface of the host system. Figure 6.28 shows how the surface induced
polymerisation works. In both cases the pores are filled only partially by the
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Table 6.3. Pore diameter, inner surface, specific pore volume, specific channel length, loading
ratio and ratio contour length of the polymer compared to the channel length for the MCM-
41 and MCM-48 materials which are filled with poly(isobutyl vinylether)

MCM-41 MCM-48

Pore diameter (nm) 3.6 2.5
Inner surface (m2 g–1) 770 1840
Specific pore volume (cm3 g–1) 1.25 1.34
Specific channel length (1010 m g–1) 11.6 27.3
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Fig. 6.27. Structure of mesoporous MCM-41 and MCM-48

Fig. 6.28. Scheme of surface induced polymerization of poly(isobutyl vinylether) (PIBVE) in
mesoporous MCM-41



polymer. For the polymer in MCM-materials the filling ratio is comparatively
large (up to 43 vol.%) and the dielectric spectra has distinct relaxation
processes. Figure 6.29 shows the dielectric spectra of poly(isobutyl vinylether)
(PIBVE) in MCM-41 for two different temperatures.

Figure 6.30 displays the relaxation rates and the dielectric strength for PIBVE
in the bulk and in the confining space of MCM-41. One process has a relaxation
rate similar to the β-relaxation of the bulk polymer with an Arrhenius-like tem-
perature dependence. It corresponds to the β-relaxation of the confined poly-
mer and is assigned to fluctuations of the ether group [50]. The second process
also has an Arrhenius-type temperature dependence. It is much faster compared
to the α-relaxation of the bulk polymer.After annealing the sample its relaxation
rate slows down and approaches the dynamic glass transition of the bulk sam-
ple. This process is assigned to the α-relaxation of the confined polymer. The re-
laxation rate of the β-relaxation is almost uninfluenced by the confinement and
the thermal treatment. The relaxation strength of both processes decreases after
annealing. Comparing the molecular dynamics of PIBVE in MCM-41 and in
MCM-48, faster relaxation rates are observed (Fig. 6.31) in the smaller pores of
MCM-48. Hence, similar to EG in zeolites and salol in silanized sol-gel glasses,
PIBVE in MCMs shows a confinement effect.

The slowing down of the α-relaxation after annealing the sample was found
to be a solvent effect. Figure 6.32 shows the relaxation rate of the α-relaxation af-
ter annealing and after the subsequent uptake of a solvent. Annealing results in
a decrease of the relaxation rate. After the uptake of solvents it increases. If po-
lar solvents are used the relaxation rate reaches the values of a sample which was
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Fig. 6.29. Dielectric spectra of PIBVE confined in MCM-41 at 175 K (squares) and 150 K (cir-
cles). The solid line is a superposition of the HN-fits for the α- (dotted line) and β- (dashed
line) relaxation at the indicated temperatures



measured without any treatment “as synthesised”. Furthermore, the dielectric
strength which decreases after annealing increases as well. The desorption and
absorption of solvent and the effect on the dielectric spectra is completely re-
versible.

6.3.2
Poly(propylene glycol) in Nanoporous Sol-Gel Glasses

Poly(propylene glycol) (PPG) is the polymeric pendant to propylene glycol (PG)
which has been discussed already in Sect. 6.2.1. The question arises how the
polymer properties of PPG influences its molecular dynamics in confinement
[51, 52] in comparison to PG. Poly(propylene glycol) is a “type-A” polymer [53,
54] having molecular dipole components perpendicular and parallel to the poly-
mer backbone. The latter adds up to a dipole moment which is proportional to
the end-to-end vector of the chain. Hence two dielectric active relaxation
processes are observed: a segmental relaxation (dynamic glass transition or α-
relaxation) and a so-called normal mode process (see Chap. 7). Evidently both
processes take place on different length scales. While the dynamic glass transi-
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Fig. 6.30. Relaxation rate
1/τmax and dielectric
strength Δε vs inverse tem-
perature for PIBVE in the
bulk and in MCM-41. The
solid symbols correspond to
the α-relaxation, the open
symbols to the β-relaxation.
The thermal treatment of
the samples is indicated in
the figure



tion is related to fluctuations of a few polymer segments the normal mode
process senses the global chain dynamics [55a].

In Fig. 6.33 the dielectric loss of PPG in the bulk and in native (uncoated)
nanoporous sol-gel glasses is compared in its temperature dependence at a fixed
frequency. Two relaxation processes can be identified: The segmental relaxation
at low and the normal mode process at higher temperatures. The temperature
position of the former is weakly influenced by the confinement while the latter
shifts strongly to higher temperatures with decreasing pore size connected with
a pronounced broadening.

The measurements are analysed by fitting the HN-equation (Eq. 6.1) to the
data and the relaxation rate at maximal loss νmax = (2πτmax)–1 is extracted.
Unfortunately both processes do strongly overlap in their relaxation time dis-
tribution. This prevents a reliable estimation and analysis of their dielectric
strengths.

In the activation plot (Fig. 6.34) the pore size dependence of the relaxation
rate of the segmental and the normal mode relaxation is analysed. Both
processes can be described in their temperature dependence by the VFT-equa-
tion (Eq. 6.4). For high temperatures the data for bulk and confined PPG coin-
cide which proves the molecular assignment of the relaxation process in the
pores. While the normal mode shows a continuous decline of its dynamics, the
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Fig. 6.31. Relaxation rate vs
inverse temperature for
PIBVE in the bulk (squares),
in MCM-41 (upright trian-
gles and diamonds) and in
MCM-48 (circles and in-
verted triangles) as indi-
cated. The solid symbols
correspond to the α-relax-
ation, the open symbols to
the β-relaxation
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Fig. 6.32. Relaxation rate vs
inverse temperature for
PIBVE in MCM-48 as syn-
thesized (filled squares), an-
nealed at 350 K (open
circles), after the uptake of
dichloromethane (filled cir-
cles), annealed at 350 K
(open triangles), after the
uptake of cyclohexane
(filled triangles), annealed
at 350 K (open diamonds),
after the uptake of water
(filled diamonds)

Fig. 6.33. Dielectric loss ε′′ (corrected for the pore volume) vs temperature at a frequency of
103 Hz for PPG (molecular weight Mw = 3000 g mol–1) in the bulk (open squares) and in un-
coated pores of different pore sizes: 7.5 nm (open circles), 2.5 nm (open triangles)



segmental relaxation shows a non-monotonous dependence on confinement
(see inset Fig. 6.34). For pore sizes down to 7.5 nm the dynamics becomes faster
but it slows down for smaller pores. The estimated VFT-parameters are used to
calculate the dielectrically determined glass transition temperature Tg

Diel =
T(νmax = 10–2 Hz) and to discuss its pore size dependence (Fig. 6.35). In contrast
to the monomer PG where only an adsorption effect is found in the polymeric
pendant PPG the counterbalance between surface and confinement effects de-
termines the pore size dependence of the dynamic glass transition.

This is attributed to the different capability of the molecules to form hydro-
gen bonds with the walls of the pores: PG can form two primary H-bonds per
molecule while for PPG due to its chain structure this is possible only at the
chain ends.

The effect of surface treatment (silanization) on the two relaxation processes
in PPG reveals a strong effect on the normal mode relaxation (see Fig. 6.36).
Obviously the surface treatment damps the global chain fluctuations while the
local segmental relaxation is even slightly amplified. Compared to the bulk both
processes broaden with decreasing pore size (Fig. 6.37). This prevents a reliable
estimation of the relaxation rates of the normal mode process for smaller pore
sizes.

Figure 6.38 compares the temperature dependence of the relaxation rate νmax
for the dynamic glass transition in uncoated and coated pores. While close to Tg
the segmental fluctuations in 2.5 nm coated pores are slightly faster compared
to native ones; for 7.5 nm pores there is no effect of the silanization on the tem-
perature dependence of the dynamic glass transition. Thus, for the polymer PPG
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Fig. 6.34. Relaxation rate νmax vs inverse temperature for PPG (Mw = 3000 g mol–1) in the bulk
(open squares) and in uncoated pores of different size: 20 nm (inverted open triangles), 7.5 nm
(open circles), 5 nm (open triangles), 2.5 nm (open lozenges). Open symbols denote the seg-
mental relaxation (dynamic glass transition), crossed symbols the normal mode relaxation.
The lines are fits of the VFT-equation (Eq. 6.4) to the data. In the inset the segmental relaxation
is enlarged
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Fig. 6.35. ΔTg = Tg
Diel (pore) – Tg

Diel (bulk) vs inverse pore size: filled circles – PG, filled squares
– PPG (Mw = 3000 g mol–1). Lines are guides for the eyes

Fig. 6.36. Dielectric loss ε′′ (corrected for the pore volume) vs temperature at 103 Hz for PPG
(Mw = 3000 g mol–1) in untreated and silanized pores for a pore size of 7.5 nm. Lines are guides
for the eyes



the effect of a surface treatment is much weaker than for the monomeric 
pendant.

Temperature modulated differential scanning calorimetry (TMDSC) mea-
surements were carried out to reveal the thermal relaxation at the dynamic glass
transition in addition to the dielectric experiments [51]. By the variation of the
modulation frequency (or modulation time) the temperature dependence of the
relaxation rates due to enthalpy (entropy) fluctuations can be estimated and
compared to the corresponding dielectric data (see inset Fig 6.38). Both meth-
ods are in accord with each other in the absolute value of the relaxation rates and
in the apparent activation energy.The increment of the specific heat capacity Δcp
due to the glass transition decreases strongly with decreasing pore size (see in-
set Fig. 6.39) which agrees with the dielectric measurements (compare Fig. 6.33).
Δcp vanishes at a value of about 1.8 nm (see Fig. 6.39). For smaller pores no 
glass transition takes place in the system. Therefore the estimated value can be
regarded as the minimal length scale of cooperativity for the glass transition 
of PPG.

6.3.3
Poly(dimethyl siloxane) in Nanoporous Sol-Gel Glasses

Poly(dimethyl siloxane) PDMS is compared to PPG a more fragile glass forming
system (see Chaps. 4 and 5). It has one dielectrically active relaxation process
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Fig. 6.37. Dielectric loss ε′′ (corrected for the pore volume) vs temperature at a frequency of
103 Hz for PPG (Mw = 3000 g mol–1) in the bulk (open squares) and in silanized pores of dif-
ferent sizes: 7.5 nm (open circles), 2.5 nm (open triangles). Lines are guides for the eyes
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Fig. 6.38. Relaxation rate vmax vs inverse temperature for PPG (Mw = 3000 g mol–1) in the bulk
(open squares) and in uncoated (open symbols) and coated (crossed symbols) pores of differ-
ent sizes: 7.5 nm (open circles), 2.5 nm (open lozenges). The lines are VFT-fits. The inset com-
pares the dielectric data with that obtained by TMDSC (solid symbols) for uncoated pores

Fig. 6.39. Δcp vs pore size for PPG (Mw = 2000 g mol–1) in uncoated ( filled circles) and silanized
(filled squares) pores. The lines are guides for the eyes. The inset shows the real part of the
complex heat capacity obtained by TMDSC for PPG at the indicated pore sizes. The tempera-
ture was modulated with a modulation time of 200 s and an amplitude of 0.5 K. The heating
rate was 0.25 K min–1. The specific heat cp, corr was reduced for the weight of the confined poly-
mer and the value in the glassy state. Δcp was taken at Tg for the given modulation time. Lines
are guides for the eyes
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Fig. 6.40. Dielectric loss ε′′ (corrected for the pore volume) vs frequency at T = 157.5 K for
PDMS (Mw = 1400 g mol–1) in the bulk (open squares) and in uncoated pores of different sizes:
20 nm (open circles), 7.5 nm (open triangles). The lines are guides for the eyes [55b]

Fig. 6.41. Relaxation rate νmax vs inverse temperature for PDMS (Mw = 1400 g mol–1) in the
bulk (open squares) and in uncoated pores of different sizes: 20 nm (open circles),7.5 nm (open
triangles), 5 nm (open lozenges). The dashed lines are fits of the VFT-equation (Eq. 6.4) to the
data, solid line is an Arrhenius fit. The inset shows the ratio of Δcp/Δcp,corr ( filled squares) and
Δε/Δεbulk ( filled circles) vs pore size [55b]
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which originates from segmental fluctuations corresponding to the dynamic
glass transition of the polymer. Embedded in nanoporous sol-gel glasses, PDMS
shows a much faster dynamics (Fig. 6.40) with broadened relaxation time dis-
tribution functions.

The temperature dependence of the relaxation rates (Fig. 6.41) switches from
a VFT-like dependence for pores ≥ 7.5 nm to an Arrhenius-like behaviour for
5.0-nm pores. This reflects the transition from a cooperative dynamics taking
place on a minimal length scale of about 5 nm to localised fluctuations. It is ob-
served as well in the pore size dependence of the dielectric strength and the in-
crement of the specific heat capacity (see inset in Fig. 6.41). Hence, similar to
ethylene glycol in zeolites a pronounced confinement effect is observed for
PDMS in sol-gel glasses, but on a larger length scale [55b].

6.4
Liquid Crystals in Confining Space

Liquid crystals are characterized by their ability to form mesophases in which
molecular orientational order is realised in one, two or three dimensions (see
Chap. 10). This can take place on extended macroscopic length scales up to the
micrometer range. The question of how an external geometric confinement in-
fluences order, thermodynamics and molecular mobility of liquid crystals was
studied [56] for a variety of different systems such as porous filters [57, 58], poly-
mer matrices [59], porous glasses [60, 61], silica gels, aerosils [62] and molecu-
lar sieves [63a, 63b]. Besides calorimetric and spectroscopic methods especially
NMR, light scattering and dielectric spectroscopy were employed. It is the pur-
pose of this section to exemplify the effect of geometrical confinement on the
dynamics of a nematic and a ferroelectric liquid crystalline system being em-
bedded in Anopore (Fig. 6.42 a) and Synpor (Fig. 6.42 b) membranes.

6.4.1
Nematic Liquid Crystals in Mesoporous Membranes

The dielectric properties of the nematic liquid crystal 5 CB (4-n-pentyl-4′-
cyanobiphenyl) in the bulk and confined to Anopore membranes (pore diame-
ter: 0.2 μm, 0.1 μm and 0.02 μm) were measured in the frequency range from
106 Hz to 109 Hz at temperatures between 285 K and 320 K [57, 58a,b]. In order
to modify the interaction between the liquid crystals and the inner surfaces, the
latter were treated with a 2 wt% solution of decanoic acid (C9H19COOH) in
methanol. The acid head group binds chemically to the surface and the aliphatic
chains form a compact array perpendicular to the inner surfaces. By that, a
homeotropic orientation of the director at the wall is induced, leading to three
basic types of nematic director field configuration, i.e. the planar-radial, planar-
polar and escaped radial.

For a study of the orientational order of the director field dielectric spectra of
5 CB in the bulk and adsorbed to treated and untreated Anopore membranes
were measured (Fig. 6.43). In the isotropic phase one relaxation process is ob-



served while in the nematic phase two relaxation processes occur: the first is
connected with hindered rotation of the molecules around their short molecular
axis (“δ-relaxation”) and the second is assigned to a tumbling libration (“tum-
bling mode”) with small angular excursion around the short molecular axis. The
dielectric strength of the δ-relaxation is comparable to the static dielectric
anisotropy of 5 CB, the dielectric strength of the second process is one order of
magnitude lower than the first one.

In the confined mesophase, the nematic director is aligned perfectly parallel
to the pore walls of the membrane (axial configuration). The fast process is
weakened in the dielectric spectra of the axially confined sample. In this config-
uration mainly the process connected with flips of the molecules around their
short axis (δ-relaxation) is effective. However, in Anopore membranes chemi-
cally modified with decanoic acid, the slow process is weakened. This indicates
that the nematic director inside the treated membranes is oriented nearly per-
pendicular to the axis of the channels (planar-polar or planar-radial configura-
tion).
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Fig. 6.42. Scanning electron
microscope images of:
a an Anopore membrane
with pore diameter 0.2 μm;
b a nitro-cellulose mem-
brane Synpor with mean
pore diameter 0.60 μm.
Taken from [69] with per-
mission
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Fig. 6.43. Dielectric loss ε′′ vs frequency for 5 CB in the bulk (filled circles) and in untreated
(open circles) and treated (filled squares) Anopore membranes at 297 K. The solid line is a su-
perposition of two Havriliak-Negami fits,being assigned to the δ-relaxation (---) and the tum-
bling mode (–––). In the confined system either the δ-relaxation (untreated pores) or the tum-
bling mode (treated pores) prevails

Fig. 6.44. Activation plot: relaxation rate vs inverse temperature for 5 CB in the bulk and con-
fined to untreated and treated Anopore membranes of different diameters as indicated



The activation plot (Fig. 6.44) shows that in the isotropic phase the bulk and
the confined sample have nearly identical relaxation rates. At the phase transi-
tion I/N in the bulk sample two well separated relaxation modes occur, the δ-re-
laxation and the tumbling mode. In contrast, in the confined system one process
prevails, for untreated samples the δ-relaxation while in the surface treated ma-
trix the tumbling mode dominates being by two orders of magnitude faster. For
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Fig. 6.45. Dielectric strength for the data shown in Fig. 6.44: a untreated Anopore membranes.
In the inset the dielectric strength of the δ-relaxation in the confined system is normalised with
respect to the dielectric strength in the bulk close to the phase transition I/N; b treated Anopore
membranes. Inset: normalised dielectric strength of the δ-relaxation, analogously to a



the latter strong pretransitional effects are observed and the phase transition 
is smeared out. The effect of the channel dimensions on the relaxation rate is
negligible.

The dielectric strength of the δ-relaxation of the axially confined 5 CB in the
(untreated) Anopore membranes (Fig. 6.45a) is one order of magnitude lower
than in the bulk and it decreases with smaller channel dimensions. The main in-
fluence comes from the different amounts of liquid crystal inside the pores
which prevent a comparison of the absolute values of the dielectric losses mea-
sured in the different samples. In the isotropic phase the ratio of dielectric
strength of different samples should depend on the filling factor only.Assuming
the latter to be independent of temperature, it is possible to scale the absolute
data (inset in Fig.6.45a). It proves that the dielectric strength in the confined sys-
tem decreases with decreasing channel diameter. This is caused by the growing
fraction of molecules being immobilised by interactions with the solid inner
surfaces.At the phase transition I/N the dielectric strength increases. This effect
is less pronounced for the small channel diameters.

The dielectric strength of the tumbling mode in treated Anopore membranes
(Fig. 6.45b) decreases at the phase transition I/N. This might be due to a slight es-
cape of the director field towards an axial orientation in the centre of the Anopore
channels, although a low frequency contribution from configuration in the pore
centres (director along the electric field direction) is not resolvable in the dielec-
tric spectra. It fits that for the smallest channel diameter of 0.02 μm the change in
the dielectric strength is weakest. The rescaled dielectric strengths prove that in
the surface treated channels the amount of immobilised LC molecules is smaller
compared to the untreated Anopore membranes (inset in Fig. 6.45b).

The orientation of the nematic molecules inside the treated and untreated
Anopore membrane allows for separate measurements of the dielectric disper-
sion of the real parts of ε⎢⎢ resp. ε⊥ of the permittivity tensor (parallel resp. per-
pendicular to the director) in 5 CB. If a simple ansatz of rotational diffusion in a
cosine potential V = V0 cos(ϑ) is assumed, where ϑ is the angle between direc-
tor and molecular long axis (roughly the direction of the dipolar moment of
5 CB), one can estimate the ratio between the dynamics of the fast process (in
the potential minimum) and the slow process (crossing of the potential barrier).
τslow /τfast = I 2

0 (V0/kBT) decreases with the square of the modified Bessel function
of order zero. The corresponding values for V0 which yield the experimental ra-
tios are 2.44 kBT at the high temperature the end (τslow /τfast = 0.1) and 4.0 kBT at
the low temperature end (τslow /τfast = 0.08). In the Maier-Saupe theory one would
expect order parameters of 0.638 and 0.793, respectively, with these values for
the mean field potentials. Compared to order parameters from other experi-
ments [64–66], the potential barriers estimated from the relaxation time ratios
are slightly too high but, in view of the rough estimates, in a reasonable order of
magnitude. Moreover, in the polar liquid crystal 5 CB, short range dipolar an-
tiparallel ordering may be responsible for a deviation from Maier-Saupe mean
field predictions. For further details see [57].

In the cellulose nitrate membrane (Synpor) the cavity surfaces are distributed
randomly (Fig. 6.42b). The nematic director is aligned at the inner surfaces and
hence oriented isotropically [67]. Considering the results obtained for Anopore
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membranes two relaxation processes, the δ-relaxation and the tumbling mode
have to be expected (Fig. 6.46).

Compared to the bulk the δ-relaxation is strongly reduced in the confining
system. This is not surprising because in the bulk phase the liquid crystalline
material is oriented rather perpendicular to the electrode planes. Hence the an-
gle between the director and the field axis is close to zero. In that geometry the
reorientation of the 5 CB molecules about their short axes, the δ-relaxation, is di-
electrically observable. The relaxation rates are nearly independent of the pore
diameters (Fig. 6.47a). The temperature dependence is Arrhenius-like in both
phases except in the vicinity of the phase transition. The activation energy in the
isotropic phase is 37 kJ mol–1. In the nematic phase it is 67 kJ mol–1 for the δ-re-
laxation and 23 kJ mol–1 for the tumbling mode. The dielectric strength of 5 CB
in the Synpor membranes is in the isotropic phase smaller compared to the bulk
due to immobilised molecules (Fig. 6.47b). In the nematic phase the situation is
more complex: While the δ-relaxation is weakened the tumbling mode becomes
stronger in the confinement. This shows up nicely if the dielectric strength is
normalised analogously as in Fig. 6.45 and evidences that the geometry of the
porous material determines the orientational order of the confined molecules
while it leaves – at least at that level of constraint – phase transitions, order pa-
rameters and relaxation rates unchanged.
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Fig. 6.46. Dielectric loss ε′′ vs frequency for 5 CB in the bulk and in untreated Synpor mem-
branes of 0.85 μm mean diameter. The solid line is a superposition of two Havriliak-Negami
relaxation processes being assigned to the δ-relaxation (---) and the tumbling mode (–––). In
the confined system both relaxation processes are observable as well, but the δ-relaxation with
decreased dielectric strength



6.4.2
Ferroelectric Liquid Crystals in Mesoporous Membranes

In ferroelectric liquid crystals collective relaxation processes (Goldstone- and
soft mode) exist besides the molecular fluctuations (see Chap. 10). The question
arises of how especially the former are influenced by a spatial confinement.

The comparison (Fig. 6.48) shows for the example of the chiral liquid crystal
4-octyloxy-4-(2-methylbutyloxy)-carbonyl-phenylbenzoate a strong effect [68]:
in the bulk sample (Fig. 6.48a) in the smectic SmC* phase the Goldstone mode is

216 6 Molecular Dynamics in Confining Space

Fig. 6.47. a Activation plot: relaxation rate vs inverse temperature for 5 CB in the bulk and con-
fined to untreated Synpor membranes of diameters as indicated. b Dielectric strength vs in-
verse temperature for the data shown in a
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Fig. 6.48. Three-dimen-
sional representation of the
temperature and frequency
dependence of the dielectric
loss ε′′ for: a the bulk ferro-
electric liquid crystal; b the
ferroelectric liquid crystal
embedded in untreated
Anopore membranes of
0.2 μm diameter; c the fer-
roelectric liquid crystal em-
bedded in untreated Synpor
membranes with pore di-
ameters between 0.23 and
0.85 μm



observed. It is a strong dielectric loss process being assigned to the fluctuations
of the phase of the helical superstructure (phason). In the (non-ferroelectric)
smectic SmA phase this collective process no longer exists and only the δ-relax-
ation remains below 107 Hz. In the high frequency regime a further molecular
fluctuation takes place, the β-relaxation corresponding to librations around the
long molecular axis. At the transition to the isotropic (I) phase the δ- and β-re-
laxations merge. In the crystalline state both the molecular and the collective dy-
namics are blocked. In the FLC/Anopore system (Fig. 6.48b) the overall dielec-
tric dynamics is one order of magnitude weaker. The Goldstone mode is not ob-
served; instead as molecular fluctuations the δ- and β-relaxations become mea-
surable. The former has – compared to the bulk system – an increased dielectric
strength. This is caused – analogously to the nematic LC/Anopore system – by
the aligning effect of the Anopore channels. In the SmC* phase the ferroelectric
helix exists in the cylindrical channels and is parallel to its axis. Hence, the ob-
servation of the Goldstone mode is prevented by the orientation of the FLC in
the Anopore membrane. In the FLC/Synpor system (Fig. 6.48c) no collective
fluctuations are observed as well and only the δ- and β-relaxations exist,with the
exception that at the phase transition SmC*/SmA indications for a soft mode
contribution can be found in a discontinuous change of the relaxation rate
(Fig. 6.49). Unfortunately, the overall conductivity in the FLC/Synpor membrane
is by two order of magnitude higher than in the FLC/Anopore system (presum-
ably caused by spurious ionic impurities of the Synpor matrix). This prevents a
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Fig. 6.49. Activation plot: relaxation rate vs inverse temperature for the bulk FLC (solid sym-
bols), the FLC in untreated Anopore membranes of 0.2 μm diameter (open symbols) and the
FLC in untreated Synpor membranes with 0.4 μm diameter (crossed symbols). The transition
temperature from SmA to SmC* phase is shifted by about 4 K compared to the bulk FLC



more detailed analysis. In the FLC/Synpor system no Goldstone mode is ob-
served. This is explained – in contrast to the FLC/Anopore system – as a direct
effect of the random geometrical confinement, which inhibits the formation of
a helical superstructure. The size of the inner cavities is comparable to the pitch
length. Hence the irregular cavity boundaries (Fig. 6.42b) create defects in the
director or layer structures and pin the director orientation. In Figs. 6.49 and
6.50 the relaxation rates resp. the dielectric strengths are compared for the sys-
tems shown in Fig. 6.48a–c.

The collective and molecular dynamics of FLC in confining space is the result
of a detailed balance in the host/guest interactions. For the long pitch material
DOBAMBC (2-methylbutyl-4-(4-decyloxybenzylideneamino)-cinnamate) nei-
ther in Anopore nor in Synpor membranes a Goldstone mode could be ob-
served. In contrast, for the low pitch material C 7 (4-(3-methyl-2-chloropen-
tanoyloxy)-4′-heptyloxybiphenyl) a phason fluctuation was observed in Synpor
membranes but with considerably reduced dielectric strength [69]. In the sys-
tem C 7/Anopore an additional process attributed to the flexoelectric polarisa-
tion was observed [70].
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Fig. 6.50. Dielectric strength
vs inverse temperature for
the data shown in Fig. 6.48.
FLC bulk: Goldstone mode
(GM) (filled triangles),
β-relaxation (filled circles),
δ-relaxation (inverted filled
triangles); FLC in Anopore
(0.2 μm): β-relaxation (in-
verted open triangles), δ-re-
laxation (open circles); FLC
in Synpor (0.4 μm): β-relax-
ation (asterisks), δ-relax-
ation (crosses), soft mode
(plus signs)



6.5
Conclusions

Broadband dielectric spectroscopy enables one to unravel in detail the counter-
balance between surface- and confinement effects determining the molecular
dynamics in confining space. This is exemplified for a variety of different
host/guest systems:
1. Ethylene glycol (EG) in zeolitic host systems shows a pronounced confine-

ment effect. Beyond a threshold channel size, the liquid character is lost as in-
dicated by a dramatically increased relaxation rate and an Arrhenius-like
temperature dependence. Computer simulations of the molecular arrange-
ment in a confining space prove that an ensemble as small as six molecules is
sufficient to exhibit the dynamics of a bulk liquid.

2. Propylene-, butylene- and pentylene glycol (PG, BG, PeG) in nanoporous sol-
gel glasses show for (untreated) hydrophilic inner surfaces a surface effect
which can be fully removed by making the boundary layer between the guest
molecules and the solid host system hydrophobic. From an analysis of the re-
laxation time distribution a quantitative three layer model can be deduced
with immobilised, interfacial and bulk like molecules.

3. The quasi-van der Waals liquid salol shows in (untreated) hydrophilic sol-gel
glasses a dynamics which must be interpreted in terms of a two-state model
with exchange between a bulk-like phase in the pore volume and an interfa-
cial phase close to the pore wall. This enables one to analyse the interplay be-
tween the molecular dynamics in the two subsystems, and hence their growth
and decline in dependence on temperature and strength of the molecular in-
teractions. Analogously to system 2 the surface induced relaxation process
can be fully removed by silanization of the walls of the solid host system.
Under these conditions a confinement effect for the dynamics of the embed-
ded salol molecules is observed. It is proven by calorimetric studies as well.
A refined analysis (Figs. 6.25 and 6.26) enables one to estimate the size of
cooperatively rearranging domains and its temperature dependence.

4. Cationic host-guest polymerisation enables the synthesis of poly (isobutyl
vinylether) in nanoporous channels of MCMs with different topology. In full
accord with the results for low molecular weight systems the interplay be-
tween confinement and surface-effects is observed.

5. Poly(propylene glycol) PPG is a type-A polymer which has two dielectrically
active relaxation processes, a segmental mode (dynamic glass transition) cor-
responding to fluctuations of a few polymer segments and a normal mode
fluctuation of the end to end vector. In the confinement of nanoporous sol-gel
glasses both relaxation processes behave differently: while the normal mode
slows down with decreasing pore size, the segmental mode shows a non-mo-
notonous dependence on the pore diameter – in contrast to the monomeric
Propylene glycol (PG). This is attributed to the subtle interplay between sur-
face and confinement effects mediated by the formation of H-bonds with the
solid walls.

6. Comparing the dielectric data with measurements obtained by Temperature
Modulated Differential Scanning Calorimetry (TMDSC) delivers similar re-
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sults for the relaxation rates. From the pore size dependence of the increment
of the specific heat capacity the minimal length scale of cooperativity of the
dynamic glass transition is obtained. It has for PPG a value of about 1.8 nm.

7. For poly(dimethyl siloxane) a confinement effect is observed where – with
decreasing pore size (pore sizes ≥7.5 nm) – the VFT-dependence changes into
an Arrhenius-like behaviour at pores of 5 nm. Exactly at this transition the in-
crement of the heat capacity vanishes delivering a value of 5 nm as minimal
length scale of cooperativity for PDMS.

8. The liquid crystal 4-n-pentyl-4′-cyanobiphenyl (5 CB) has two dielectrically
active relaxation processes in the nematic phase: (i) a δ-relaxation, cor-
responding to flips of the mesogene and (ii) a “tumbling mode” being
assigned to librations around the short molecular axis. Under the confine-
ment of ordered cylindrical channels of Anopore membranes, the nematic
director is aligned axially or radially depending upon their surface prepa-
ration (untreated resp. treated with decanoic acid). Consequently it is possi-
ble to study each of the two relaxation processes separately by appropriate
surface treatment of the pores. The frequencies of both processes are found
to be unchanged with respect to the bulk phase with the exception of the
region of the phase transition isotropic/nematic which becomes smeared
out with increasing confinement. In the randomly disordered cellulose
nitrate membrane Synpor 5 CB exhibits – as expected – both relaxation
processes.

9. Chiral liquid crystals have collective modes besides molecular relaxations.
They correspond to fluctuations of the phase and amplitude of the helical su-
perstructure (Goldstone – and soft mode). Under conditions of confinement
(Anopore or Synpor membranes) the latter are suppressed while the former
(β-relaxation, δ-relaxation) are influenced weakly only.
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List of Abbreviations and Symbols

a Constant
A Constant
cij Jump rate between substems i and j
D Fragility parameter
f Volume filler factor
L(τ) Relaxation time distribution function
pi Polarisation in a subsystem
s Constant
T0 Vogel temperature
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ε *, ε′, ε′′ Complex dielectric function, real and imaginary part
ε0 Dielectric permittivity of vacuum (ε0 = 8.854 × 10–12 AsV–1m–1)

εs, ε∞

Δε Dielectric strength
ν Frequency, relaxation rate
νmax Relaxation rate of maximum dielectric loss
σ *,σ′,σ′′ Complex conductivity, real and imaginary part
σ0 Direct current (d.c.) conductivity
τ Relaxation time
τmax relaxation time a maximum dielectric loss
ω Angular frequency

BG Butylene glycol
C 7 Liquid crystal (4-(3-methyl-2-chloropentanoyloxy)-4′-heptyloxy-

biphenyl)
5 CB Liquid crystal (4-n-pentyl-4′-cyanobiphenyl)
Cr Crystalline
d.c. Direct Current
DSC Differential Scanning Calorimetry
EG Ethylene glycol
FLC Ferroelectric Liquid Crystals
GM Goldstone mode
HN Havriliak Negami
I Isotropic
LC Liquid Crystals
MCM Mesoporous material (“Mobil Composition of Matter”)
N Nematic
PeG Pentylene glycol
PDMS Poly(dimethyl siloxane)
PG Propylene glycol
PIBVE Poly(isobutyl vinylether)
PPG Poly(propylene glycol)
TMDS Temperature modulation differential scanning calorimetry
SmA Smectic A
SmC* Smectic C*

VFT Vogel-Fulcher-Tammann (see Eq. 6.4)
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70. Różański SA, Stannarius R, Kremer F (2001) XIV Conference on Liquid Crystals, 3–7

September 2001, Zakopane, Poland, Abstract p A28

224 6 Molecular Dynamics in Confining Space



7 Molecular Dynamics in Polymer Model Systems

A. Schönhals

7.1
Introduction

It has been proven (see for instance [1–11]) that dielectric spectroscopy is a use-
ful tool to study the molecular dynamics of polymers. This is due to the fact that
a broad dynamical range from the milli- to the Giga-Hertz region can be covered
by this method in its modern form (see Chap. 2). Therefore motional processes
which take place for polymeric systems on extremely different time scales can be
investigated in a broad frequency and temperature range. Moreover the mo-
tional processes depend on the morphology and micromorphology of the sys-
tem under investigation. Therefore information on the structural state of the
material can be indirectly extracted by taking the molecular mobility as a probe
for the structure.

Polymeric materials are rather complex systems. For an isolated macromole-
cule a large number (typically hundreds to millions) of atoms are covalently
bonded and therefore macromolecular chains can have an even larger (almost
unlimited) number of conformations in space and time. Most of the polymer
properties like chain flexibility, the mean-square end-to-end vector of the chain
or the mean-square dipole moment are due to this large number of conforma-
tions. Using methods of statistical mechanics, the Rotational Isomeric State
(RIS)-model – mainly developed by Flory [12, 13], awarded with the Nobel Prize
in chemistry in 1974- is able to predict equilibrium conformational properties
of macromolecular chains.

Related to the huge number of conformations the behaviour and the proper-
ties of macromolecules in solutions and in the undiluted state are complex. For
instance in the bulk a polymeric system can behave as a solid, as a rubbery (vis-
coelastic) material which is highly deformable or as a melt1 in dependence on
temperature.This is demonstrated in Fig.7.1 where the temperature dependence
of the shear modulus is sketched for an amorphous polymer. At low tempera-
tures the system behaves like a glassy solid where the shear modulus is in the or-
der of magnitude of 109 Pa s. At the glass transition the shear modulus drops
down by three orders of magnitude and the system has viscoelastic properties.
From this step-like change the glass transition temperature Tg can be estimated
which corresponds to the value measured by calorimetry.At still higher temper-

1 This is only true if the macromolecules are not crosslinked.



atures the chains have a further more increased mobility and the systems flows
like an ordinary liquid, i.e. the shear modulus is approximately zero.

The morphology of macromolecular materials in the bulk can be amorphous
(no long-range order), liquid crystalline (see for instance Chap. 10) or semicrys-
talline. The type of observed morphology depends on the chemical composition
of the chain.

As was discussed above, a large number of properties of polymers depends on
the molecular weight. However, there are also some properties which become in-
dependent of molecular weight if its value is sufficiently high. Effects related to
chain ends become less important for longer chains or topological interactions
(entanglements) are different for long and short chains. A measure for this mol-
ecular weight threshold is the critical molecular weight MC which is in the order
of 104 g mol–1 for most flexible polymers.

One has to keep in mind that depending on the synthesis of polymers the
molecular weight has a distribution which will additionally influence the prop-
erties of macromolecules to some extent. Choosing different routes of synthesis
means that distribution can be broader or narrower. In most cases the influence
of this distribution is omitted here for sake of brevity2.
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Fig. 7.1. Schematic temperature dependence of the shear modulus for an amorphous polymer

2 For a discussion of the molecular weight distribution, its characterization and similar ef-
fects like branching the reader is referred to textbooks of macromolecular science like [275].
Besides the distribution of molecular weight linear chain structures can also have some un-
wanted defects like branches due to chemical reaction.



In addition to linear chains macromolecular systems can be synthesized in a
wide variety of molecular architectures like comb-like and branched structures,
stars (also with chemically different arms),cycles, copolymers (statistical-,di- or
multiblock copolymers), physically or chemically bonded networks, hyper-
branched polymers or dendrimers [16]. These novel molecular architectures
cause new morphologies like liquid-crystalline phases, phase or microphase
separated structures. Some of this new architecture and its dielectric properties
will be discussed at the end of this chapter.

7.2 Theoretical Considerations

In this section some basic theoretical concepts and ideas to describe polymers
are introduced to discuss the dielectric properties of macromolecular systems
from a general point of view.

7.2.1
Conformations of Polymeric Chains

Besides the molecular weight M of a macromolecule, its spatial dimension char-
acterized for instance by the end-to-end vector r is one of the most important
quantity. The definition of r for an idealized chain gives Fig. 7.2. Due to molecu-
lar motions r fluctuates and its mean quadratic value 〈r · r〉 = 〈r2〉 has to be con-
sidered where the brackets indicate the ensemble (or time) average.

To calculate 〈r2〉 one has to decide between stiff, rod like and flexible chain
structures. The following discussion will focus on the latter one. For an idealized
chain (see Fig. 7.2)
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Fig. 7.2. Model for an ideal-
ized flexible chain molecule.
Ai represent the centers of
gravity of the monomeric
units and li the bonds. The
end-to-end vector r of the
chain is defined by the vec-
tor between A0 and AN–1



holds where l measures the length of a bond and N counts its numbers (N~M).
The simplest model for an isolated macromolecule is that of a freely joined
chain. Two assumptions are made: (i) the bonds can cross each other and (ii) no
correlation exists between different bonds (〈li · lj〉 = l2δij, δij – Kronnecker sym-
bol). With these assumptions Eq. (7.1) simplifies to

(7.2)

From a mathematical point of view this corresponds to a random walk [15]
(Gaussian statistics) and such a chain is called a Gaussian one.

For a real chain neither the rotational angle φ around each bond nor the va-
lence (bond) angle γ (θ = 180° – γ) can be regarded as free (for definitions see
Fig. 7.3a). These effects lead to a greater stiffness of the chain which can be ex-
pressed by

(7.3)

where C∞ is the characteristic ratio 3. It measures the flexibility of a chain struc-
ture in comparison to the freely joined chain model. One extension of the freely
joined chain model is the free rotational one where the bond angle θ is fixed
while the rotational angle φ is regarded as free. For the tetrahedral bond angle 
(θ = 70.53°) C∞ = 2 is estimated. More refined calculations of conformational
properties can be carried out in the frame work of the RIS-model [12, 13, 16]. In
this approach the large number of conformations of two consecutive bonds is
modelled by a limited small number of discrete ones having statistical weights
σi according to σi = exp (–Eαβ /kBT). Eαβ is the conformational energy of the ro-
tational state β of the bond i provided that the bond i –1 is in the state α (see
Fig. 7.3b). Usually these states are called gauche(–), trans and gauche(+).
Defining a transfer matrix T̃i by

(7.4)

a bond li–1 can be transformed to the bond li by li = T̃i lT
i–1 where lT

i denotes the
transpose vector to li . Using this technique in combination with averaging pro-
cedures the statistical properties of a chain- for instance realistic values of C∞ for
real chains – can be calculated [12, 13, 17].

The bonds of real chains cannot cross each other. This leads to additional in-
teractions of chain segments which are distant along the chain but can become
close in space (long range repulsive interactions, excluded volume effect [12,
15]) which can cause an expansion of the coil. The model of a random walk
(where the path can be crossed, see Eq. (7.2)) has to be replaced by a self-avoid-
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3 For sufficiently long chains C∞ is independent of the chain length [12].
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Fig. 7.3. Atomistic model for a polymeric chain: a definition of the bond angle φ and the va-
lence angle θ ; b rotational potential for n-butane to explain the basics of the RIS model for a
polymer chain. The minima in the potential are due to the discrete isomeric rotational states
called gauche (–)-, trans- and gauche(+)-conformation



ing random walk [15]. This corresponds to a polymeric chain in a good sol-
vent where due to the solvent-polymer interaction the coil is expanded. One 
obtains

(7.5)

For the scaling exponent νCoil a value of νCoil = 3/5 is found. This value can also
be calculated in the framework of a simple scaling model [12, 15]. For bad sol-
vents the coil collapses which leads to νCoil < 0.5. For νCoil = νθ = 0.5 (see Eq. 7.2)
the excluded volume effect (repulsive interaction) and the attractive interaction
compensate each other. The chain dimensions 〈r2〉Θ are then called “undis-
turbed” (θ-condition) [12, 15]. A change of the chain dimensions with the sol-
vent quality can be described by the expansion factor

(7.6)

Also for a polymer chain in an undiluted melt or in the amorphous glassy state
νCoil = 0.5 was found (see for instance [18]) which can be explained by screening
arguments [15].

To consider the conformational properties of stiff or rod-like chain structures
the concept of the persistence length is used leading to the model of worm like
chains [19] which is not discussed further in this chapter.

7.2.2
Dipole Moments of Polymeric Chains

According to Chap. 1 the dielectric properties of a polymeric chain depend on
the polarization P which is the dipole density in a unit volume V

(7.7)

where �i is the dipole moment of the repeating unit i. In more detail, the mean
square dipole moment

(7.8)

has to be considered. The first part of Eq. (7.8) denotes the self correlation of the
dipole moment of a repeating unit whereas the second part represents the cross
correlations of dipoles between different repeating units.

In contrast to low molecular weight molecules, where the dipole moment can
be well represented by a rigid vector [20], for long chain molecules there are dif-
ferent possibilities for the orientation of a molecular dipole vector with respect
to the polymer backbone (see Fig. 7.4). According to Stockmayer [21], macro-
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molecules with molecular dipoles fixed parallel to the backbone are called Type-
A polymers. For the dipole moment PA of the whole chain one gets

(7.9a)

where r is the end-to-end vector of the chain and μp is the component of the di-
pole moment of the repeating unit parallel to the chain contour. For the mean
square value

(7.9b)

is obtained. For Type-B polymers the dipole moment is rigidly attached per-
pendicular to the chain skeleton. Therefore for the dipole moment PB of a type
B polymer

(7.10)

holds. There is no correlation between the dipole moment and the chain contour
(no long range correlations of the dipole moments of different repeating units).
Most of the synthetic macromolecules are of Type-B. The fluctuation of the di-
pole moment of Type-B polymers are due to conformational transitions which
are related to segmental mobility. Although there is no polymer which is solely
of Type-A there are several examples of macromolecules like poly(cis-1,4-iso-
prene) [22] having components of the dipole moment parallel and perpendicu-

〈 〉P rB ⋅ = 0

〈 〉 〈 〉P rA p
2 2 2= μ

P rA p= μ
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Fig. 7.4. The different geometric possibilities for the location of molecular dipoles with re-
spect to the polymer chain. Examples: Type-A – poly(cis-1,4-isoprene); Type-B – poly(vinyl
chloride); Type-C – poly(methyl methacrylate)

〈PA r〉 = μP 〈r2〉 〈PB r〉 = 0 〈PC r〉 = 0



lar to the chain. These polymers are also called Type-A- or Type-AB polymers
[7].Various classifications of Type A and Type AB polymers are discussed in de-
tail by Adachi and Kotaka [7].

Chain molecules having the dipoles in a more or less flexible side chain like
the poly(n-alkyl methacrylate)s are called to be of Type-C4. Also in that case the
classification is not straightforward. If the side group can rotate on a shorter
time scale than the segmental dynamics one the macromolecule is classified as
Type-C polymer. In the opposite case it should be regarded as a structure of
Type-B [8].

In the following only Type-B polymers will be considered. Equation (7.8) can
be rewritten as

(7.11)

where θij is angle between bonds i and j. |� | = m denotes the norm of the dipole
moment perpendicular to the chain. For the freely joined chain model 〈cos θ ij〉
= 0 holds. For real chain structures this is of course not the case. Short range in-
tramolecular correlations contribute to the mean square dipole moment de-
scribed by the intramolecular dipolar correlation coefficient gintra defined as 5

(7.12)

It should be noted that the dipolar correlation coefficient is in fact the
Kirkwood/Fröhlich correlation factor for an isolated chain (see Chap. 1). For a
freely joined chain gintra = 1 holds. Therefore gintra is a measure for the correla-
tions between dipole moments of neighboured repeating units. Calculations of
gintra were started by Debye and Bueche [24]. More detailed estimations can be
done in the framework of the RIS-model [12, 13]. Using the technique of trans-
fer matrix one can write

(7.13)

Since the statistical weights are known in the RIS-model average values can be
calculated. Detailed considerations and calculations for different chain struc-
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4 It should be noted that a dipole in a side chain usually implies both a dipole component that
contributes to the polarization by main chain reorientations and a component whose reori-
entation is due to local side chain motions [23].

5 It was assumed that all dipole moments have the same value.



tures (including main chain and side group polymers) have been summarized
by Riande and Saiz [8].

For rod like polymers like poly(n-alkyl isocyanate)s or poly(γ-benzyl-L-gluta-
mate) which can also form suprastructures like helices,due to intramolecular cor-
relations the dipole moment adds up to give giant values (see for instance [23]).

7.2.3
Motional Processes in Isolated Chains

As it was discussed in detail in Chap. 1 the dielectric relaxation behaviour is due
to the time dependent dipole-dipole correlation function Fμ(t) which may be
written as

(7.14)

The first part corresponds to the self correlation function and the second to con-
tributions of cross correlation terms.

Macromolecules are complicated many-body systems and so the analytic cal-
culation of Fμ(t) is impossible even for an isolated chain with a simple struc-
ture. However, for polymeric systems motional processes which lead to dipole
fluctuations take place at very different length and time scales. Such motional
processes can be localized fluctuations within a backbone segment or local ro-
tational fluctuations of a short side chain. On a larger spatial and longer time
scale the so called segmental motion becomes relevant. At a more extended
length scale the translatorial motion of the whole chain characterized by the
end-to-end vector takes place. Therefore the fluctuation of the net dipole mo-
ment given by Eq. (7.8) can be due to different motional processes which give
rise to distinct parts in the decay of Φμ(t). In a first rough approximation one
can consider the processes as statistically independent which leads to Fμ =
FLocal + FS + FCh. FLocal is the part of Fμ due to localized motions, FS is due to
the segmental motion and ΦCh is the part of the correlation function related to
global chain dynamics. For each of these motional processes models have been
developed taking into consideration their specific peculiarities. For local mo-
tional processes often transitions in a double minimum potential have been as-
sumed (see Chap. 1). For the segmental as well as for the chain motion the situ-
ation is more complex. Models for these two motional processes will be dis-
cussed in the next two sections.

7.2.3.1
Segmental Motion

The segmental motion in an isolated macromolecular chain is related to confor-
mational changes. The RIS-model relates these transitions to a limited number
of energetically favoured states. As discussed these transitions are not indepen-
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dent from each other and many degrees of freedom are involved in such a
process. One suggestion to understand this type of motion is based on corre-
lated transitions of a limited number of segments assuming that the first and the
last of the involved segments are in the same state at the beginning and at the
end of the correlated transitions. Examples for such models are the Shatzki
crankshaft [25] or the Three-Bond-Motion developed by Monnerie and cowork-
ers [26]. A critical discussion of these models can be found in [27]. The current
understanding of the segmental motion in isolated chains is based on ideas of
Helfand et al. [27] and Skolnik and Yaris [28]. They describe the segmental mo-
tion as a damped diffusion of conformational states along the chain. The idea is
as follows. A conformational transition can occur spontaneously and isolated.
Such a conformational change disturbs the bond length and also the angles.
Therefore the probability that a neighboured segment will also undergo a con-
formational transition is enhanced. So a given conformational change seems to
diffuses along the chain. Because only the probability for a conformational
change is enhanced not every transition of one segment will lead to a transition
of the neighboured one. Therefore the diffusion of conformational states along
the chain is damped.

In an idealized model with conformational states “0” and “1” the probability P̃
that a segment marked by the coordinate x is in state “1”at the time t is modelled by

(7.15)

where τ0 is a time constant describing that a conformational state disappears by
direct coupling with the heat bath. DCon is a formal diffusion coefficient of con-
formational states along the chain which can be calculated using the transition
probabilities given by the RIS-model [12]. It can be written as DCon = const/τ1.
τ1 is a further time constant for the diffusion of conformational states. By aver-
aging over all coordinates the correlation function for segmental dynamics can
be calculated as

(7.16)

where I0 is the Bessel function of 0-th order [34]. For short and long times power
laws FS(t) ~ t–0.5 (for t � τ1) and FS(t) ~ t –1 (for t � τ1) hold respectively. The ex-
ponent 0.5 is characteristic for the diffusive character of the process.

The discussed model for the local chain dynamics (segmental dynamics) is in
agreement with both experimental results (see for instance [30–33]) and com-
puter simulations [34]. A more recent discussion about this model can be found
in [35].

7.2.3.2
Chain Motion

The simplest model to describe the chain motion is the bead-spring model pio-
neered by Rouse [36] (Fig. 7.5). In this approach a macromolecule is modelled
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as a chain formed by beads connected by springs taking into account both con-
nectivity and entropic forces. The stochastic motion of this system is consid-
ered in an environment characterized by a “solvent” viscosity ηS which can also
be expressed by the friction coefficient per bead (monomeric friction coeffi-
cient ζ) [37].

The global motion of the chain described by the time correlation function
FCh of the end-to-end vector r [7, 36, 37] is calculated to

(7.17)

where τp is the relaxation time of the mode p. The Rouse model (free draining
model) gives

(7.18)

where N is the number of beads and b describes the average distance between
the beads (Kuhns segment length [37]).

Zimm extended the Rouse model to include hydrodynamic interaction (non-
draining model) [38]. The functional shape of FCh(t) (Eq. (7.17)) is maintained
but the relaxation times have to be changed to

(7.19)

where λp is the p-th eigenvalue (λ1 = 4.04, λ2 = 24.2, λ3 = 53.5 … [38]) of the di-
agonalization matrix. For Type-A polymers the fluctuation of r leads to a fluc-
tuation of the corresponding dipole moment (see Eq. 7.9b) and so the global
chain dynamics can be detected by dielectric spectroscopy and is called in this
case normal mode relaxation.
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Fig. 7.5. Schematic illustra-
tion of the Rouse model.
Ai denotes the beads, kB is
Boltzmann’s constant and 
fi are the stochastic forces



7.3
Dielectric Properties of Polymers in Solution

Compared to the high number of publications dealing with the dielectric behav-
iour of bulk polymeric systems dielectric data for solutions are rare. From a his-
torical point of view one has to quote the basic work of Stockmayer [21] and of
North [39]. Block [23] also reviews – besides other points – some aspects of di-
electric properties of polymers in solution. For Type-B polymers the relaxation
process due to the segmental motion is observed at frequencies above 1 MHz. One
reason for the limited number of data may be that equipment to measure the di-
electric properties at high frequencies routinely is available only for a short time.
Time-domain reflectometry studies dealing with aqueous solutions and solutions
of polyelectrolytes and biopolymers were presented by Mashimo [40].

7.3.1
Dilute Solutions

7.3.1.1
Segmental Motion

Dielectric relaxation spectroscopy can be used to verify the models discussed in
Sect. 7.2.3.1 for segmental motions in isolated chains. Also other methods like
NMR [41] or fluorescence depolarisation [42–44] have been applied to unravel
the mechanism of segmental motion. Comparing different experimental me-
thods one has to bear in mind that dielectric spectroscopy measures quantities
related to the first Legendre polynomial Λ1

(7.20)

whereas NMR or fluorescence depolarisation are sensitive to the second
Legendre polynomial Λ2

(7.21)

(see Chap. 1). cos (θ(t)) is the projection of the dipole moment vector at time t
on its direction at t = 0.

According to the RIS-model the dielectric relaxation properties should de-
pend strongly on the barrier height for internal rotation as well as on the energy
difference between rotational isomeric states. Based on Florys ideas [12] Bahar
and Erman developed a time-dependent RIS theory [45]. The temperature de-
pendence of the segmental relaxation time τS should be described by the
Kramers theory [46] in the high friction limit which leads to [47]

(7.22)

where ηS is the solvent viscosity and EA is the barrier height.

τ ηS S
A

B

E
k T

~ exp
⎡
⎣⎢

⎤
⎦⎥

FS t t
t

( ) ( )
cos ( )= = −Λ2

23 1
2

〈 〉θ

FS t t t( ) ( ) cos ( )= =Λ1 〈 〉θ

236 7 Molecular Dynamics in Polymer Model Systems



Dielectric experiments on a variety of chain structures show [33, 48–53] that
the measured barrier heights are in the range from 5 kJ mol–1 up to 20 kJ mol–1

where most values are around 8 to10 kJ mol–1. Because the barrier height for a
rotation around a single carbon-carbon σ-bond is about 10.5 kJ mol–1 [53] these
experimental results exclude the Shatzki crankshaft [25] as a mechanism for
segmental dynamics.

The characteristic ratio C∞ is a measure of chain stiffness which is according
to the RIS model closely related to the barrier heights. Therefore a correlation
should exist between the segmental relaxation time in dilute solution τS and C∞.
This is demonstrated by the inset of Fig 7.6 where τS is plotted vs C∞. The relax-
ation time τS depends not only on the energy difference between rotational iso-
meric states but also on the shape and the bulkiness of the repeating unit.
Moreover it is believed that the segmental dynamics is the elementary process
which is responsible for the glass transition in polymeric systems. Therefore a
correlation should also exist between τS in dilute solution and the glass transi-
tion temperature Tg of the bulk system. This was reported recently by Adachi
[54]. Figure 7.6 shows this correlation for a variety of different chain structures.

Equation (7.22) predicts a proportionality between τS and ηS. This was con-
firmed by Mashimo [48]. Also the experiments using fluorescence depolarisa-
tion spectroscopy by Yamamoto et al. [44] gave the same result. In contrast
Ediger and co-workers report τS ~ ηS

0.74 [43].
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Fig. 7.6. Correlation of the segmental relaxation time τS in dilute solution and the glass tran-
sition temperature of the bulk system. The inset shows the segmental relaxation time τS vs the
characteristic ratio C∞.The lines are linear regressions through the points. The data were taken
partly from [54] and represent different chain structures



7.3.1.2
Chain Motion

Dielectric experiments on dilute solutions of Type-A polymers like poly(cis-1,4-
isoprene) or poly(ε-caprolactone) can be used to test the Rouse or the Zimm
model (see Sect. 7.2.3.2). It can be shown that the mean relaxation time τn ex-
tracted from the position of maximal dielectric loss for the chain dynamics
(normal mode relaxation) corresponds closely to the longest relaxation times τ1
of the Rouse or Zimm theory [7]. Most experiments have been carried out on
poly(cis-1,4-polyisoprene).Both good and θ-solvents have been used [7].For the
latter the data can be described by the Zimm theory [38] and τn ~ M1.5 holds ap-
proximately (see Eq. (7.19)). For thermodynamically good solvents a slightly
stronger dependence of the relaxation time on molecular weight (~ M1.77) was
found which can be explained by excluded volume effects leading to an expan-
sion of the chain dimensions. It has been known for a long time that the ex-
cluded volume effect can be involved by rewriting Eqs. (7.18) and (7.19) in terms

of the intrinsic viscosity where η is the viscosity of the polymer

solution and c its concentration. According to both the Rouse and the Zimm 
theory τn should scale according to

(7.23)

where A is constant. Equation (7.23) was fulfilled for a variety of polymer struc-
tures in different solvents as shown in Fig. 7.7. The data are taken from [54]. For
A a value of 1.4 [54] was found which is larger than the values given by both the
Rouse (A = 1.22) and the Zimm theory (A = 0.85).

7.3.2
Concentrated Solutions

7.3.2.1
Segmental Motion

The concentration dependence of the segmental motion is related to the glass
transition in dense systems. This is supported by the correlation of the relax-
ation time for segmental motion in dilute solution and the glass transition tem-
perature (see Fig. 7.6 and [54]). The dynamic glass transition or the dielectric 
α-relaxation will be discussed below (Sect. 7.4.1.2). Here it should only be men-
tioned that concepts which are used for the description of the dielectric α-re-
laxation like the free volume approach [55] are also applied to model the con-
centration dependence of the segmental motion [56, 57]. Furthermore the time-
dependent RIS model [45] has been extended taking into account intermolecu-
lar interactions [58].

Recently Adachi and coworkers report measurements on concentrated solu-
tions of poly(vinyl acetate) and poly(vinyl octanoate) [59, 60]. These measure-
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ments show that the segmental dynamics is influenced by local heterogeneities
due to concentration fluctuations. The underlying theoretical approach will be
discussed in greater detail in Sect. 7.4.3.2.

7.3.2.2
Chain Motion

In diluted polymer solutions the coils are isolated. The change from isolated
coils to overlapping ones (semi dilute solutions) is often characterized by the

overlapping concentration where NA is the Avogadro number

[15]. For approximately 10 · C* the coils will penetrate each other (concentrated
solution). Dielectric experiments on Type-A polymers [7, 61–67] agree with 
the concentration dependence of τn predicted by the Muthukumar/Freed 
theory [68] in the crossover regime between dilute and semi diluted solution
and also with a scaling theory developed by de Gennes for semi diluted solutions
[15, 69].
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Fig. 7.7. Correlation of the relaxation time τn of the normal mode process vs for dif-

ferent systems: PI – poly(cis-1,4-isoprene); PVL – poly(valerolacetone); PDCPO – poly(2,6-
dichloro-1,4-phenyle oxide); PPPN – poly(phenoxy phosphazene). Data are taken from [54]
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7.3.3
Rod-Like Systems

The relaxational behaviour of polymers with a stiff backbone in solution is dif-
ferent from that of flexible polymers because the energy barriers for segmental
transitions are essentially higher. In many cases a suprastructure like a helix is
formed which stabilizes additionally the rod-like shape of the whole macromol-
ecule. Examples for such systems are poly(n-alkyl isocyanates), poly(γ-benzyl 
L-glutamate), polypeptides and also biological systems like DNA. It should be
noted that these polymers are Type-A polymers because of the helical structure.
So the correlation function of the end-to-end vector is measured. Dielectric in-
vestigations on such systems in dilute solutions are rare. Some results can be
found for poly(n-alkyl isocyanates) [70–72], for poly(γ-benzyl L-glutamate)s
[73] and for DNA [74].

In the limit of small molecular weights rotational fluctuations of the whole
rod around its centre of mass should be the dominating motional process in di-
lute solution of stiff polymers. It was shown by Kirkwood and coworkers that the
characteristic relaxation time τRod scales with the cube of the rod length, i.e. τRod
~ M 3. Since the energy barriers for segmental transitions are not infinitely high
some flexibility is maintained which leads to deviations from the rod-like shape.
At high molecular weights (i.e., the chain length exceeds the persistence length)
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Fig. 7.8. Dependence of the relaxation time for global chain dynamics on molecular weight for
poly(hexyl isocyanate) in toluene at 289 K. Lines are linear fits through the corresponding data
points. The inset shows the dependence of the dielectric relaxation strength on molecular
weight. The line is a guide for the eyes. The data were taken from [72]



the characteristic behaviour of a coil should be recovered. This so-called rod-
coil-transition is demonstrated in Fig. 7.8 where both the relaxation time for
overall chain dynamics τRod and the corresponding dielectric relaxation
strength ΔεRod are plotted vs molecular weight for dilute solutions of poly(hexyl
isocyanate) in toluene at 289 K. The data are taken from [72]. For low molecular
weights τRod ~ M 2.6 holds where the exponent is in agreement with 3 predicted
for a rod by Kirkwood et al. [75]. For higher molecular weights the exponent de-
creases to 1.7 which is close to the value given by the Zimm theory for a coil (see
Eq. (7.19)). Also the dependence of ΔεRod on M shows a transition from a behav-
iour characteristic for a rod to a constant value which corresponds to a coil.

If the concentration of the solution is increased the molecular dynamics of
the molecules is increasingly restricted. Dielectric studies on such systems are
rare. Some results for poly(n-alkyl isocyanates) can be found in [76–78]. For
even higher concentration rod like polymers can form lyotropic liquid crys-
talline materials which can be also biphasic. A detailed discussion of such sys-
tems is beyond the scope of this chapter. For further information see [79].

7.4
Dielectric Properties of Polymeric Systems in the Bulk State

In the following section the essential properties of bulk polymer systems will be
discussed from a fundamental point of view. This regards first of all amorphous
and semicrystalline systems. Some features of polymer blends are discussed
briefly.The dielectric properties of polymeric liquid crystals are discussed in de-
tail in Chap. 10. At the end of this section the dielectric properties of polymers
with novel architectures are summarized.

In general, for dense polymeric systems one has to bear in mind that the dy-
namics of segments or whole chains is not only influenced by intramolecular but
also by intermolecular correlations. In order to calculate the mean square dipole
moment (see Eq. (7.8)) or the corresponding correlation function one has to
sum up over all chains in the system.

7.4.1
Amorphous Polymers

It is well known that most amorphous polymers exhibit a secondary- or β- and a
principal- or α-relaxation located at lower frequencies or higher temperatures
than the β-process. For type A polymers at frequencies below the α-relaxation a
further process called α′- or normal mode relaxation can be observed which cor-
responds to the overall chain dynamics. As an example the dielectric loss for
poly(propylene glycol) (M = 2000 g mol–1) in the frequency range from 10–4 Hz to
109 Hz is given in Fig. 7.9. Two relaxation processes indicated by peaks in ε′′ are
visible.The process at higher frequencies is the α-relaxation which is related to the
dynamic glass transition whereas the peak at lower frequencies corresponds to the
normal mode process because poly(propylene glycol) is a Type-A polymer.
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In the following the characteristic and fundamental peculiarities of the β-, α-
and the normal mode relaxation of amorphous polymers are discussed. Apart
from these processes amorphous polymers can also exhibit further dielectri-
cally active relaxation processes.

7.4.1.1
�-Relaxation

Most authors agree that the dielectric β-relaxation of amorphous polymers
arises from localized rotational fluctuations of the dipole vector. For the first
time Heijboer [80] developed a nomenclature for the molecular mechanisms
which can be responsible for this process. According to this approach fluctua-
tions of localized parts of the main chain, the rotational fluctuations of side
groups or parts of them are discussed. Investigations on model systems (see for
instance [81–84]) support this picture. Experiments on poly(n-alkyl methacry-
late)s in dependence on the length of the alkyl side chain seem to favour this idea
[84–88] as well. However, it has to be noted that the relaxation behaviour of the
poly(n-alkyl methacrylate)s is quite unusual compared to other polymers. This
concerns the relaxation strength which will be discussed later. Also a degenera-
tion of the calorimetric glass transition with increasing length of the side chains
[89] and indications for a nanophase separation [90] are observed.

Another approach to the β-relaxation was outlined by Goldstein and Johari
[91, 92]. They argued that the β-relaxation is a generic feature of the glass tran-
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Fig. 7.9. Dielectric loss e ′′ for poly(propylene glycol) (M = 2000 g mol–1) vs logarithm of fre-
quency at the labelled temperatures. Lines are guides for the eyes



sition and the amorphous state. Therefore such β-relaxation processes could be
observed except from polymeric systems for a great variety of glass-forming
materials like low molecular weight glass-forming liquids and rigid molecular
glasses [92]. Also for polymers in which the dipoles are rigidly attached to the
main chain [2] the dielectric β-relaxation was well known long before Johari and
Goldstein observed it for low molecular weight systems. Recently the discussion
of the β-relaxation is renewed because it is supposed that the investigation of
this process can help to understand the nature of the dynamic glass transition
(α-relaxation) which is an unsolved problem of condensed matter physics [93,
94] up to now. Some further discussions can be found in Sect. 7.4.1.3 and in
Chaps. 4, 5 and 18 of this book. As a general conclusion one can state that the β-
relaxation can be of intra- and/or intermolecular nature.

In the following some peculiarities of the β-relaxation in terms of its relax-
ation rate, its dielectric strength and the shape of the relaxation function will be
discussed.

Relaxation rate. The temperature dependence of the relaxation rate νpβ (or
time) of the β-relaxation can be described in general by an Arrhenius law

(7.24)

where ν∞β is the preexponential factor. For localized motional processes ν∞β
should be in the order of 1012 to 1013 Hz. The activation energy EA depends on
both the internal rotational barriers and the environment of a fluctuating unit.
The influence of the molecular environment was also discussed in terms of ma-
trix rigidity for acrylic polymers [95]. Typical values for EA are 20 to 50 kJ mol–1.

Dielectric strength. For most polymers of Type-B (a dipole moment is rigidly at-
tached to the main chain) like polycarbonate [82], poly(vinyl chloride) [96, 97],
poly(propylene glycol) [98] or poly(chloroprene) [96] for the relaxation strength
of the β-relaxation Δεβ � Δεα holds where Δεα is the dielectric strength of the α-
process. This is also true for semi-rigid polymer structures like poly(ethylene
terephthalate) [99, 100] or poly(ethylene-2,6-naphthalene dicarboxylate) [101]
which can crystallize. For some polymers containing flexible side groups like
poly(methyl acrylate) [102] or higher poly(n-alkyl acrylate)s [103] Δεβ ≤ Δεα is
observed. Exceptions are poly(n-alkyl methacrylate)s for which Δεβ > Δεα is
measured [2, 87, 104, 105]. The reason for this behaviour is unclear up to now.
Because the main dipole moment is located in the side group only small fluctua-
tions of it can contribute significantly to the dielectric loss. However, there is
some evidence from NMR-measurements that the motion of the main and the
side chain are coupled [106].A recent discussion on the relaxational properties of
the poly(n-alkyl methacrylate)s can be found elsewhere [107].

Generally Δεβ increases with temperature. According to the Onsager/Kirk-
wood/Fröhlich theory (see Chap. 1) which predicts
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(FOnsager ≈ 1, internal field or Onsager factor) this can be understood assuming
that either the number of contributing dipoles NP or the angular extension of
the fluctuations increases with temperature. The suggestion that the Kirkwood/
Fröhlich correlation factor g = gintra + ginter (for bulk polymers g is the sum of
intra- and intermolecular contributions6) increases with temperature is unlikely
for the β-relaxation because a reorientation of larger parts of the molecular di-
pole vector, which is necessary for a change of g, does not seem to be possible at
least below Tg.

Shape of the relaxation function. Generally the width of the relaxation function
measured for instance by the half height width of the loss peak is broad (4–6
decades) but mostly symmetric.With increasing temperature the width of the β-
peak decreases. It is often assumed that the shape of the relaxation function for
the β-relaxation is due to a distribution of both the activation energy and the
preexponential factor, related to a distribution of molecular environments of the
relaxing dipole. It is difficult to extract information on the basic mechanisms of
motion from such broad peaks.

7.4.1.2
Dynamic Glass Transition (�-Relaxation)

The understanding of the α-process or the dynamic glass transition which is re-
lated to the calorimetric glass transition is an actual problem of condensed mat-
ter physics [93, 94]. If a glass-forming system is supercooled the time scale of the
relevant motional processes increases by more than twelve decades. Near the
calorimetric glass transition temperature Tg its magnitude is greater than 1 s
(see Chap. 4 for a deeper discussion). Most workers agree that for polymers the
glass transition corresponds to the segmental motion. Conformational changes
like gauche-trans transitions (see Sect. 7.2.3.1) lead to rotational fluctuations of
a dipole around the chain to which it is perpendicular (rigidly) attached. This is
supported by a correlation of the dielectric segmental relaxation time in dilute
solution with Tg [54] (see Fig. 7.6). Therefore models developed for the segmen-
tal motion in isolated chains (see Sect. 7.2.3.1) should be applied also in the
dense state. However for bulk polymers a test segment fluctuates in a dense en-
vironment of surrounding segments of other chains. Hence besides the in-
tramolecular cooperativity (see Sects. 7.2.3.1 and 7.3.1.1) an intermolecular one
is introduced. As for the β-relaxation the α-relaxation is discussed in terms of
its relaxation rate, its dielectric strength and the shape of the relaxation func-
tion.

Relaxation rate. The temperature dependence of the relaxation rate of the α-re-
laxation νpα cannot be parameterized by an Arrhenius law. Close to the glass
transition temperature it can be described by the Vogel/Fulcher/Tammann/
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sidering intra and intermolecular terms in the g-factor for the first time [2].



Hesse (VFT) [108–110] equation

(7.26)

where log να ∞ (να ∞ ≈ 1010–1012 Hz) and A are constants. T0 is the so-called ideal
glass transition or Vogel temperature which is found to be 30–70 K below Tg.
Empirically it was shown that the glass transition temperature corresponds to
relaxation rates of 10–3 to 10–2 Hz. Therefore a dielectric glass transition tem-
perature Tg

Diel can be defined by Tg
Diel = T(νpα ≈ 10–3…10–2 Hz).

Formally an apparent, temperature dependent activation energy can be cal-
culated from Eq. (7.26). However, near the glass transition this apparent activa-
tion energy is much greater than the binding energy for a C-C σ-bond. That may
reflect the cooperativity of the underlying molecular motions. Several models
have been proposed to understand the physical origin of the VFT equation and
of T0 (For detailed discussion see Chaps. 4 and 5). In the free volume approach
of Cohen and Turnbull [111] the fractional free volume becomes zero at T0.
Adam and Gibbs [112] were the first who treated the α-relaxation as a coopera-
tive process. This cooperativity sets in well above Tg and increases with decreas-
ing temperature. In this kinetic approach [112] and in the later fluctuation
model of Donth [113, 114] the volume of the cooperatively rearranging region
(CRR), defined as the smallest volume element that can relax to a new configu-
ration independently,diverges at T = T0. The lattice theory of the glass transition
developed by DiMarzio [115] predicts a second-order phase transition at T0
which is believed to overcome the Kauzman paradox [116, 117]. Although the
meaning of T0 is not yet clear the universality of the VFT equation near Tg sug-
gests that T0 is a significant temperature for the dynamics of the glass transition.

An analogous representation for the temperature dependence of the relax-
ation rate of the α-relaxation is the Williams/Landel/Ferry (WLF) relation [37]

(7.27)

where TRef is a reference temperature and νpα (TRef) is the relaxation rate at this
temperature. C1 and C2 = TRef – T0 are so called WLF-parameters. It has been ar-
gued that these parameters should have universal material independent values
if TRef = Tg is chosen [37]. However it was found experimentally that these esti-
mates are only rough approximations. Equations (7.26) and (7.27) are mathe-
matically equivalent.

Figure 7.10 shows a fit of Eq. (7.26) to the data of poly(vinyl acetate) (PVAC),
poly(propylene glycol) (PPG) and poly(dimethyl siloxane) (PDMS). At temper-
atures close to Tg the data can be well described by the VFT-equation. For sig-
nificantly higher temperatures (T = Tg + 80 … 100 K) deviations are observed.
These deviations are more pronounced for PDMS which is known as a more
fragile glass forming system than PPG. (For a recent discussion of the fragility
concept to the glass transition see [117] or Chap. 4). With a derivative technique
discussed in Chap. 4 it could be shown that the high temperature data can be ap-
proximated by a second VFT-law with a higher T0 even for PPG [118]. A charac-
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teristic crossover temperature TB can be defined by the intersection of the two
VFT-laws where TB ≈ 1.2 … 1.3 × Tg holds (see Chap. 4).With regard to the tem-
perature dependence of the relaxation rate of the α-relaxation there is no essen-
tial difference between polymers and low molecular glass forming liquids [119].
This indicates that the (essential) underlying phenomena responsible for the dy-
namic glass transition must be the same for both classes of materials.

Dielectric strength. The dielectric relaxation strength of the α-relaxation Dea
decreases with increasing temperature. This is shown in Fig. 7.11 where Dea for
poly(propylene glycol) is plotted vs temperature. However, Fig. 7.11 indicates
further that the temperature dependence of Dea is much stronger than predicted
by the Onsager/Kirkwood/Fröhlich theory (see Eq. 7.25 and inset of Fig. 7.11).
Close to Tg the increase of Dεα with decreasing temperature is pronounced.

This also becomes clear from Fig. 7.12 where the product TDεα (normalized
to the maximal value) is plotted vs T for several polymers. According to
Eq.(7.25) TDεα should be independent of temperature but obviously it decreases
with increasing temperature. The stronger temperature dependence of Dεα than
predicted by Eq. (7.25) (see also [120–122]) cannot be explained by the increase
of the density with decreasing temperature.Also its modelling by a temperature
dependent g-factor remains formal because g was introduced to describe direct
correlations between dipoles like association (see Chap. 1). Because apart from
polymers similar temperature dependencies of Dεα are also found for low
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Fig. 7.10. Relaxation rates νpα for the α-relaxation of PDMS (open squares), PPG (open circles)
and PVAC (inverted open triangles). Lines are fits of Eq. (7.26) to the data. The dashed line is a
fit of Eq. (7.26) to the high temperature data of PDMS
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Fig. 7.11. Temperature dependence of Δεα for poly(propylene glycol). The inset shows Δεα vs
1/T for PPG as well. The data were taken from [98]. Lines are guides for the eyes

Fig. 7.12. Values of (TΔεα) reduced by the value (TΔεα)max at the lowest measured temperature
vs temperature: filled triangles – poly(vinyl acetate). The data were taken from Mashimo and
Nozaki [121]. Inverted filled triangles – poly(methyl acrylate), filled circles – poly(vinyl
isobutylether). The data were taken from A. Hoffmann (1993), PhD thesis, University Mainz.
The inset shows data for poly(dimethyl siloxane). Lines are guides for the eyes



molecular weight glass forming systems (see [119, 123] and Chap. 4) it must be
considered as a general feature of the α-relaxation. It can be argued that this
temperature dependence results from an increasing influence of (intermolecu-
lar) cross-correlation terms to μ2 with decreasing temperatures. In other words
the reorientation of a test dipole is influenced increasingly by its environment
with decreasing temperature. In the framework of the cooperativity concept to
the α-relaxation Dεα should be related to an effective dipole moment μeff which
is due to the CRR. With decreasing temperature the size of the CRR and there-
fore μeff increases. For a detailed discussion see Chap. 4 or [123].

Shape of the relaxation function. In general the α-process shows in the fre-
quency domain a broad (the width ranges from 2 up to 6 decades depending on
structure) and asymmetric peak. It is well known (see Chap. 1) that the func-
tional shape of the relaxation function can be well described by the model func-
tion of Havriliak/Negami [124]

(7.28)

where τHN is a characteristic relaxation time. The fractional shape parameters β
and γ (0 < β, βγ ≤ 1) due to the symmetric and asymmetric broadening of the
complex dielectric function are related to the behaviour of ε′′(ω) at low and high
frequencies:

(7.29a)

(7.29b)

This nomenclature was first introduced by Jonscher [125]. Generally it is as-
sumed that in contradiction to the β-process the shape of the relaxation func-
tion of the dynamic glass transition is not related to a distribution of relaxation
times due to local spatial heterogeneities (see Chap. 14). Rather this broad,
asymmetric loss peak is an intrinsic feature of the dynamics of glass-forming
systems. Recently the picture of dynamical heterogeneity introduced by
Schmidt-Rohr and Spiess for polymers has been reviewed for low molecular
weight glass forming systems [126] and also for polymers [127]. The spatial 
extent of this dynamical heterogeneity, its temperature dependence and the
relationship to the cooperativity approach to the glass transition is subject of
controversial debate. However using the concept of dynamical heterogeneity a
characteristic length scale for the glass transition in the range of a few nm can
be expected for poly (vinyl acetate) [128, 129].

The width of the α-peak for polymers depends on various factors such as
temperature, structure of the chain or crosslinking density. It becomes narrower
with increasing temperature and broadens dramatically with crosslinking.

The parameters m and n are plotted in Fig. 7.13 for a considerable number of
polymers and for several low molecular weight glass-forming liquids. For poly-
mers n is found to be between n = 0 and n = 0.5. This behaviour is quite differ-
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ent compared to low molecular weight materials where (depending on temper-
ature) n = 1 (Debye relaxation) can be observed [119].

For low molecular weight systems the elementary type of motion are rota-
tional fluctuations of a rigid dipole (see Chap. 1, rotational diffusion model). For
polymers the elementary type of motion is the local chain dynamics discussed
in Sect. 7.2.3.1. This is supported by the correlation of the glass transition tem-
perature with the relaxation time for segmental chain dynamics in dilute solu-
tion (see Fig. 7.6). However, in contrast to isolated chains in undiluted systems
the local chain dynamics is influenced by the environment of the segments. That
modifies the mechanism of damped diffusion of conformational states (see
Sect. 7.2.3.1) to hindered one. In analogy to Eq. (7.15) one can write [130]

(7.30)

where . Equation (7.30) is a generalized master equation which

gives the wave equation for Ḋ(t) = const and the diffusion equation for Ḋ(t) =
D0δ (t) (δ (t) – Dirac function). To model the segmental dynamics in the bulk
state (hindered damped diffusion of conformational states) Ḋ(t) ~ D0t–λ (–1 ≤ λ
≤ 1) is chosen for several reasons which are discussed in detail in [123]. The im-
portant point is that the diffusion in inhomogeneous media can be described by
a power law with –1 ≤ λ ≤ 0 [131, 132]. With this ansatz the correlation function
for the segmental dynamics in the bulk state can be calculated for a static envi-
ronment of a test segment [130]. Moreover one has to consider that the molec-
ular environment of a selected segment also fluctuates. Because a greater length
scale is involved this motional process takes place on a longer time scale. To
incorporate these fluctuations of environment a treatment similar to that de-
veloped by Dissado and Hill [133] is used [130]. For the dielectric loss func-
tional dependencies according to Eq. (7.29) are obtained where the exponent

(–1 ≤ λ ≤ 0) is related to the modified segmental dynamics and the 

parameter m (0 < m ≤ 1) to the fluctuations of the environment of a segment
taking place on a larger length scale than the segmental dynamics.An appropri-
ate interpretation scheme for the shape of the dielectric α-relaxation is given in
Fig. 7.14.

The model is supported by Fig. 7.13 where for the parameter n 0 < n ≤ 0.5
holds for polymers.A much greater compilation of data also supporting this fact
as well is given in [134]. In Fig. 7.15a the shape parameters n and m for
poly(propylene glycol) are compared to that of the monomeric counterpart
propylene glycol. The data are plotted vs logνpα to compare the data with respect
to their different glass transition temperatures. For propylene glycol n increases
with temperature close to unity but for the polymer poly(propylene glycol) n is
restricted to values below 0.5.

In general the parameter n should depend on temperature. For temperatures
close to the glass transition temperature the chains are more densely packed and
therefore the hindrance of the segmental dynamics is stronger than for higher
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temperatures where the amount of free volume is greater. For T � Tg n should
approach the value n = 0.5. This is shown in Fig. 7.15b where the shape parame-
ters m and n are plotted vs logνpα for poly(vinyl acetate) and poly(chloro
styrene). The parameter n increases with logνpα (and therefore with tempera-
ture) up to n = 0.5 as a limiting value. Some similar results are presented for in-
stance for poly(n-butyl acrylate) by Fioretto et al. [135].

According to the considerations presented above the low frequency shape pa-
rameter m should vary with the intermolecular interactions. With increasing
temperature these intermolecular interactions should decrease in strength and
therefore m should increase. This statement is justified by Fig. 7.15 where m 
increases with logνpα and approaches m ≈ 1 at high temperatures for poly(pro-
pylene glycol) (Fig. 7.15a), poly(vinyl acetate) and poly(chloro styrene)
(Fig. 7.15b). For poly(n-butyl acrylate) a similar behaviour is observed [135].

The relationship between the shape parameter m and motional modes on a
larger length scale can be tested by a direct modification of these modes in a
chemical or physical way. This can be done for instance by crystallization.
Figure 7.16a gives the reduced dielectric loss for amorphous and semicrystalline
polycarbonate according to [136]. The high frequency behaviour of the loss peak
is not changed whereas the low frequency part is dramatically broadened by the
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Fig. 7.13. Shape parameter n and m for different polymers (open circles) and low molecular
weight glass-forming systems (open squares). The line is the limit for local chain dynamics.
(The relationship of the points to the numbers is given in the Appendix)



crystallization. Similar results were obtained for poly(ethylene terephthalate)
[137].

Besides crystallization motional modes on a greater length scale can be also
influenced by crosslinking. Figure 7.16b shows the dependence of the shape pa-
rameters m and n on crosslinking for a styrene-butyl acrylate copolymer
crosslinked with divinyl benzene [138]. With increasing degree of crosslinking
the parameter m decreases strongly whereas the parameter n related to the local
chain dynamic remains unchanged.

In the same sense the model was used to interpret the dielectric behaviour of
polyurethane network systems [139]. It was further applied to discuss the dy-
namic glass transition of semi crystalline polymers [140–142].

7.4.1.3
Relationship Between the �- and the �-Relaxation – the (��)-Process

Because logνpα increases more rapidly with increasing temperature than logνpβ
the α- and the β-processes merge at higher temperatures and form the so called
(αβ)- or α-process. In a very recent publication on the glass transition [143] this
process was named the Williams-process because it was first discussed by
Williams et al. [144] as a separate process. In other words with decreasing tem-
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Fig. 7.14. Interpretation scheme for the shape of the dielectric α-relaxation
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Fig. 7.15. a Shape parameter m and n vs log νp,α for propylene glycol (filled circles, open cir-
cles) and the polymeric counterpart poly(propylene glycol) (filled squares, open squares).
b Shape parameter m and n vs log νp,α for poly(vinyl acetate) (filled squares, open squares) and
for poly(chloro styrene) (filled circles, open circles)
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Fig. 7.16. a Normalized dielectric loss for amorphous (open squares) and semicrystalline
(filled circles) polycarbonate [136]. b Shape parameter m (filled squares) and n (open circles)
for a styrene-butyl acrylate copolymer crosslinked with divinyl benzene vs the concentration
of divinyl benzene [138]



peratures the α- and the β-process will separate from each other in a certain
temperature region called splitting region S according to Donth and cowork-
ers [87, 143, 145, 146]). Figure 7.17 gives three different scenarios for this sepa-
ration:

1. Goldstein and Johari suggested the merging of the α- and β-relaxation at high
temperatures whereas logνp(αβ) should have an Arrhenius-like temperature
dependence with the same activation energy as the low temperature β-
process (Fig 7.17a).There are experiments which support this picture [91,92],
but recent dielectric investigations have shown that logνp(αβ) cannot be de-
scribed by an Arrhenius law in general (see Chap. 4 for a detailed discussion)
even at very high temperatures compared to Tg.

2. From a theoretical approach to the glass transition [143] a separate onset of
the α-relaxation (Fig. 7.17b) is predicted and found for poly(n-butyl
methacrylate) [146] and other poly(n-alkyl methacrylate)s [87].Also for a se-
ries of poly(n-butyl methacrylate-stat-styrene) with varying composition
such a separate onset of the dynamic glass transition was found [147]. It is
characterized by a (splitting) temperature TS for which the extrapolated tem-
perature dependence Δεα vanishes, i.e. Δεα (TS) ≈ 0. Thermal heat spectro-
scopy also shows that the relaxational part of the heat capacity for the glass
transition Δcpα vanishes for T = TS [145].At present it is still an open question
if this behaviour is characteristic for polymers with bulky side chains.
However, recently a similar behaviour for a low molecular weight model com-
pound was observed [83]. Also for a mixture of water with an oligomeric
poly(ethylene glycol) a separate onset of the α-relaxation with Δεα (TS) ≈ 0
has been reported recently [148].

3. A scheme according to Fig. 7.17c is expected if the high temperature α-relax-
ation (or a-process) in a certain temperature range is a precondition for the
β-process. This scenario is found for many materials including low molecular
weight glass forming liquids and amorphous polymers [83, 98, 149–153]. It
should be noted that again the splitting temperature TS coincides with the
temperature TB where the temperature dependence of the relaxation rate of
the α-relaxation changes [98, 119] (see Fig. 7.11). Moreover the temperature
dependence of the dielectric strength shows a change (see Chap. 4 and [119])
at this temperature as well. Therefore besides the Vogel temperature T0 TB
should be regarded as a characteristic temperature for the dynamic glass
transition. It should be further noted that in the same temperature range a de-
coupling of rotational and translatorial diffusion (see for instance [154–157])
is observed.

7.4.1.4
Normal Mode Relaxation

For melts of Type-A polymers the normal mode process can be observed as a
separate relaxation region at frequencies below the α-process (Fig. 7.9). Because
the overall chain dynamics is reflected by this process its properties depend
strongly on molecular weight, i.e. chain dimensions. Figure 7.18 shows the di-
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Fig. 7.17. Three different
scenarios for the separa-
tion of the α- and β-relax-
ation: a merging of the α-
and β-relaxation where the
(αβ)-process has the same
activation energy as the
low temperature β-relax-
ation; b separate onset of
the α-relaxation according
to [146]; c separation of the
α- and β-relaxation where
the high temperature
process is regarded as a
precondition for the 
β-process



electric loss vs temperature at a fixed frequency for poly(cis-1,4-isoprene) of dif-
ferent molecular weights. The low temperature (high frequency) α-relaxation
shows only a weak dependence on M whereas the high temperature peak, caused
by the normal mode process depends strongly on the molecular weight. The
theory outlined in Sect. 7.2.3.2 (Eq. (7.17)) remains valid to describe the normal
mode relaxation also for the undiluted melt.

Relaxation rate. The global chain dynamics in undiluted melts depends strongly
on molecular weight. For M < MC (MC ≈ 104 g mol–1, depending on structure [37])
τp can be calculated in the framework of the Rouse theory [7, 36] because the ex-
cluded volume effects and hydrodynamic interactions are screened out [15].
Therefore Eq. (7.18) remains valid for τp where the monomeric friction coefficient
is related to the viscosity of the melt. For M > MC the polymeric chains are entan-
gled [15,37].Due to topological constraints the dynamical behaviour of the chains
is restricted compared to the disentangled state.The functional shape of Eq.(7.17)
is maintained but the expression for the relaxation times is changed to

(7.31)

Equation (7.31) is calculated in the framework of the reptation or tube model
[15, 159] where it is assumed that a test chain is confined within a tube with a di-
ameter a formed by neighboured chains.

Because of the factor 1/p2 in Eq. (7.17) it becomes clear that only the modes
with p = 1 and 3 contribute significantly to the dielectric response. Therefore the
relaxation time extracted from the maximum position of the dielectric loss τn =
1/(2πνpn) for the normal mode process corresponds approximately to the mode
with p = 1. Figure 7.19 shows τn at a fixed temperature for poly(cis-1,4-isoprene)
vs M. The data were taken from different authors. For low molecular weights 
(M < MC) a Rouse-behaviour τn ~ M 2 is fulfilled. At MC ≈ 104 g mol–1 a change 
to a stronger dependence on the molecular weight is observed. The linear re-
gression to the data points gives a slope of 4.1 (Fig. 7.19). This value is larger 
than predicted by the reptation model which gives τn ~ M 3 (see Eq. (7.31)).
Mechanical experiments [163] give a value of 3.4 (see also Chap. 17). The differ-
ence between 3 and 3.4 can be understood in the frame of the theory of contour
length fluctuation [164] or of the constrain-release-model [165, 166]. It is not
clear if these models can be applied to explain dielectric experiments and so the
value of approximately 4 is not well understood yet.

The inset of Fig. 7.19 gives νpn for oligomeric (M < MC) poly(propylene gly-
col) as a function of molecular weight at T = 222 K. The estimated slope of 2.5 is
slightly larger than given by the Rouse theory but may be caused by hydrogen
bonding which can lead to transient entanglements.

To check the statement that the normal mode process is due to the overall
chain dynamics the following consideration can be made. In the Rouse theory
the self-diffusion coefficient D of a chain is related to the 0-th Rouse mode

(7.32)D k T
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Fig. 7.18. Dielectric loss vs temperature at a frequency of 104 Hz for poly(cis-1,4-isoprene) of
different molecular weights: filled circles – M = 1400 g mol–1, filled squares – M = 3830 g mol–1,
filled triangles – M = 8400 g mol–1. The figure was adapted from [158]

Fig. 7.19. Relaxation time τn of the normal mode process for poly(cis-1,4-polyisprene) at T =
320 K as a function of M: open circles – values taken from [160], open triangles – values taken
from [161], filled diamonds – own measurements [162]. The inset gives νpn for poly(propylene
glycol) vs molecular weight at T = 222 K [162]. The lines are linear regression through the data
points in the corresponding regions



For the product τpD one obtains with Eq. (7.18) and 〈r2〉 = b2N

(7.33)

If 〈r2〉 is known D can be calculated from dielectric data using Eq. (7.33). On the
other hand side D can be also measured directly by, e.g. pulsed field gradient
NMR (Chap. 18). Corresponding investigations have been carried out for
poly(propylene glycol) with a molecular weight of 4000 g mol–1 [167] and for
poly(cis-1,4-isoprene) [168]. Figure 7.20 shows the results for poly(propylene
glycol) and in the inset the data for poly(cis-1,4-isoprene). It becomes clear that
the absolute values as well as the temperature dependence agree well. The small
difference in the temperature dependence can be explained by the temperature
dependence of 〈r2〉 which has been omitted for sake of simplicity. So it can be
concluded that for Type-A polymers the overall chain dynamics can be moni-
tored by dielectric spectroscopy.

According to Eq. (7.18) (or Eq. (7.31)) the temperature dependence of the re-
laxation rate of the normal mode relaxation is due to the temperature depen-
dence of the monomeric friction coefficient ζ. For bulk melts the temperature

τ pD r
p

= 〈 〉
π

2

2 23
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Fig. 7.20. Temperature dependence of the self diffusion coefficient for poly(propylene glycol)
with a molecular weight of 4000 g mol–1. Filled squares – measured by pulsed field gradient
NMR, open circles – calculated with Eq. (7.33) from the relaxation rate of the dielectric normal
mode relaxation. The inset shows values for poly(cis-1,4-isoprene) with (filled squares) mea-
sured by pulsed field gradient NMR M = 8400 g mol–1, open symbols calculated with Eq. (7.33)
from the relaxation rate of the dielectric normal mode relaxation, open circles – 8400 g mol–1,
open triangles 10,800 g mol–1



dependence of ζ is determined by the segmental dynamics and therefore the re-
laxation rates of the α- and the normal mode relaxation should have the same
temperature dependence. Figure 7.21a shows the temperature dependencies of
both, the relaxation rates of the α- and the normal mode relaxation for
poly(propylene glycol) of different molecular weights. The figure gives that
close to Tg the temperature dependence of the α- relaxation is much stronger
than that of the normal mode process. Fitting of the VFT-equation (Eq. (7.26))
to both the α- and the normal mode relaxation leads to T0α > T0n, where T0α and
T0n are the corresponding Vogel temperatures. To characterize the temperature
dependence of both processes in more detail the ratio of their relaxation rates
is plotted vs temperature in Fig. 7.21b. According to the Rouse theory this ratio
should be independent of temperature.At high temperatures this is true but for
temperatures close to Tg this ratio decreases dramatically. A similar behaviour
was found by Floudas et al. [169] also for poly(propylene glycol) and for
poly(cis-1,4-isoprene) [158, 170]. Using creep measurements Plazeck et al. have
reported an analog effect for the shift factors of the segmental and terminal 
relaxation (global chain dynamics) for polystyrene [171], poly(vinyl acetate)
[172], polypropylene [173] and poly(diphenyl siloxane) [174]. The change 
in the temperature dependence indicates that the underlying motional
processes alters. At the moment there is no generally accepted model for 
this phenomenon. One interpretation based on the coupling scheme developed
by Ngai (Chap. 1) is presented in [174, 175]. Recently Loring et al. presented a
disordered Rouse model to explain this experimental result [176]. However,
because νpα corresponds to a rotational diffusion process (rotation of a di-
pole around the backbone) and νpn is related to translational diffusion the 
observed behaviour is quite similar to the decoupling of the rotational and
translational diffusion reported for low molecular weight compounds and also
polymers [154–157]. Moreover a strong decrease of the intensity of the overall
chain motion was observed close to Tg by mechanical and dielectric measure-
ments [174]. Some further discussion can be found in chapter 8 where the in-
fluence of pressure is analysed on both the dielectric α- and normal mode re-
laxation.

Dielectric strength. Because for Type-A polymers the whole dipole moment
parallel to the chain skeleton is obtained by integration over the chain length the
relaxation strength of the normal mode relaxation Δεn is proportional to the
mean end-to-end vector of the chain 〈r2〉. If the dipole moment μp parallel to the
repeating unit and the molecular structure is known, the mean end-to-end vec-
tor can be calculated from Δεn by

(7.34)

It was argued that the Onsager-factor FOnsager is close to one also for chain dy-
namics [7]. For poly(cis-1,4-isoprene) the molecular weight dependence of
〈r2〉 obtained by dielectric spectroscopy is in good agreement with that mea-
sured by scattering techniques [177].
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Fig. 7.21. a Relaxation rates of α-process νpα (open symbols) and the normal mode re-
laxation νpn (crossed symbols) vs 1/T for poly(propylene glycol): squares M = 4000 g mol–1,
circles M = 3080 g mol–1, diamonds M = 1970 g mol–1. The inset shows the same for 
M = 5300 g mol–1. b Ratio log(νpα /νpn) vs temperature: open squares M = 4000 g mol–1, open
circles M = 3080 g mol–1, open diamonds M = 1970 g mol–1. Lines are calculated according to
the estimated VFT parameters



Shape of the relaxation function. From Eq. (7.17) one can estimate that the
shape parameters of the normal mode peak should be described by m = 1 and 
n ≈ 0.7 [158] independent of molecular weight. Experimentally it is found that
for samples with very narrow distribution7 of molecular weights the loss peaks
are much broader than predicted by the theory [7, 158, 161]. Especially the high
frequency parameter n is much smaller than predicted by the Rouse theory. This
is true for molecular weights below and above Mc. Figure 7.22a shows the di-
electric loss for a poly(cis-1,4-isoprene) with a molecular weight of 70,000 g
mol–1. The data were analysed by two HN-functions where the shape of the low
frequency one is fixed to the Rouse-shape. The figure shows that the high fre-
quency tail is much broader than predicted by the Rouse theory. Moreover the
shape of the loss peak seems to depend on molecular weight [7, 158, 179] as it be-
comes clear from Fig. 7.22b where the shape parameter n for the normal mode
process is plotted vs molecular weight.

Similar results are also obtained by means of mechanical spectroscopy [180].
There are several theoretical considerations to understand this dependency on
the molecular weight. One model is based on the coupling scheme [181] (for a
general discussion of the coupling scheme see Chap. 1). Ngai and coworkers
have also presented a Focker/Planck approach to the chain dynamics of poly-
mers [182]. Computer simulations for cooperative relaxation in dense macro-
molecular systems carried out by Pakula and Geyler [183] show that the time
correlation function of the end-to-end vector has a strong non-exponential be-
haviour which depends on molecular weight. More recently Schweitzer devel-
oped a mode coupling approach for the chain dynamics which has not yet been
compared with experimental results [184].

7.4.2
Semicrystalline Polymers

In this section the dielectric properties of semicrystalline polymers will be sum-
marized briefly. Dielectric investigations on semicrystalline polymers were pio-
neered by Hoffman et al. [185] and Ashcraft et al. [186]. Because there are sev-
eral reviews [10, 187–189] available in the literature no attempt is made to be
complete here. Many useful details can be found in these overviews. This section
will focus on recent developments like real time dielectric spectroscopy to fol-
low the crystallization behaviour (see for instance [140, 141]) or a direct combi-
nation of structural with dielectric relaxation studies (e.g. [140, 142]).

The dielectric properties of semicrystalline polymers cannot be understood
without a knowledge of their morphology. Therefore structural aspects will be
summarized first.A more detailed discussion of the crystalline state of polymers
can be found in [190].
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7 It should be noted that the distribution of molecular weights can be estimated from dielec-
tric measurements [7, 178].
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Fig. 7.22. a Dielectric loss vs frequency for the normal mode relaxation of poly(cis-1,4-iso-
prene) with a molecular weight of M = 70,000 g mol–1 at T = 295.6 K described by a combina-
tion of two HN-functions. The dashed line corresponds to a Rouse-like behaviour with m = 1,
n = 0.7 (fit parameter Δε = 0.048, log τHN = –0.88) The dotted line corresponds to a second
function with m = 1 (fit parameter Δε = 0.03, n = 0.204, log τHN = –1.75). b Dependence of the
parameter n for the normal mode relaxation on molecular weight for poly(cis-1,4-isoprene):
filled squares – [158], filled triangles – [179]. The line is a linear regression through all data
points which gives n(M) = 1.435 – 0.249 log M



7.4.2.1
Morphology of Semicrystalline Polymers

Polymers with a regular chain structure like polyethylene or polypropylene can
easily form crystalline structures. However, also other effects like hydrogen
bonding (see for instance the class of polyamides [2]) can lead to crystalline
polymers. Moreover different types of semi-rigid main chain polymers like
polyesters (e.g. poly(ethylene terephthalate) (PET) [99, 189] or poly(ethylene-
2,6-naphthalene dicarboxylate) (PEN) [101, 191]) and corresponding copoly-
mers [142, 192]) or polyketones [140, 141, 193]) can be crystallized.

The true thermodynamic equilibrium state of crystalline polymers is the ex-
tended chain crystal which can be obtained for polyethylene under very special
conditions like extremely high pressure [190]. Because of the high molecular
weight of polymers it is kinetically difficult to form large extended crystals.
Under conventional conditions polymers crystallize from the melt in the form of
lamella which are often organized in spherulites 8 on a larger special length scale
(see Fig. 7.23a).

The thickness of the lamella is in the order of several 10 nm where the chain
is oriented normal to the lamella (see Fig. 7.23a). In the lateral directions the
crystals are much more extended. These results and data obtained for polymeric
single crystals crystallized from dilute solution led to the folded chain model of
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8 Besides spherulites other structures like fibres can also be obtained under special condi-
tions like melt spinning, orientation, etc. Also fibrils and dendritic structures are known.

Fig. 7.23. a Spherulitic mor-
phology in a semicrystalline
polymer. b Three phase
model of a semicrystalline
polymer 



semicrystalline polymers [190]. Ideally in that model the polymeric chain is
folded back and forth with hairpin turns. This leads to adjacent re-entries of a
selected chain into the same lamella which have been proven by neutron and in-
frared experiments. A different set of experiments favours the switchboard
model [194]. In that model the chains do not have a re-entry by regular chain
folding. They enter the lamella more or less randomly. Both the folded chain
model and the switchboard model can be regarded as limiting cases for the crys-
tallization of polymers.

Because the thickness of the lamella is much smaller than the extended length
of a macromolecule a selected chain can be a part of different adjacent lamellae.
Therefore a 100% crystalline material cannot be obtained by crystallization in
the bulk and a crystalline polymer is always semicrystalline. Moreover a stack
layered structure (see Fig. 7.23a,b) is formed consisting of lamellae and more or
less amorphous material in between. Thus semicrystalline polymers can be used
as model systems to investigate the influence of a nanometer confinement on the
molecular dynamics because the amorphous phase is confined between the
crystalline lamella (see for instance Chap. 6).

Semicrystalline polymers are at least biphasic materials consisting of amor-
phous and crystalline regions. This has several implications for dielectric mea-
surements. First, the dielectric response can be due to relaxation processes taking
place in the amorphous or crystalline phase. In most cases the crystalline phase is
regarded as immobile so that no relaxation process can take place. Second, be-
cause a semicrystalline polymer is a composite material, in general the mixing
rules developed for such systems (see Chap.13) should be applied bearing in mind
that the dielectric permittivities of the amorphous and the crystalline regions are
different. Using a stack-like layered structure Boyd developed a composite model
of the upper and the lower bond of the measured permittivity [195]. Third, due to
the biphasic structure of semicrystalline polymers separation of charges can take
place at boundaries of the crystalline and amorphous phase which can lead to
Maxwell/Wagner polarization effects (see Chap. 3).

The degree of crystallinity xc can be estimated for instance from calorimetric
experiments considering the melting enthalpies, density measurements or from
wide angle X-ray scattering [190]. Moreover small angle X-ray scattering allows
one to estimate the long period L (see Fig. 7.23b) which is defined as the distance
between lamellae. Using the model sketched in Fig. 7.23b the thickness of the
amorphous regions d can be estimated to d = Lxc. It can be expected that the di-
electric behaviour of polymers with a high degree of crystallinity (e.g. above 80%,
high density polyethylene) is different to that obtained for a polymer with medium
degree of crystallinity around 50% (for instance PET) because the amorphous
phase is more restricted in the first case as it was discussed by Williams [10].

7.4.2.2
Polymers with a Medium Degree of Crystallinity

In general the crystalline phase is rigid and shows no dielectric relaxation
processes. Therefore the observed dielectric relaxation behaviour is assigned to

264 7 Molecular Dynamics in Polymer Model Systems



the amorphous phase and shows in principle a similar pattern as observed for
amorphous polymers. So most semicrystalline polymers show a β-relaxation at
low temperatures (high frequencies) and an α-process related to the dynamic
glass transition at higher temperatures (lower frequencies). Up to now no nor-
mal mode relaxation was found for a semicrystalline polymer of Type-A [196].
Probably due to the incorporation of the chain into the crystallites the end-to-
end vector of the chain cannot fluctuate.

One of the most extensively investigated semicrystalline polymer is PET 
[99, 137, 189] because it easily crystallizes. For that reason mainly the dielec-
tric properties of PET are discussed as an example here. Most of the described
results are general features of the dielectric response of semicrystalline poly-
mers.

�-relaxation. The inset of Fig. 7.24 compares the dielectric loss of amorphous
and semicrystalline PET for the β-relaxation. Where the dielectric strength due
to the reduced amount of the amorphous fraction is strongly decreased with re-
gard to both the position and the shape of the relaxation function there is no sig-
nificant difference between both samples (see Fig. 7.24 where the dielectric loss
normalized to its maximum). The temperature dependence of the relaxation
rate for the semicrystalline material can be described by an Arrhenius law with
slightly higher activation energy than for the amorphous polymer [189].

To discuss the dependence of the relaxation strength on the degree of crys-
tallinity it is useful to consider its value normalized by that measured for the
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Fig. 7.24. Normalized dielectric loss vs frequency for semicrystalline (open circles) and amor-
phous (filled circles) PET at T = 203 K. The data are taken from [189]. The inset shows the
unreduced dielectric spectra



complete amorphous state

(7.35)

In Fig. 7.25 this ratio is plotted for two sets of data of PET [189, 197].As expected
ΔεR, β decreases with xC and obeys a dependence as predicted by a simple two
phase model (ΔεR, β ≈ 1 – xC). This means that the whole amorphous fraction
contribute to the β-relaxation.

�-relaxation. In contrast to the β-relaxation the influence of the crystals on the
molecular motions responsible for the α-process is strong. Mainly three effects
are observed: (i) a decrease of the dielectric strength, (ii) a shift of the relaxation
rate to lower values and (iii) a considerable broadening of the relaxation func-
tion [9]. This is illustrated by Fig. 7.26 where the dielectric loss for poly(aryl
ether ketone ketone) is plotted vs frequency for different crystallization times tc
using real time dielectric spectroscopy [140]. The continuous variation of the di-
electric function with tc shows that crystallization does not induce a new amor-
phous phase but that its properties are influenced more and more by the crys-
tallites.

In the following the dependence of the dielectric relaxation strength Δεα on
the degree of crystallization is discussed using its normalized value ΔεR, α de-
fined by Eq. (7.35). Figure 7.27a shows ΔεR, α vs xC for PET using the corre-
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Fig. 7.25. Normalized dielectric relaxation strength for the β-relaxation ΔεR,β vs degree of
crystallization for PET: filled circles – data taken from [189 ], filled squares – data taken from
[197]. The line is due to a two phase model



sponding data sets as in Fig. 7.25. In contrast to the β-relaxation the dependence
of ΔεR, α on xC does not follow a two-phase model. The extrapolation of ΔεR, α to
zero reads a value which is smaller than 1. This means that not the whole amount
of the amorphous phase contributes to the α-relaxation. A part of the amor-
phous phase is amorphous in structure but it is rigid with regard to the molec-
ular mobility which is responsible for the dynamic glass transition. Therefore
this part of the amorphous phase is called rigid amorphous phase (RAP).
Probably the RAP is located close to the crystallites as it is sketched schemati-
cally in Fig. 7.23b. By analysing the normalized step height of the specific heat
capacity measured by calorimetry a similar dependence on xC is obtained [137].

In Fig 7.27b ΔεR, α is plotted vs the degree of crystallinity for poly(aryl ether
ketone ketone) [140] and for a set of different semicrystalline copolyesters [142].
For all of these quite different polymer structures a similar behaviour is ob-
tained. ΔεR, α goes to zero at a value of xC smaller than 1. Such an amorphous
phase restricted in mobility was also observed by means of dielectric spec-
troscopy for a number of other semicrystalline polymers [198–202]. That means
that existence of the RAP is quite general where its amount depends on the poly-
mer under consideration [201].

For amorphous polymers Δεα decreases with increasing temperature where-
as for semicrystalline polymers Δεα often increases [198–201, 203]. This is
shown in Fig. 7.28 where Δεα is compared for amorphous and semicrystalline
PET. Because Δεα is proportional to the number of contributing dipoles this
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Fig. 7.26. Dielectric loss for poly(aryl ether ketone ketone) vs frequency for different crystal-
lization times tc: filled squares – tc = 0 s, open circles – tc = 4.314 × 103 s, filled triangles – tc =
7.032 × 103 s, open triangles – tc = 9.594 × 103 s, inverted filled triangles – tc = 1.812 × 104 s, in-
verted open triangles – tc = 5.4804 × 104 s. The data are taken from [140]. The solid line indi-
cates the shift of the position of maximum loss and the dotted lines are guides for the eyes



means that the amount RAP decreases with increasing temperature [203]. This
result is not only found for PET but also for a number of other semicrystalline
polymers [198–201].

Often the kinetics of crystallization is described or modelled by the Avrami
equation [190]. Using real time methods – which are pioneered by Williams
[204] – it is possible to follow the kinetics of the crystallization process by di-
electric spectroscopy [140, 141]. The Avrami equation can be adapted to de-
scribe the time dependence of the dielectric strength of the α-relaxation during
crystallization

(7.36)

where δε is the change of dielectric relaxation strength during crystallization,
τCrys is a time constant for it and nA is a parameter characterizing the kind of the
crystals. Figure 7.29 gives the dependence of Δεα on the crystallization time for
poly(aryl ether ketone ketone) [140]. The main part of the time dependence of
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Fig. 7.27. a Normalized di-
electric relaxation strength
for the α-relaxation ΔεR,α vs
degree of crystallinity for
PET: filled circles – data
taken from [189], filled
squares – data taken from
[197]. The solid line is due
to a two-phase model. The
dotted line is a linear regres-
sion the data taken from
[197] whereas the dashed
line is due to a linear regres-
sion to the data taken from
[189].
b Normalized dielectric
relaxation strength for the
α-relaxation ΔεR,α vs de-
gree of crystallinity for two
systems: filled squares –
poly(aryl ether ketone
ketone) [140] where the
dotted line is a linear regres-
sion through the data; open
circles – a set of copolyesters
[142] whereas the dashed
line is a linear fit to the data.
The solid line is due to a two
phase model



7.4 Dielectric Properties of Polymeric Systems in the Bulk State 269

Fig. 7.28. Δεα vs inverse temperature for amorphous (filled circles) and semicrystalline (filled
squares, xC = 0.29) PET. The lines are linear fits through the data. The data are taken from [203]

Fig. 7.29. Δεα vs crystallization time tC for poly(aryl ether ketone ketone) at T = 461 K.The data are
taken from [140]. The solid line is a fit of Eq. (7.36) to the data with Δεα(0) = 1.99, δε = 0.509, τCrys
= 7074 min and nA = 2.6. Secondary crystallization is indicated by the dashed line. In the inset the
change of the relaxation rate of the α-process with tC is shown. The lines are guides for the eyes



Δεα can be well described by the Avrami equation. For nA a value of nA = 2.6 is
obtained which indicates a spherulitic crystallization between 2 or 3 dimen-
sions. For longer times (tC > 2 × 104 min) there are systematic deviations from
the Avrami equation which indicates a secondary crystallization process.

The inset of Fig. 7.29 shows the dependence of the relaxation rate νpα on tC. It
is interesting to note that a significant change in νpα is observed after a decrease
in Δεα of approximately 70%. This might be understood considering the depen-
dence of relaxation rate on the thickness d of the amorphous layers as it is plot-
ted for PET in Fig. 7.30. For large d the segmental dynamics is only weakly in-
fluenced. If the thickness of the amorphous layer decreases the crystallites act
more and more as confining geometry which slows down the molecular mobil-
ity (Fig 7.30). This line of argumentation is supported by a correlation of the
characteristic length scale of the molecular motions responsible for the glass
transition and the thickness of the amorphous layer [205] as it is shown in the
inset of Fig. 7.30.
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Fig. 7.30. Dependence of the relaxation rate of the α-relaxation on the thickness of the amor-
phous regions for PET at 383 K. The data are taken from reference [197]. The line is a guide for
the eyes. The inset shows the characteristic length ξ for the glass transition estimated from
calorimetric measurements vs the thickness of the amorphous regions. The line is a guide for
the eyes. The data are taken from [205]



7.4.2.3
Polymers with a High Degree of Crystallinity – Polyethylene

For a high degree of crystallinity the amount of the amorphous phase and also
the thickness of the amorphous layer is strongly reduced. Because the relaxation
processes discussed in Sect. 7.4.2.1 originate from the amorphous phase it is dif-
ficult to observe and to analyse them for polymers with a high degree of crys-
tallinity. On the other hand it possible to observe dielectric relaxation processes
taking place in the crystalline phase.

Among others like polyoxymethylene, poly(trimethylene oxide) or poly-
(tetrafluoro ethylene) for polyethylene a very high degree of crystallinity can 
be obtained because of its simple chain structure consisting only of CH2 units.
This is especially true for high density polyethylene which contains in addit-
ion a low degree of chain branching. Generally the dielectric response of pure
polyethylene should be very small because the CH2 groups carry only a weak di-
pole moment. However, due to oxidation processes commercial polyethylene
contains a number of carbonyl groups which can be used as a dielectric probe to
reveal the molecular motions in both the amorphous and the crystalline regions.
Titanium dioxide fillers can also be applied to enhance oxidation [206]. In addi-
tion slightly chlorinated polyethylenes and copolymers of ethylene and carbon
monoxide [186] have been used to monitor the dielectric relaxation processes in
polyethylene.

Discussing the dielectric behaviour of polyethylene it should be noted 
that the nomenclature of relaxation processes for polyethylene or other semi-
crystalline polymers with a high degree of crystallinity [2] is different from that
of amorphous polymers. The γ-process in polyethylene corresponds to the β-re-
laxation discussed for amorphous polymers; the β-relaxation is due to the seg-
mental motions in the amorphous regions similar to the α-relaxation discussed
in Sect. 7.4.1. In addition to these both processes in polyethylene a so-called α-
or αC-relaxation is observed due to molecular motions within the crystals. Some
peculiarities of these relaxation processes will be discussed for polyethylene as
model system. The results can be transferred to similar systems.

	 -process. The temperature dependence of the relaxation rate of the γ-process
shows an Arrhenius-like behaviour with an activation energy around 45 kJ mol–1

which is typical for local motional processes. As shown by the pioneering stud-
ies of Ashcraft and Boyd [186] the γ-process arises from the amorphous regions.
A combination of dielectric, mechanical and NMR experiments shows that
chain segments close to the surface of the lamella also contribute to the γ-
process [207]. This is in agreement with results found for semicrystalline poly-
mers with a medium degree of crystallinity where the β-relaxation also takes
place in the restricted amorphous phase close to the crystallites (see Fig. 7.23).
The relaxation function is found to be extremely broad which is explained by a
broad distribution of energy barriers [186].

�-process. The β-process originates from molecular fluctuations of the chain
segments in the amorphous phase and corresponds to the dynamic glass transi-
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tion of the system. This becomes clear from investigations which have shown
that the dielectric strength of the β-process is higher for low density polyethyl-
ene having a lower degree of crystallinity. Very often the temperature depen-
dence of the relaxation rate of the β-relaxation was described by an Arrhenius
law with a high apparent activation energy of 220 kJ mol–1 which indicates a co-
operative process. A recent study on low density polyethylene filled with tita-
nium dioxide reveals [206] that the temperature dependence of the relaxation
rate follows a Vogel/Fulcher/Tammann dependence (see Eq. (7.26)) which is
characteristic for the glass transition.

�- or �C-process. The α-process is assigned to the crystalline lamella where 
a rotational-translation of chain segments was assumed assisted by a chain
twisting. Conformational energy calculations for the twisted assisted chain re-
orientation mechanism [208] show that the process is accompanied by a
twisted region of approximately 12 CH2 groups along the chain. This model
leads to an activated temperature dependence of the relaxation rate.
Experimentally an activation energy of approximately 100 kJ mol–1 was found
by dielectric spectroscopy which agree with that found by mechanical mea-
surements [190]. Also NMR investigations support the twisted assisted chain
reorientation mechanism and yield similar activation energies [209]. Moreover
recently 180° chain flips in polyethylene crystallites have been observed di-
rectly by 13C NMR [210].

7.4.3
Polymer Blends

Because recent reviews about the dielectric properties of polymeric blends are
available [211, 212] in this section only fundamental and the most important as-
pects will be summarized focusing on binary blends of amorphous polymers.
For an overview about the large number of published experimental data the
reader is referred to the mentioned reviews [211, 212].

Dielectric spectroscopy can be used to detect and to define criteria of misci-
bility on a molecular level [213]. In general both components of a blend will have
different polarities. One component can be dielectrically more visible than the
other one (limiting case: one component can be dielectrically invisible).
Furthermore by blending a Type-A and a Type-B polymer the overall chain dy-
namics (normal mode, see Sects. 7.2.3.2 and 7.4.1.4) can be studied only for the
polymer of Type-A by dielectric spectroscopy. Because the chain dynamics of
Type-B polymer is dielectrically invisible one can ask the question how the
global chain motion of the Type-A polymer is influenced by the second compo-
nent. The normal mode relaxation proves a larger length scale than the segmen-
tal one. Thus information about composition fluctuations on different length
scales can be deduced. Such investigations have been carried out for instance 
for blends of polybutadiene and poly(cis-1,4-isoprene) [7], polystyrene and
poly(cis-1,4-isoprene) [214] or blends of poly(n-butyl acrylate) and poly(propyl-
ene glycol) [215, 216].
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7.4.3.1
General Considerations

For polymers the contribution of the entropy of mixing ΔSM to the free enthalpy
of mixing ΔGM is small. According to the lattice model of Flory/Huggins [217]
ΔGM can be estimated to

(7.37)

where Φ1 are the volume fractions, Ni the degrees of polymerization and κ de-
notes the Flory/Huggins interaction parameter 9. Based on the principle of ther-
modynamics the conditions for miscibility, the critical (solution) temperature
for phase separation TC or the binodals can be calculated from Eq. (7.37).At tem-
peratures above TC the two components are miscible on a molecular level
whereas below TC phase separation occurs. The composition of these phases fol-
lows the binodal. That means even in the phase separated state a certain degree
of mixing (depending on κ and on Ni) is observed which leads to a component 1
and to a component 2 rich phase.

In general the β-, the α- and even the normal mode process will be modified
in the case of miscible blends or in systems with partial miscibility. Only for
completely phase separated materials (as the limiting case) is the relaxational
characteristic of both compounds fully maintained. This is demonstrated for the
α-relaxation in Fig. 7.31 schematically. Figure 7.31a shows the relaxation map
for a miscible system where a single α-process is observed which is located – de-
pending on the composition – between the traces obtained for each component.
There are many models for the dependence of the glass transition temperature
on the composition for a homogeneous blend which can be found in standard
textbooks of polymer science (see for instance [190, 217]). For a phase separated
blend with a partial miscibility two α-processes will be observed where the lo-
cation of both processes depends on the composition of both phases. Therefore
dielectric spectroscopy is expected to provide valuable information on the local
fluctuations of concentrations and on the local miscibility. In the following we
will focus on characteristics of the α-relaxation of blends only.

7.4.3.2
Miscible Blends – Concentration Fluctuations

It has been known for a long time [218] that the relaxation function measured
for a miscible blend is considerable broadened compared to the spectra of the
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9 It should be noted that the Flory/Huggins theory can describe only systems with a lower
critical solution temperature.



pure polymers [4, 57, 82, 213, 219–221]. As an example this is shown for a misci-
ble blend of polystyrene (PS) and poly(vinyl methylether) (PVME) in Fig. 7.32.
For the blend (Fig. 7.32b) the loss peak is much broader than for the single com-
ponent PVME (see Fig. 7.32a). Recently the behaviour of the PS/PVME systems
was investigated by a combination of dielectric, NMR and neutron scattering in-
vestigations using deuterated polystyrene [223]. In miscible blends the broad-
ening of the α-relaxation increases with the difference of the glass transition
temperatures. It is also a characteristic of miscible blends that the loss peak nar-
rows as temperature increases [4, 222].

In recent theoretical approaches to the dielectric relaxation of miscible
blends it was assumed that the broadening of the dielectric relaxation function
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Fig. 7.31. Schematic representation of the relaxation rate of the α-relaxation for binary poly-
meric blends: a miscible blend; b immiscible blend with a partial miscibility of both com-
pounds



of the blend compared to that of the pure components is due to composition or
concentration fluctuations [59, 60, 220, 224]. The theoretical treatment is sim-
plest if one component is dielectric invisible as it is nearly the case for poly-
styrene. Assuming that the lifetime of the composition fluctuations is much
longer than the relaxation time for the α-relaxation one can write [220, 224]

(7.38)

where c̃  is the distribution function of the composition fluctuations and ε′′Vis (ω)
is the relaxation function of the dielectrically visible component. Often c̃  is 
assumed to be Gaussian with a variance s = √0〈δΦ 2〉. 〈δΦ 2〉 is the mean square
composition fluctuation which can be estimated by fitting Eq. (7.38) to the loss
data of a miscible blend. It is found that 〈δΦ 2〉 increases with increasing tem-
perature [220, 222] which can be understood in the framework of the coopera-
tivity approach to the glass transition [220]. The same procedure was also ap-
plied to describe the dielectric behaviour of a solvent/polymer system in  the con-
centrated regime [59, 60].
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Fig. 7.32. a Dielectric loss vs
frequency for poly(vinyl
methylether) for different
temperatures. b Dielectric
loss vs frequency for a blend
of polystyrene and poly
(vinyl methylether) for a
volume fraction of poly-
styrene of ΦPS = 0.4. All
lines are guides for the eyes.
The data were taken from
[222]



Recently for the dielectric function of a miscible blend

(7.39a)

was suggested by Adachi and coworkers [216]. This formula is based on the idea
that the dipole moment of the mixture is a weighted sum of the dipole moment
of each compound and that the segmental mobility in the blend can be de-
scribed by a common friction coefficient ζBlend [37, 216]. According to this as-
sumption the segmental relaxation time τi for the pure component i has to be

changed to . For the friction coefficient

(7.39b)

was supposed where k is a parameter which characterizes the interaction be-
tween both components. It was shown that this model can qualitatively describe
the data [216].

7.4.3.3
Immiscible Blends

Immiscible blends are inhomogeneous systems. For dielectric spectroscopy this
fact – like for semicrystalline polymers – has several implications. First, appro-
priate mixing rules for the dielectric permittivity have to be applied (see
Chap. 13). Second, due to the phase separated structure migrating charge car-
riers can be blocked at the phase boundaries which can give rise to a
Maxwell/Wagner polarization process (see Chap. 3). Analysing this effect by in-
voking model considerations information about the phase morphology and the
structure of the phase boundaries can be extracted (Chap. 13).

In the simplest case of a completely phase separated structure and if both
components having approximately the same dipole moment one can write for
the dielectric function of the blend

(7.39c)

However in most cases a limited miscibility (depending on Ni and κ) is observed
which leading to two phases enriched in one component which can be described
by a concentration Ci. Following the ideas developed in Sect. 7.4.3.2 the dielec-
tric properties of each of these phases can be modelled by the approaches de-
veloped for miscible blends. By analysing the frequency position of the α-relax-
ation and its dielectric strength the unknown concentration of each compound
can be estimated in principle assuming appropriate mixing rules. In practice
this can be difficult. Of special interest is again the case where one component 
is dielectrically invisible as it is discussed for a blend of polystyrene and
poly(methylphenyl siloxane) [225].
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7.4.4
Novel Polymeric Architectures

7.4.4.1
Rings

As was pointed out earlier, with increasing molecular weight the influence of
chains ends having a higher mobility becomes less important. For instance the
dependence of the Tg on molecular weight can be described by the Fox/Flory
equation [217]

(7.40)

(Tg, ∞ – glass transition temperature for M → ∞, K
~
– constant) which is based on

free volume considerations and describes well the experimental observations
for linear chains. In comparison to linear chains for rings or cycles the confor-
mational degrees of freedom are reduced. For small rings this can lead to a com-
plete frustration of the segmental motions. In contrast to linear chains an in-
crease of Tg is observed with decreasing molecular weight for several systems
[226–228]. Because the segmental motion is strongly affected in cyclic polymers
dielectric spectroscopy is suitable to study the influence of the ring size on the
molecular dynamics. Such investigations are carried out for linear and cyclic
poly(dimethyl siloxane) [229]. Figure 7.33 compares the dependence of the di-
electric glass transition temperature Tg

Diel(τHN = 1 s) on the molecular weight for
cyclic and linear PDMS. For the latter a dependence according to the Fox/Flory
equation is obtained. For rings a quite different dependence is obtained. For
high molecular weights approximately the same Tg

Diel is observed as for the lin-
ear polymers. With decreasing M, in contrast to linear macromolecules, Tg

Diel in-
creases. At low molecular weights there are indications for a weak maximum.
These experimental results can be understood in the framework of a modified
Gibbs/DiMarzio theory [230,231] and they are also in agreement with molecular
simulations [229].

The dielectric strength Δε decreases with molecular weight for both the 
linear and the cyclic macromolecules (see inset of Fig. 7.33). However, for the
rings this dependence is much stronger than for the linear chains. For tight rings
(Mn = 296 g mol–1) no α-relaxation can be detected. This indicates, further, that
the conformational degrees of freedom are strongly reduced for rings.

7.4.4.2
Stars and Block Copolymers

Together with rings star-like polymers can be regarded as one of the simplest
case where the architecture of the whole molecule will influence its molecular
dynamics in comparison to linear chains. Because the differences in architecture
become relevant at length scales much larger than that of a segment the global
chain dynamics should be mainly changed when linear and star-like structures

T M T K
Mg g( ) ,

~

= −∞
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of the same monomer are compared. First dielectric investigations on star-
branched poly(propylene oxide) were reported by Stockmayer et al. [21].Adachi
and Kotaka presented results for branched poly(2,6-dichloro-1,4-phenylene ox-
ide) in solution [232]. Dielectric properties of linear and star-like poly(cis-1,4-
isoprene)s are discussed in [233–235]. Both the number and the molecular
weight of the arms were changed. No significant differences in the segmental
motion of linear chains and star-like macromolecules are observed as it is ex-
pected. Since poly(cis-1,4-isoprene) is a Type-A polymer the normal mode
process of the arms can be studied by dielectric spectroscopy and compared to
that of linear chains. First, there is no influence of the number of arms on the
normal mode relaxation. Second, for stars the relaxation time τ of an arm is
much slower as for a linear chain of a comparable molecular weight (see inset of
Fig. 7.34). For stars one chain-end of the arm is fixed (tethered chain) and can-
not contribute to the global chain motion as for linear chains. In a model of
Graessley [166]

(7.41)

is obtained for the retardation of the normal mode relaxation for a tethered
chain. The corresponding motional process can be regarded as a breathing mo-
tion of the contour length of the arm. In solutions similar processes are known

τ τtethered linear≈ 4

278 7 Molecular Dynamics in Polymer Model Systems

Fig. 7.33. Tg
Diel(τHN = 1 s) vs molecular weight: filled circles – linear chains, filled squares –

rings whereas the solid line is a fit of Fox/Flory equation to the data (Tg, ∞ = 147K, K~ = 5057 K
mol g–1) The dashed line is a guide for the eyes. The inset shows Δε vs molecular weight at T =
298 K: filled circles – linear chains, filled squares – rings whereas lines are guides for the eyes.
All data are taken from [229]



as elastic modes [236]. For stars Eq. (7.41) is proved by plotting τStar/4 vs molec-
ular weight (Fig. 7.34).All data points for the stars collapse approximately to that
obtained for the linear chains.

There is an increasing interest in the investigation of block copolymers in re-
cent years [237] where the simplest case is that of diblocks. Due to a subtle coun-
terbalance of chain connectivity (entropic forces) and enthalpy effects block
copolymers can undergo a microphase separation at temperatures below the or-
der to disorder transition temperature TODT. The control parameter is κN (κ-
Flory/Huggins interaction parameter, N-whole degree of polymerization).
There are two limiting cases: the strong segregation limit for κN � V(c) 10 [238]
at temperatures well below TODT and the weak segregation limit at temperatures
close to TODT for κN ≈ > V(c) where V(c) is a critical value which depends on the
composition c of the diblock. For κN < V(c) a homogeneous system (disordered
state) is observed. Theoretical approaches to the weak segregation limit of di-
block copolymers are due to Leibler [239] and were extended by Fredrickson et
al. [240] by including concentration fluctuations. For bulk systems in the mi-
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Fig. 7.34. τLinear and τStar/4 vs molecular weight of the chain or the arm of different linear and
star-like poly(cis-1,4-isoprene)s at T = 320 K. The inset shows τLinear and τStar vs molecular
weight of the chain or the arm. filled squares [234], filled circles [22] linear chains, open circles
– 18-arm star, open triangles – 12-arm star, open squares – 8-arm star, open diamonds – 4-arm
star, stars – 3-arm star. The solid lines are linear fits for M < MC (Slope 2.0, Rouse behaviour)
and M > MC (Slope 3.7, reptation behaviour). The dashed line is a parallel shift of the line 
obtained for the reptation behaviour through the data of the stars. The data are taken from
[233, 234]

10 For diblock copolymers of a 50/50 composition V(c) = 10.5 holds [239].



crophase separated state a variety of structures like spheres, cylinders, lamellas
or cubes are observed depending on the composition and on the molecular
weight [190, 237, 238].

There is a considerable body of work concerning dielectric spectroscopy on
block copolymers [241–255]. Therefore only the most important aspects will be
summarized. Discussing the dielectric properties of copolymers one can focus
on the global chain dynamics which proves greater length scales or on local seg-
mental fluctuations. The latter is discussed at first considering mainly diblock
copolymers.

Segmental Motion (�-relaxation). As for miscible blends a considerable broad-
ening of the dielectric α-relaxation compared to the corresponding homopoly-
mers is observed in the disordered state [241, 245, 251]. In the fluctuation ap-
proach to copolymer melts [240] a considerable amount of concentration fluc-
tuations are possible in the disordered state which should increase with increas-
ing κN. Therefore also for disordered copolymer melts the increased width of
the α-relaxation should be related to concentration fluctuations in the sense of
the approach developed for blends [224] (see Sect. 7.4.3.2).

The average segmental dynamics should be influenced by both segments
characterized by their monomeric friction coefficients. Figure 7.35 shows the re-
laxation time τα for the α-relaxation of a poly(cis-1,4-isoprene)-b-polystyrene
(PI-b-PS) diblock copolymer in the disordered state vs molecular weight of the
polyisoprene block which reveals the composition (fixed molecular weight of
the PS block) [245].With increasing PI content τα decreases strongly because the
monomeric friction coefficient of PI is much lower than that of PS. In the limit-
ing case these data correspond to τα of PI-b-PS diblock copolymers in the phase
separated state [246]. The absolute values are slightly slower than for pure poly
(cis-1,4-isoprene) indicating a small partial mixing of isoprene and styrene seg-
ments even in the phase separated state.

If the slow concentration fluctuations in the disordered state are larger, care-
ful investigations have shown two segmental relaxation processes for a PI-b-PS
[244] and a poly(cis-1,4-polyisoprene)-b-poly(1,2-butadien) diblock copolymer
[243]. This is observed as well for a PS-b-PI-b-PS-b-PI tetrablock copolymer
which does not undergo any phase separation [256].

Disordered diblock copolymers exhibit two distinct glass transitions close to
the glass transition temperatures of the constituent homopolymers. If both
monomeric units have a dipole moment two α-relaxation processes can be ob-
served in the ordered state as for phase separated blends. If one component is
nearly dielectric invisible (e.g. polystyrene) the combination of dielectric spec-
troscopy with another method like light scattering can be quite useful to investi-
gate the α-relaxation of blocks. In the ordered state sometimes a speeding up of
the α-relaxation is observed close to Tg for the nanodomains with the higher glass
transition temperature [242, 257]. This is accompanied by a weaker temperature
dependence than the VFT one measured for the corresponding homopolymer.
Quite similar results are found for the dynamics of molecules in confining geome-
tries (see Chap. 6). Thus one can argue that the structure formed in ordered
copolymers acts as a kind of confinement on the molecular motions [242].
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Global Chain Dynamics (Normal Mode Relaxation). For block copolymers hav-
ing a Type-A part like the PI-b-PS systems in addition to the segmental relax-
ation also the global chain motion of the Type-A block can be studied by dielec-
tric spectroscopy. The inset of Fig. 7.35 compares the relaxation time τn for the
PI-block of a PI-b-PS copolymers with that of pure poly(cis-1,4-isoprene). In the
disordered state τn decreases with increasing polyisoprene content [245].At first
glance this can be attributed only to the reduction of the monomeric friction co-
efficient due to the increasing isoprene content. However, a careful analysis of τn
with respect to the corresponding α-relaxation results in an additional slowing
down of the global chain dynamics. This can be understood by considering that
the segmental motion proves local fluctuations whereas the normal mode
process averages over larger length scales [245]. Furthermore an unexpected
temperature dependences of τn is observed. Close to Tg of the system a bend
from a VFT-like to a weaker temperature dependence is observed [245]. It is ar-
gued that this effect is due to the different freezing of PS and PI-rich nan-
odomains which are created by slow composition fluctuations. This line of ar-
gumentation is also supported by a light scattering study [244]. A careful analy-
sis of the molecular weight dependence of the dielectric strength provides evi-
dence that the conformation of the chains deviates from that of a Gaussian coil
even in the disordered state.
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Fig. 7.35. τα vs molecular weight MPI of the PI-block for PI-b-PS diblock copolymers at T =
273 K: open circles – disordered state [245], open squares – ordered state [246], filled squares –
pure poly (cis-1,4-isoprene) [246]. Lines are guides for the eyes. The inset shows τn vs MPI for
PI-b-PS diblock copolymers at T = 320 K: open circles – disordered state [245], open squares –
ordered state [246], filled squares – [234] and filled circles – [22] pure poly (cis-1,4-isoprene).
For the solid lines see Fig. 7.34. The dashed line is a guide for the eyes. Stars are the relaxation
times for the normal mode in the ordered state divided by 4



In the phase separated state the molecular weight dependence of τn follows
that of the bulk poly(cis-1,4-isoprene) but the absolute value is slower [246] (see
inset of Fig. 7.35). This can be understood considering that the phase separation
is not complete. Regarding the boundary of PS and PI phase separated regions
as stiff a factor of 4 should be observed between the relaxation times the homo-
and the block copolymer (see Eq. 7.41). The observed ratio is only a little bit
larger (see inset of Fig. 7.35). This is also observed for another PI-b-PS diblock
system [248] and for a triblock  copolymer [253].An analysis of the distribution
function of the relaxation times of the normal mode relaxation which is broader
than for the homopolymers reveals a spatial heterogeneity of the global chain
motion [246, 248] also due to slow composition fluctuations [251].

To study the influence of the phase separation on the global chain dynamics
directly a PS-b-PI diblock copolymer was investigated having a TODT in a fre-
quency and a temperature window which is accessible by X-ray and dielectric
spectroscopy [248]. Close to the TODT in the weak segregation limit a speeding
up of τn compared to its extrapolated temperature dependence in the disordered
state is observed. This can be quantitatively described by a free volume model of
the monomeric friction coefficient which depends on composition. The stretch-
ing of the chain at the phase transition was directly observed, too.A more recent
investigation [258] shows that the behaviour close to the ODT can be more com-
plex in the disordered as well as in phase separated state. Furthermore an inves-
tigation of the normal mode relaxation in a PS-PI-PS triblock copolymer in the
disordered state with a well defined laminar structure shows that the phase
boundaries are not completely stiff but fluctuate [252].

Dielectric investigations on more complex block copolymer architectures can
be found in [259–261]. This includes also studies of blends of copolymers 
with constituent homopolymers [262] and dielectric studies of solutions as well
[247, 255].

7.4.4.3
Dendrimers

Dendrimers are a novel type of macromolecular architecture which opens new
perspectives in material science [263]. They are distinguished from other types
of macromolecules by their well defined highly branched structure. Starting
from a central point with a certain functionality fDen linear segments of uniform
length are attached. The end of each block presents a new branching point where
the addition of each branching layer completes a generation gDen. In this nomen-
clature gDen = 0 represents only the functional core and fDen arms.

Dielectric investigation on dendritic model systems are sparse up to now
[264–268]. Depending on the core, the generation and the nature of the terminal
groups dendrimers can have a complex supramolecular structure. For instance
carbosilane dendrimers with flexible perfluorinated end groups can have a liq-
uid crystalline (gDen = 1) or amorphous structure (gDen > 1) [264]. Therefore the
dielectric properties are also complex. In general an α-relaxation is observed
[264, 265] which is related to the dynamic glass transition. The temperature de-
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pendence of the relaxation time exhibits a VFT-like behaviour. Moreover a split-
ting of the single α-relaxation into two branches is observed [264] which may
indicate a para liquid crystalline structure (see Chap. 10). In addition to the α-
process a β-relaxation assigned to local motional processes can be measured
[264–266]. A careful analysis allows one to distinguish between different end
groups [265, 266]. This was also possible for hyperbranched polyesters [269].

For dendrimers with mesogenic end groups a characteristic liquid crystalline
relaxation pattern was observed [267, 268] (see Chap. 10).

7.4.4.4
Networks

In general the segmental dynamics of crosslinked polymers is nearly identical to
that of amorphous uncrosslinked systems with the exception that the α-relax-
ation shows a considerable broadening compared to the corresponding un-
crosslinked system (see for instance Fig. 7.16b). A more interesting case is the
situation where the global chain can be proved and a comparison between en-
tanglements (physical crosslinks) and covalent bonded networks can be made.
This was done by end-linking linear and three armed poly(oxypropylene) as a
Type-A polymer [270]. It was found that the molecular dynamics between cova-
lent cross-links and entanglements is nearly identical but is changed by end-
linking.

Another interesting case are thermoreversible networks. In such systems the
crosslinks are not fixed and can be changed by temperature. The macroscopic
properties of these networks are governed by the dynamics of this reversible
junctions. On timescales shorter than the life of the junctions, the network
shows the viscoelastic properties of a covalent bonded system whereas at longer
times only entanglements determine the mechanical behaviour. Dielectric in-
vestigation on such a model system are carried out for polybutadiene where a
low concentration of 4-phenylurazol units (PU) are attached to the polymer
chain [271]. Thermoreversible junctions are formed by binary hydrogen bond
complexes of two PU units. The overall relaxation will be governed by the life-
time of the binary complex and the chain dynamics as predicted in the frame-
work of a hindered reptation theory [272]. The corresponding relaxation
process was detected by both mechanical [273] and dielectric spectroscopy
[271]. The observed differences between the mechanical and the dielectric re-
sults can be understood by a recent theoretical approach [274].

7.5
Conclusion

Because of the very broad accessible frequency range dielectric spectroscopy is
a powerful method to investigate the molecular dynamics of polymeric systems
which take place on a hierarchy of different length and timescales.Depending on
the polymer under investigation local relaxation processes due to molecular
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groups, the segmental relaxation on a larger spatial scale and the global chain
dynamics corresponding to the size of the whole macromolecule can be studied.
Moreover the different kinds of molecular motions can be taken as a probe for
structure of the system under investigation.
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Appendix. Shape Parameter m and n for Different Monomers 
and Polymers: Coordinates for Fig. 7.13

Nr. Material T[K] m n Ref.

1 Poly(methyl acrylate) 303.2 0.8 0.254 [3]
2 Poly(isobutyl methacrylate) 375.9 0.724 0.354 [3]
3 Poly(n-hexyl methacrylate) 305.8 0.678 0.409 [3]
4 Poly(n-butyl methacrylate) 332.1 0.676 0.356 [3]
5 Poly(nonyl methacrylate) 315.9 0.790 0.411 [3]
6 Poly(cyclohexyl methacrylate) 394.2 0.701 0.215 [3]
7 Polyacetaldehyde 276.6 0.699 0.508 [276]
8 Polystyrene >377.0 0.75 0.320 [277]
9 Poly(methyl methacrylate) 345.1 0.572 0.213 [278]

10 Oligo(methyl methacrylate) 283.2 0.552 0.259 [278]
11 Oligo(vinyl acetate) 275.9 0.674 0.309 [278]
12 Poly(p-chloro styrene) 412.2 0.733 0.389 [279]
13 Poly(o-chloro styrene) >404 0.850 0.340 [277]
14 Poly(para-chloro styrene) >366 0.600 0.200 [280]
15 Copolymer from phenyl 418.1 0.940 0.311 [280]

methacrylate and acrylnitrile
16 Poly(bisphenol-A-carbonate) 437 0.795 0.225 [124]
17 Poly(vinyl formal) 403.1 0.584 0.458 [281]
18 Poly(vinyl acetal) 373.1 0.782 0.296 [281]
19 Poly(vinyl butyral) 358.1 0.770 0.304 [282]
20 Epoxy resin 1 373.1 0.237 0.219 [283]
21 Epoxy resin 2 291.1 0.506 0.247 [283]
22 Epoxy resin 3 328.1 0.497 0.133 [283]
23 Poly(vinyl octanoate) 267.1 0.886 0.424 [284]
24 Poly(vinyl decanate) 270.9 0.770 0.493 [284]
25 Poly(bisphenol-A-isophthalate) 464.1 0.607 0.261 [124]
26 PET amorphous 350.8 0.810 0.370 [203]
27 PET crystalline, 29% 361.4 0.360 0.360 [203]
28 Polyurethane 1 264.9 0.485 0.175 [139]
29 Polyurethane 2 304.4 0.435 0.150 [139]
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30 Polyurethane 3 341.3 0.540 0.285 [139]
31 Poly(vinyl acetate) 342 0.875 0.465 [121]
32 Glycerol 200 0.97 0.58 [285]
33 Propylene glycol 175 1 0.61 [285]
34 Salol 290 1 0.8 [286]
35 Propylene carbonate 175 1 0.7 [286]

List of Abbreviations and Symbols

b Kuhn segment length
c Concentration
c* Overlapping concentration
C∞ Characteristic ratio
C1, C2 Parameters of the WLF-equation
d Thickness of the amorphous layers in semicrystalline polymers
D Self diffusion coefficient
DCon Diffusion coefficient for conformational states
EA Activation energy, barrier heights
g, gintra, ginter Dipolar correlation coefficients
ΔGM Free energy of mixing
kB Boltzmann constant, kB = 1.380662 × 10–23 J K–1; k = R/NA
l Bond length in simple chain models
L Long period in semicrystalline polymers
m, n Low and high frequency slope of the HN-function, m = β, n = βγ
M, MN, MW Molecular weight, number average, weight average
MC Critical molecular weight for the formation of entanglements or

the disappearance of chain end effects
nA Avrami exponent
N Number of bonds or beads in simple chain models; degree of

polymerisation
NA Avogadro number, (NA = 6.022 × 1023 mol–1)
P Polarization
r; 〈r2〉, 〈r2〉0 End-to-end vector of a chain; mean quadratic end-to-end vec-

tor; the index 0 refers to the undisturbed dimension
〈r(0)r(t)〉 Time correlation function of the end-to-end vector
R Gas constant R = 8.314 kJ mol–1

ΔSM Mixing entropy
tC Crystallization time
T Temperature
T0 Vogel temperature, ideal glass transition temperature
Τg Glass transition temperature
TODT Order-to-Disorder Transition temperature
T̃i Transfer matrix in the RIS model
xc Degree of crystallinity
α Expansion coefficient
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β, γ Shape parameter of the HN-function
θ, φ, γ Bond and rotational angle of a model chain, γ-valence angle,

θ = 180-γ
Γ() Gamma function
δε Change of Δε during crystallization
ε*, ε′, ε″ Complex dielectric function, real and imaginary part
Dei Dielectric relaxation strength, i = β, α, n, Rod for the different

processes
ΔεR, i Normalized dielectric relaxation strength (i = α, β)
ζ Monomeric friction coefficient
η Viscosity
ηS Solvent viscosity
[η] Intrinsic viscosity
κ Flory/Huggins interaction parameter
λi Eigenvalues of the Zimm model [39]
Λi Legendre polynomial Λi of order i
� Dipole moment
ν Frequency
νpi Relaxation rate at maximal loss, i = β, α, n
ν∞i Preexponential factor, i = β, α, n
νCoil Scaling exponent
τp Relaxation time of the p-th mode in the Rouse or Reptation

model
τHN Relaxation time of the HN-function
τCrys Time constant for crystallization

CRR Cooperatively rearranging region
RAP Rigid amorphous phase
PDMS Poly(dimethyl siloxane)
PEN Poly(ethylene-2,6-naphthalene dicarboxylate)
PET Poly(ethylene terephthalate)
PI Poly(cis-1,4-isorene)
PPG Poly(propylene glycol)
PS Polystyrene
PVAC Poly(vinyl acetate)
PVME Poly(vinyl methylether)
VFT Vogel/Fulcher/Tammann
WLF Williams/Landel/Ferry
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8 Effect of Pressure on the Dielectric Spectra 
of Polymeric Systems

G. Floudas

8.1
Introduction

Pressure is one of the essential thermodynamic variables that control the struc-
ture and the associated dynamics of polymers and glass-forming systems. The
pressure dependence of the viscoelastic relaxation times is of paramount im-
portance because hydrostatic pressure is encountered in the extrusion and
molding processes [1]. Dielectric spectroscopy was among the first dynamic
techniques to take advantage of pressure through the recognition of the fact that
the dynamic state of a glass-forming system can only be completely defined if T
and P are specified [2]. This observation motivated studies of the effect of pres-
sure on the dielectric α- and β-processes in a number of systems in the early
1960s [3–6]. The main concern in these pioneering studies was to unravel the ef-
fect of pressure on separating mixed processes. Since then, there have been re-
ports on the effect of pressure on the relaxations of oxidized polyethylene [7], on
the plasticization of poly(ethyl methacrylate) by sorbed carbon dioxide [8] and
on the dynamics of a liquid crystalline siloxane polymer [9].

However, the lack of a versatile experimental set-up has put a halt to these
studies and made pressure, for a number of years, the “forgotten” variable.
During the past 20 years polymer chemistry has produced an unparalleled
number of polymeric compounds with unmatched physical properties ranging
from polymer blends with a well-defined thermodynamic state to block copoly-
mers with well-controlled nanostructures. Moreover, the interest in traditional
fields such as polymer crystallization has been rejuvenated through the possi-
bility of new experimental probes and novel synthesis. Pressure, however, was
not applied until recently, in systems where the thermodynamic state of the sys-
tem is of importance.

In this chapter we will review some of the early work in this field and provide
new experimental results in systems of current interest where the thermody-
namics also play a role.We will study the effect of pressure on length scales start-
ing from the segment up to the end-to-end vector. Then we will comment on the
effect of pressure on the dynamic miscibility of athermal diblock copolymers
and homogeneous polymer blends. Finally, we will review recent experimental
reports on the effect of pressure on the crystallization process with emphasis on
the in situ monitoring of the process.



8.2
Theoretical Background

8.2.1
Transition State Theory

Eyring et al. [10] derived the rate at which species relax from A1 to A2 via an ac-
tivated state A* according to the scheme

(8.1)

where A1 and A2 are non-activated species. From the equilibrium A ↔ A* using
the condition for the chemical potentials: μA = μA* and the definition of ΔV (=
VA*(T,P) – VA(T,P)) as the difference in the molar volumes of activated and
non-activated species at T and P, one can show that [10, 11]

(8.2)

Thus the linear dependence of lnτ with P can be used to define an activation vol-
ume ΔV. As we will see below, a linear relation between lnτ and P can result
through a completely different approach.

8.2.2
Models Based on Free Volume Theories

The starting point in theories of free volume [12, 13] is the introduction of the
fractional free volume, f = Vf /Vo, where Vf is the available or “free” volume and
Vo is the total volume. The fractional free volume, which in general depends on
T and P, determines the viscosity and dynamics (relaxation times) of the system
above the glass transition temperature Tg. For example, according to the empir-
ical Doolittle equation [14]

(8.3)

where η* and γ are constants (γ is very close to 1 [1]), the viscosity or the relax-
ation times decrease exponentially with the increase of f. For thermorheologi-
cally simple systems [1], a shift factor α = (ηToρo)/(ηoTρ) or α = τ/τo (where ηo,
ρo, and τo are the values of the viscosity, density, and relaxation times at a refer-
ence temperature To) can be defined which is

(8.4)

where fo is the fractional free volume at a reference temperature or pressure (in
this case at To, Po). In practice, the slow temperature variation of the product Tρ
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is neglected and the following equation is mainly used

(8.5)

According to a free volume theory [1], increasing T and P produce opposite ef-
fects on the fractional free volume and within the range where βf is constant

(8.6)

where αf (= 1/Vo(∂Vf /∂T)P) and βf (= – 1/Vo(∂Vf /∂P)T) are the thermal expan-
sion coefficient and compressibility of the free volume, respectively. We should
mention here that in general the compressibility of free volume can be different
from the total compressibility. Measurements of β and calculations of βf have
shown that βf is less than half of β (= – 1/Vo(∂Vo/∂P)T) and the main part of
change of volume upon compression is due to the reduction of the occupied vol-
ume [1]. On the contrary, the thermal expansion is mainly due to the increase of
free volume (i.e., α ≈ αf).

According to Eq. (8.6), we can have a situation of increasing both T and P at
constant free volume, then

(8.7)

If the glass transition is regarded as controlled by relaxation processes whose
rates are constant at constant fractional free volume then

(8.8)

where Δβ and Δα are, respectively, the excess compressibility and thermal ex-
pansion of the rubbery state over the glassy state. Equation (8.8) is reminiscent
of the Prigogine and Defay equation (dT/dP = Δβ/Δα) [15] obtained for a sec-
ond order transition and suggests that the equilibrium quantity dT/dP and the
dynamic quantity (∂T/∂P)τ are related. However, the relation is not a simple one
since the dynamic quantity depends strongly on τ [4]. Returning to Eq. (8.8), the
meaning is that the T- or P-dependence of relaxation times at constant free vol-
ume is zero, i.e.,

(8.9)

This does not necessarily mean that this holds for constant total volume since at
constant total volume the fractional free volume increases (since βf is a small
part of β whereas αf is about equal to α).

A key parameter in the discussion of the effect of P on the relaxation times is
the free volume compressibility βf. If the free volume compressibility depen-
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dence is analogous to the total compressibility, then the expectation is that, it
will be a decreasing function of P. For small intervals of pressure, however, we
can assign a constant βf which gives rise to the following model.

8.2.3
Model of Constant Free Volume Compressibility

For temperature variation alone, we can assume (due to the very small values of
a and af) that f increases linearly with T as f = fo + af (T–To), which together with
Eqs. (8.3) and (8.5) result in the well-known Williams-Landel-Ferry (WLF)
equation [16]

(8.10)

where c1 = 1/fo and c2 = fo/αf . Defining T∞ = To – c2, at which lnaT becomes infi-
nite, results in the Vogel-Fulcher-Tammann (VFT) equation

(8.11)

where AT = lnτo – c1 and BT = c1c2.
For pressure variation alone, i.e., at constant T and for the limited pressure

range where βf can be considered as constant, the variation of f with P can be ex-
pressed as fP = fo – βf (P – Po). With the use of Eqs. (8.3) and (8.5) the following
shift factor is obtained for pressure-dependent measurements

(8.12)

which is reminiscent of the corresponding WLF equation (c1 = 1/fo, c2 = fo/βf).At
vanishing pressure, the above equation reduces to (∂ lnaP/dP)T = βf /f o

2, and
shows that the effect of P on t will become insignificant at high T due to the dom-
inance of the fo

2 term. In analogy to the T-variation, we can define a pressure P∞
where the fractional free volume is equal to zero: P∞ = Po + fo/βf which results in

(8.13)

and

(8.14)

where AP = lnτo – 1/fo and BP = c1c2. Notice the similarity of the τ (T) and τ (P)
dependencies.
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8.2.4
Models of Variable Free Volume Compressibility

Models have been proposed which take into account that the free volume com-
pressibility can decrease significantly with increasing pressure. Two such mod-
els are discussed here: the exponential and Tait models from the dependence of
the shift factor.

The exponential model is based on the frequently observed linear dependence
of the logarithm of the shift factor on pressure, i.e.,

(8.15)

where Λ ≠ Λ(P). Using this form for the shift factor and Eq. (8.5) results in the
following expression for the dependence of the fractional free volume on pres-
sure [17]:

(8.16)

where Π = 1/foΛ is an empirical constant related to the internal pressure. The
compressibility of free volume [1]:

(8.17)

is now a decreasing function of pressure. Interestingly, the non-linear fP depen-
dence creates a linear dependence of lnaP on P. Due to the form of Eq. (8.15) 
being similar to Eq. (8.2), the coefficient Λ has been interpreted as an apparent
activation volume, i.e., Λ = ΔV/RT.

The Tait model assumes that the free volume compressibility can be described
by an equation analogous to the corresponding equation used to describe the
specific volume. The shift factor in this model is [18]

(8.18)

taking as a reference the pressure at the glass transition, B depends on the poly-
mer and θc = C/fg

2, where C = 0.0894 and fg ≈ 0.025 for many polymers. It is
worth noticing that the Tait model reduces to the exponential model when
(P – Pg)/B � 1 since

(8.19)

which is of the form of Eq. (8.15). Thus, for small pressures the Tait model re-
duces to the exponential model.

ln ln ( )a
P P

B B
P PP c

g c
g= +

−⎛
⎝⎜

⎞
⎠⎟

≈ −θ θ1

a
P P

BP
g

c

= +
−⎛

⎝⎜
⎞
⎠⎟

1
θ

β f
P

T

P

o
o

f
P

f

f
P P

= − ∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
+ −1

Λ

f
f

f

f
P P

P

o
o

o
o

=
+ −

1

1
Λ

Λ

ln ( )a P PP o= −Λ

8.2 Theoretical Background 299



8.2.5
Problems Related to Free Volume Theories

In some cases it is of interest to obtain the activation energies under constant vol-
ume conditions; for example, computer simulations produce activation energies
that are constant volume quantities. This quantity can also be obtained in DS pro-
vided that volumetric data exist. We can define constant pressure and constant 
volume apparent activation energies as QP(T,P) = – 2.303 RT2 (∂ logτ/∂T)P and
QV(T,V) = – 2.303 RT2(∂ logτ/∂T)V, respectively, which are related through [3, 5]

(8.20)

where (∂P/∂T)V is given by the ratio of the thermal expansion coefficient α and
the compressibility β(T). Then Eq. (8.20) can be written as

(8.21)

where ΔV = 2.303 RT (∂ logτ /∂P)T is the activation volume. It follows from
Eq. (8.21) that QV < QP and in practice QV/QP ≈ 0.7 – 0.8 for the dielectric α-
process in amorphous polymers [3, 5]. This finding is inconsistent with free vol-
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Fig. 8.1. Average Kohlraush-Williams-Watts (KWW) relaxation times for poly(bisphenol A-
co-epichlorohydrin) glycidyl end capped (PBG) shown for different temperatures as a func-
tion of pressure. The solid lines are fits to the data using Eq. (8.22) (taken from [19])



ume theories (which in the simplest free volume theory would predict QV = 0)
and emphasizes that the rate of relaxation is largely determined by the thermal
energy kT. Raising the temperature at constant macroscopic volume increases
the rate of relaxation through the increase of thermal energy and not, primarily,
through the change in free volume.

8.2.6
Scaling of the �-Process: an Example

An example of the scaling of the α-process is provided for the fragile liquid
poly(bisphenol A-co-epichlorohydrin) glycidyl end capped (PBG) [19]. The
Kohlrausch-Williams-Watts (KWW) relaxation times exhibit a steep pressure
dependence as shown in Fig. 8.1. The relaxation times can be fitted to the VFT
equation in the form

(8.22)

where τα is the relaxation time measured at atmospheric pressure, Po is the pres-
sure of the ideal glass transition at a constant temperature, and DP is a dimen-
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Fig. 8.2. Normalized relaxation times for PBG plotted vs reduced pressure. Notice the good
superposition for the different temperatures. In the inset the Kohlrausch-Williams-Watts
exponent is plotted as a function of the relaxation times (taken from [19])



sionless fitting parameter. The relaxation times obtained at the different tem-
peratures and pressures can all be superimposed when using the following re-
duced variables for the time as τ/τα and the pressure: (Po/P – 1)–1. The result of
the superposition is shown in the Fig. 8.2 and reveal that all data can effectively
superimpose. Implicit in using Eq. (8.22) is the notion of a constant free volume
compressibility.

8.3
Effect of Pressure on the Separation of the �- and �-Processes

It is well known that amorphous polymers exhibit multiple relaxation processes
ranging from local, known as the β-process to the segmental or α-process at
higher temperatures and to the end-to-end vector relaxation, giving rise to even
slower dynamics referred to as normal modes. Not all molecular processes are
dielectrically active unless they involve the reorientation of the dipole-moment
vector. For the majority of amorphous polymers containing dipoles rigidly at-
tached to the main chain, the dielectric strength of the α-process exceeds that of
the β-process (i.e., Δεα � Δεβ) [20]. Certain polymers with flexible dipolar side-
groups (poly(vinyl acetate), poly(methyl methacrylate) (PMMA)) also show 
Δεα > Δεβ. In addition, the higher members of the poly(n-alkyl methacrylates)
have Δεα > Δεβ such as poly(n-hexyl methacrylate), poly(n-nonyl methacrylate),
poly(n-decyl methacrylate), poly(n-lauryl methacrylate). In contrast, polymers
with flexible dipolar side groups (i.e., atactic PMMA and poly(n-ethyl methacry-
late) (PEMA)) show Δεβ > Δεα under certain temperature and pressure condi-
tions [20].

The existing pressure studies on the α-process in polymers and some glass
forming liquids are summarized in Table 8.1. The studies on the lower members
of poly(n-alkyl methacrylates) have shown [5, 6] that the total dielectric
strength Δε is partitioned between the α- and β-relaxations, i.e.,

(8.23)

Since Δε is proportional to the product C〈μ2〉, where C is the concentration of
dipoles and 〈μ2〉 is the apparent mean-square dipole moment of a group, the case
Δεα � Δεβ means that the β-process relaxes only a small part of 〈μ2〉 and the re-
maining is relaxed through the α-process. Conversely, Δεα < Δεβ means that the
β-process relaxes most of 〈μ2〉. Within a temperature range, the α- and β-
processes coalesce into a single (αβ)-process which already implies that the
three processes are interrelated [27].

A key experiment that verifies Eq. (8.23) and shows that the α- and β-
processes are indeed interrelated was made with the help of pressure. It was
shown that pressure affects the two relaxations in a different way [5]. When the
two processes are well separated, pressure was found to shift the α-process to
lower frequencies whereas the β-process was much less affected. The intensities
of the two processes did not show a considerable change.At temperatures where
the two processes approach, pressure was found to increase the strength of the

Δ Δ Δε ε εα β= +
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Table 8.1. Polymers and glass-forming liquids studied by dielectric spectroscopy under 
pressure

Substance Reference

Poly(vinyl acetate) (PVAc) O’Reilly 1962 [17]
Heinrich et al. 1985 [21]

Poly(vinyl chloride) (PVC) Koppelman et al.1961 [22]
Saito et al. 1968 [23]
Williams and Watts 1971 [24]
Sasabe 1971 [25]
Heinrich et al. 1985 [21]

Poly(ethylene terephthalate) (PET) Williams 1966 [26]
Saito et al. 1968 [23]

Poly(methyl acrylate) (PMA) Williams 1964 [3, 4]
Poly(ethyl acrylate) (PEA) Williams 1966 [5]
Poly(methyl methacrylate) (PMMA) Sasabe and Saito 1968 [6]

Sasabe 1971 [25]
Poly(n-ethyl methacrylate) (PEMA) Williams 1966 [5]

Sasabe and Saito 1968 [6]
Sasabe 1971 [25]
Kamiya 1990 [8]

Poly(n-butyl methactylate) (PnBMA) Williams et al. 1965 [27]
Sasabe and Saito 1968 [6]
Sasabe 1971 [25]

Poly(n-octyl methacrylate) (PnOMA) Sasabe and Saito 1968 [6]
Sasabe 1971 [25]

Poly(n-nonyl methacrylate) (PnNMA) Williams and Watts 1971 [28]
Poly(n-lauryl methacrylate) (PnLMA) Sasabe and Saito 1968 [6]

Williams and Watts 1971 [28]
Polyethylene (PE), linear-oxidized Sayre et al. 1978 [7]
Polysiloxane liquid crystal Moura-Ramos et al. 1991 [9]
Poly(n-octadecyl methacrylate) (PnODMA) Mierzwa et al. 2000 [29]
Polyisoprene (PI) Floudas et al. 1999 [30, 31]
Polyvinylethylene (PVE) Floudas et al. 2000 [32]
Poly(isoprene-b-ethylene) (PI-PVE) Floudas et al. 1999 [33]
Polystyrene-poly(vinyl methyl ether) (PS/PVME) Floudas and Mierzwa 2000 [34]
Poly(norbornene diethylester) side-chain polymer Mierzwa et al. 2001 [35]

liquid crystal
Poly(norbornene diethylester-b-octene) Mierzwa et al. 2001 [36]
Poly(propylene oxide) (PPO) Williams 1965 [37]

Freeman et al. 1990 [38]
Anderson et al. 1998 [39]

Poly(propylene glycol)/LiCF3SO3 Fontanella 1999 [92]
Poly[(phenyl glycidyl ether)-co-formaldehyde] Paluch et al. 1999 [40]
Poly(bisphenol A-co-epichlorohydrin) Paluch et al. 1999 [41]
Polyurethane elastomer Cheng et al. 1999 [42]
Salol, orthoterphenyl Paluch et al. 1999 [43]
Di-isobutyl phthalate Paluch et al. 1996 [44]
Diglycidyl ether of bisphenol A Corezzi et al. 1999 [45]
NAFION Fontanella et al. 1996 [93]
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α-process at the expense of that for the β-process. Furthermore, in the vicinity
of the single (αβ)-process, pressure leads to the decomposition of the mixed re-
laxation to separate α- and β-processes. These findings are shown in Fig. 8.3 and
8.4. Figure 8.3, gives the effect of pressure on the ε′ and ε′′ of PEMA at two tem-
peratures. At the lowest temperature (θ = 85.4°C) two separate relaxations can
be seen at atmospheric pressure. Increasing pressure results in a better separa-
tion of the two modes mainly through the significant slowing-down of the α-
process. Notice, that the strength of the α-process increases at the expense of the
faster β-process. The situation at the higher temperatures is shown in the same
figure. At atmospheric pressure at θ = 96.4°C, the system exhibits a single (αβ)-
process. Increasing pressure results in the separation into α- and β-processes.
The separation, again, effectively is produced by the α-process becoming very
slow whereas the β-process is much less affected. These results are nicely de-
picted in Fig. 8.4 in the usual Arrhenius representation. It is seen that the (αβ)-
process lies between the extrapolated α- and β-processes and the effect of pres-
sure is to shift the β-process slowly whereas the effect on the α-relaxation is
more important.As a result, the emerging of the (αβ)-relaxation at a given pres-
sure occurs at a location largely determined by the location of the α-process at
that pressure.

These key experiments performed on the lower members of the poly(n-alkyl
methacrylate) series have shown that:

Fig. 8.3. Effect of pressure on the dielectric loss spectra of PEMA at two temperatures. At the
lowest temperature (θ = 85.4°C) two separate relaxations contribute to the dielectric loss.
Increasing pressure results in the separation into α- and β-processes as can be seen in the
spectrum taken under θ = 96.4°C, P = 600 atm (reproduced in part from [5])
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1. The α- and β-processes are interrelated via the conservation relation Δε =
Δεα + Δεβ, and the decrease of Δεβ in these flexible side-chain polymers arises
from the reduction of the free volume which effectively “blocks” the 
β-process. The conservation relation can be understood in terms of

and when pressure has the effect of de-
creasing the strength of the β-process there is a corresponding increase 
of the strength of the α-process in order to conserve the relaxation of all 
of 〈μ2〉.

2. The (αβ)-process at higher temperatures is a “mixed” process which relaxes
the whole of 〈μ2〉 whereas the individual α- and β-processes relax only a 
part of the 〈μ2〉.

8.4
Effect of Pressure on the Local and Global (Chain) Dynamics

It is well known that the local segmental and global chain motions control the
mechanical response of polymers above their glass transition temperature (Tg).

[ ] ( ) [ ] ( )〈 〉 〈 〉 〈 〉μ ϕ μ μ ϕα β
2 2 2t t+ −

Fig. 8.4. Arrhenius representation of the relaxation times corresponding to the three
processes in PEMA: open and filled circles correspond to the α-process at 1 and 500 atm, re-
spectively; open and filled triangles correspond to the β-process at 1 and 500 atm, respectively;
filled rhombus corresponds to the (αβ)-process at 1 atm. Solid and dashed lines give the posi-
tions of the three relaxations at 1 and 500 atm, respectively. The (αβ)-process lies between the
extrapolated α- and β-processes and the effect of pressure is to shift the β-process slowly
whereas the effect of the α-relaxation is more important.As a result, the emerging of the (αβ)-
relaxation at a given pressure occurs at a location which is largely determined by the location
of the α-process at that pressure (reproduced from [5])



The latter can be reached by lowering temperature (T) at a given pressure (P), or
by increasing P at a given T.As we discussed before, the effect of pressure on the
local segmental dynamics and on sub-Tg relaxations has been studied in detail.
It was found that pressure exerts a stronger influence on the segmental as com-
pared to the local sub-glass relaxations and is the right variable if a separation
of the two modes is needed. On the other hand, the effect of pressure on the
global chain dynamics that control the flow regime and thus of interest in poly-
mer processing only recently has started to be explored [30, 31, 39].

Herein we review the results of recent studies [30, 31] treating the effect of
pressure on the segmental and chain dynamics as a function of polymer molec-
ular weight. The polymer is polyisoprene which has been extensively studied be-
fore as a function of temperature for different molecular weights [46–49]. Being
a type-A polymer (according to Stockmayers classification [50]) it has compo-
nents of the dipole moment both parallel and perpendicular to the chain giving
rise, respectively, to end-to-end vector and local segmental dynamics.A study of
the effect of pressure on the segmental and normal mode dynamics requires
polymer chains of variable lengths and M/Me ratios: 1/5, 1/2, 2/3, 2, and 5, i.e.,
from unentangled to well entangled chains. The aim is to investigate the effect of
P on Me. This question is not only of fundamental importance but has industrial
implications as well (i.e., in polymer processing).

For this purpose five cis-polyisoprenes (PI) have been used: PI-1200, PI-2500,
PI-3500, PI-10600, and PI-26000 g mol–1 with the numbers indicating number
averaged molecular weights and with polydispersity of less than 1.1. The entan-
glement molecular weight of PI is 5400 g mol–1; thus the first three samples are
unentangled. A typical set-up [51] for the pressure dependent dielectric mea-
surements consists of the following parts: temperature controlled sample cell,
hydraulic closing press with pump, and pump for hydrostatic test pressure.
Silicone oil is used as the pressure transducing medium. The sample cell consists
of two electrodes 20 mm in diameter and the sample has a thickness of 50 μm.
The sample capacitor is sealed and placed inside a Teflon ring to separate the
sample from the silicon oil. The dielectric measurements were made at different
temperatures in the range 273 to 306 K and for frequencies in the range from 10–2

to 106 Hz using a Novocontrol BDS system composed from a frequency response
analyzer (Solartron Schlumberger FRA 1260) and a broad band dielectric con-
verter. The complex dielectric permittivity ε* = ε′ – iε′′, where ε′ is the real and
ε′′ is the imaginary part, is a function of frequency ω, temperature T and pres-
sure P, ε* = ε*(ω, T, P).

Representative dielectric loss spectra for a PI with molecular weight of 1200
are shown in Fig. 8.5 under isothermal (top) and isobaric (bottom) conditions
(here we refer to isothermal and isobaric in a broad sense; strictly speaking all
spectra are under isothermal/isobaric conditions). Both sets of spectra display
two modes which become slower with increasing pressure and decreasing tem-
perature. The fastest of the two modes corresponds to the local segmental mode
whereas the slower mode corresponds to a spectrum of normal modes. From the
broad spectrum of normal modes in the following we only discuss the longest
normal mode which for homopolymers corresponds to the position of the max-
imum loss. Note that within the δT and δP shown, temperature is more effective
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Fig. 8.5. Dielectric loss for PI-1200 plotted under isothermal conditions (top) at 295 K, and un-
der isobaric conditions (bottom) at 1 bar. The corresponding pressures to the isothermal spec-
tra are: (open squares): 1 bar, (open circles): 0.3 kbar, (filled circles): 0.6 kbar, (open lozenges):
0.9 kbar, (circled plus signs): 1.2 kbar, (circled multiplication signs): 1.5 kbar, (filled triangles):
1.8 kbar, (open triangles): 2.1 kbar, (inverted filled triangles): 2.4 kbar, (inverted open trian-
gles): 2.7 kbar, (filled lozenges): 3.0 kbar. The temperatures for the isobaric spectra are: (open
circles): 205 K, (open squares): 208 K, (open triangles): 213 K, (filled circles): 218 K, (inverted
open triangles): 225 K, (open lozenges): 233 K, (filled squares): 243 K. The symbols “s” and “n”
indicate the segmental and normal modes, respectively (from [31])



is slowing-down both modes, i.e., with an increase in T from 205 to 243 K the
spectrum shifts by nearly five decades whereas increasing the pressure isother-
mally, from P = 1 bar up to P = 3 kbar, results in a shift of only three decades.

In Fig. 8.6 the same spectra are now shifted horizontally to the corresponding
data at a reference pressure (Pref = 1.5 kbar) (top) and temperature (Tref = 213 K)
(bottom) and allow a reasonable superposition of the normal mode spectra.
This shows that the spectrum of normal modes in not affected by changes in T
and P, that is, the intensity and characteristic times of each one of the normal
modes have the same T and P dependence, i.e., the spectral shape is invariant.
However, on the segmental level, the superposition breaks-down and this is
more pronounced under isobaric conditions (Fig. 8.6, bottom). This break-down
of the time-temperature (tTs) and time-pressure superposition (tPs) reflects on
the distinctly different T- and P-dependence of the two modes. There is a steeper
dependence of the shift factors on T and the more pronounced deviations from
tTs indicates that, within the δT and δP shown, temperature is more efficient in
inducing the proximity of the two modes. In other words, to produce a similar
shift of the two modes as a change of T by 40 K one would have to go to very high
pressures which are not accessible with the current experimental set-up.

Typically the analysis of the DS spectra obtained under pressure can be made
as with the spectra obtained by changing temperature, that is, using the empiri-
cal equation of Havriliak and Negami (HN) [52]:

(8.24)

τHN(T, P) is the characteristic relaxation time in this equation, Δε(T, P) = εS – ε∞
is the relaxation strength of the process under investigation, and α, γ describe,
respectively, the symmetrical and asymmetrical broadening of the distribution
of relaxation times. In the fitting procedure both the ε′and ε′′ values at every
temperature and pressure can be used and a typical fit is shown in Fig. 8.7 for PI-
1200 at T = 277 K and P = 2.4 kbar. From the fits to the real and imaginary part
of the ε*(f) we can extract the dielectric strength (Δε), the distribution param-
eters (α, γ), and the characteristic times for each process. The distribution pa-
rameters assume the values αS = 0.55 ± 0.05, γS = 0.7 ±0.05, and αn = 1.0 (fixed),
γn = 0.5 ± 0.05 for the segmental and normal modes, respectively, without dis-
playing any pressure dependence. The rise of the ε′′ at lower frequencies is caused
by the conductivity (ε′′ ~ (σo/εo)ω–1, where σo is the d.c.-conductivity and εo is 
the permittivity of free space) which usually is included in the fitting procedure.

The dependence of the relaxation times for both the segmental and longest
normal mode can be described by the VFT equation (logτ = logτo + B/(T – T∞)
where logτo is the limiting value at high T, B is the apparent activation energy
and T∞ is the “ideal” glass transition temperature. For example, the following pa-
rameters have been obtained for the PI-1200 segmental and normal modes, re-
spectively: –log(τo[s]) = 13.9, B = 664 ± 40 K and T∞ = 153 ± 1 K and –log(τo[s])
= 10.84, B = 646 ± 30 K and T∞ = 149 ± 1 K and the higher T∞ value for the seg-
mental mode indicates that the modes cross. The corresponding crossing of the
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Fig. 8.6. “Master-curves” obtained by shifting the spectra of Fig. 8.5 to the peak of the normal
mode spectra by applying a horizontal pressure-shift factor (aP) (top) and a temperature shift
factor (aT) (bottom). The corresponding reference spectra are at Pref = 1.5 kbar and Tref =
213 K. The key to the symbols is the same as in Fig. 8.5 (from [31])

modes by decreasing T under isobaric conditions (P = 1 bar) has been discussed
before in terms of the breakdown of the Rouse model [53–56].

The relaxation times obtained by varying T and P can be discussed in two
representations: τ (T, P) and τ (T,ρ) which provide complementary information.
The pressure dependence of the relaxation times corresponding to the segmen-
tal and longest normal mode are shown in the τ (T, P) representation in Fig. 8.8
for the PI-1200 at four temperatures as indicated. Within the investigated pres-



sure range the relaxation times exhibit a linear P-dependence, i.e.,

(8.25)

where τP and τo are the characteristic times at pressures P and Po, respectively
and the coefficient Λ(T) is independent of pressure and is proportional to the
activation volume as discussed earlier. Notice that the two modes have distinctly
different P-dependencies. For example, at T = 283 K, – logτS = 8.8 – 1.156 ×
10–3 P and –logτn = 6.03 – 1.029 × 10–3 P (P in bars) for the segmental and nor-
mal modes, respectively, which implies that the two modes will cross at a finite
pressure (P ≈ 22 kbar). Based on the discussion in Sect. 8.2, we can define an ap-
parent activation volume ΔV as

(8.26)

The extracted activation volumes from the different PI’s are plotted in Fig. 8.9 as
a function of the temperature difference from the respective Tg (the calorimet-
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Fig. 8.7. Representative spectrum of the real (top) and imaginary (bottom) parts of the di-
electric permittivity for the PI-1200 plotted as a function of frequency at T = 277 K and 
P = 2.4 kbar. The spectrum is fitted using two HN functions and a conductivity contribution.
The solid line is the result of the fit



ric Tg values used were  191, 199, 200, 204, and 208 K for the PI-1200, PI-2500, PI-
3500, PI-10600, and PI-26000, respectively). First, note that the activation vol-
umes from the different molecular weights collapse on a single curve when
scaled as T – Tg and second, the strong T-dependence which is reminiscent to the
postulated T-dependence of the cooperative volume [57]. The dashed line in the
figure gives the monomer volume and shows that at approximately 80 K above
Tg the activation volume of PI is comparable to the monomer volume.

The T- and P-effects on the relaxation times can be cast together using the
density as a variable in a τ (T, ρ) representation. For this purpose the Tait equa-
tion can be employed [58]:

(8.27)

where C(θ) is the Tait parameter which depends only on T according to C(θ) = Co
exp(– C1θ) and V(0,θ) = Ao + A1θ + A2θ2. For PI the above parameters are: Co =
202 MPa, C1 = 4.653 × 10–3 °C and Ao = 1.0943 cm3 g–1, A1 = 0.6293 × 10–3 cm3

g–1 °C–1, A2 = 0.6231 × 10–6 cm3 g–1 °C –2. Based on the Tait equation the corre-
sponding volume for the isobaric and isothermal experiments can be calculated
and the result for the segmental and normal modes are shown in Fig. 8.10 in the
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Fig. 8.8. Pressure dependence of the relaxation times corresponding to the segmental (open
symbols) and longest normal mode (filled symbols) of PI-1200 at different temperatures as in-
dicated. The lines are linear fits to the data (from [31])



–logτ vs ρ representation. Notice that the isobaric data (at 1 bar) in this repre-
sentation resemble the same data in the –logτ vs T –1 representation. The resem-
blance calls for a modified VFT equation

(8.28)

where D is a constant and ρg is the density at Tg. Applying the same function to
both modes (at P = 1 bar) we obtain ρg

nor = 0.972 g cm–3 as compared to ρg
seg =

0.969 g cm–3, that is, the two modes cross also in this representation. The
crossover is expected since T∞

nor < T∞
seg and ρ is – to a first approximation – in-

versely proportional to T. In the same figure the isothermal relaxation times cor-
responding to the segmental and normal modes at two temperatures are plotted.
Because of the functional form of the Tait equation the isothermal data show a
curvature in the –logτ vs ρ representation and can be fitted to the modified VFT
equation. The resulted values of ρg for the two modes are consistently ρg

nor > ρg
seg

but the glasses made by pressurizing the samples under isothermal conditions
possess a much higher density than the glasses prepared under isobaric condi-
tions since they are prepared at elevated pressures. This shows that T at a given

log logτ τ
ρ ρ

= +
−o

g

D

312 8 Effect of Pressure on the Dielectric Spectra of Polymeric Systems

Fig. 8.9. Activation volume of the different polyisoprenes plotted as a function of the temper-
ature difference from the respective Tg. The solid line is a guide for the eye. The dashed line in-
dicates the monomer volume (from [31])



P is more effective in shifting the two modes and in inducing a glass transition
and this is consistent with the fact that pressure shift factors exhibit a weaker de-
pendence on P and ρ than the temperature shift factors on T and ρ.

We now turn our attention to the molecular weight dependence of the seg-
mental and longest normal modes. Figure 8.11 gives the two processes in the dif-
ferent samples as a function of pressure, at 320 K. As discussed earlier, the seg-
mental modes through the higher activation volume exhibit a stronger P-depen-
dence than the corresponding normal modes.At any given P, the longest normal
mode times exhibit a weak molecular weight dependence for M < Me (τ ~ M 2)
and a stronger dependence for M > Me (τ ~ M 3.4) in qualitative agreement with
the Rouse and reptation models [59], respectively. Notice the additional molec-
ular weight dependence for the smaller molecular weights due to chain-end ef-
fects. To make the comparison with theory more quantitative we normalize the
longest normal mode times to the corresponding segmental times and the result
is shown in Fig. 8.12. The reduced quantity plotted in the figure is now free from
chain-end effects. Two regimes are clearly seen with distinctly different slopes
below and above Me; however, the point of intersection of the lines is not much
influenced by pressure. The weak P-dependence of the normalized relaxation
times is better depicted in the inset where the slopes are plotted as a function of
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Fig. 8.10. Relaxation map for the PI-1200 as a function of density showing both the segmental
(open symbols) and longest normal (filled symbols) modes. Triangles correspond to relaxation
times measured under isobaric conditions (at P = 1 bar) by changing the temperature. Squares
and circles correspond to relaxation times measured isothermally at 277 and 283 K, respec-
tively, by changing pressure. The lines are fits to Eq. (8.28) (from [31])
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applied P. For M > Me, the slope changes from 3.1 to about 3.2 whereas a weaker
P-dependence is found for M < Me. Nevertheless, increasing pressure does not
change significantly the picture from atmospheric pressure and this signifies
that there is a minor, if any, dependence of Me on P.

In conclusion, the study [30, 31] of the effect of pressure on the segmental and
normal modes of the type-A polymer polyisoprene as a function of molecular
weight, from unentangled to well-entangled chains, revealed that the spectral
shape of the normal modes and of the segmental mode is invariant under vari-
ation of T and P. Both time-temperature superposition and time-pressure su-
perposition fail due to the higher sensitivity of the segmental mode to T and P
variations, respectively. The latter implies a higher activation volume for the seg-
mental mode. The activation volume of the segmental mode for the different
molecular weights exhibits a strong T-dependence and scales as T – Tg. Lastly,
Me does not show a significant pressure dependence.

Fig. 8.11. Molecular weight dependence of the segmental (squares) and longest normal mode
(circles) for the five PIs investigated plotted for different pressures at 320 K. The shortest time
corresponds to the data at 1 bar and the rest are interpolated data shown at intervals of
0.5 kbar. The line through the segmental times at atmospheric pressure is a guide for the eye.
The lines for the normal mode at 3.5 kbars represent linear fits to the M < Me and M > Me
regimes (from [31])
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8.5
Effect of Pressure on the Miscibility of Blends/Copolymers

Block copolymers and polymer blends are polymeric composites with many in-
teresting properties (optical, mechanical, electrical, ionic, barrier, etc.) and po-
tential applications. Polymer blends [60] phase separate on a macroscopic scale
(macrophase separation) by heating or cooling. Block copolymers [61], i.e., a se-
quence of two homopolymers linked together with a covalent bond, cannot
macrophase separate, but instead, micro-phase separate into a variety of com-
plex nano-structures, mainly because of enthalpic reasons. The phase behavior
of blends and copolymers can be discussed in terms of phase diagrams [62]
composed of the following parameters: the product of the overall degree of poly-
merization N with the interaction parameter χ, (χN) and the composition fA
(= NA/N). A typical phase diagram for a diblock copolymer and a blend of two
homopolymers are shown in Fig. 8.13. There are different regimes where the sys-
tem may exist in the thermodynamically “homogeneous” state or in the phase
separated state. Herein we will review the effect of pressure on the dynamic mis-
cibility of the “athermal” diblock copolymer poly(isoprene-b-vinylethylene)

Fig. 8.12. Molecular weight dependence of the longest normal mode relaxation time normal-
ized to the corresponding segmental mode relaxation time at the same pressure. The filled
squares correspond to the data at 1 bar and the rest are interpolated data shown in increments
of 0.5 kbar and the lines are fits to the P = 1 bar data. In the inset, the pressure dependence of
the two slopes for M < Me (open squares) and M > Me (filled circles) are shown (from [31])



[33] and the homogeneous blend polystyrene-poly(vinyl methyl ether) [34] by
exploring the dynamics at the segmental level.

Homogeneous blends and disordered diblock copolymers can be dynami-
cally heterogeneous exhibiting two segmental (α-) relaxations [63–67] that un-
derlie the single – albeit broad – calorimetric glass transition measured by dif-
ferential scanning calorimetry (DSC). The dynamic heterogeneity is further
asymmetric with respect to the segmental dynamics of the pure components
[68–72]. The segmental dynamics of the high Tg component in the blend is ef-
fectively plasticized by the presence of the low Tg component and relates to the
composition average Tg. On the other hand, the segmental dynamics of the low
Tg component is much less affected becoming somewhat slower as compared to
the bulk homopolymer. The origin of this phenomenon, with impact to the me-
chanical behavior and flow of multi-component polymer systems, can be in-
tramolecular due to chain connectivity [68, 71] and intermolecular [72, 73] due
to spatial composition heterogeneities. The presence of composition fluctua-
tions within a small composition dependent volume V(φ) of the “cooperatively
rearranging regions” can drive the effective local composition φ away from the
mean. The distribution of motional times F(lnτ) with the appropriate map-
ping between φ and the relaxation time τ captures the main experimental find-
ings [74].
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Fig. 8.13. Schematic phase diagrams for polymer blends and diblock copolymers
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8.5.1
The PI-b-PVE Athermal Diblock Copolymer

Measuring selectively the individual component dynamics has either led to a
single or double segmental relaxation for each species in the blend. Specifically,
for the athermal (nearly ideal χ ≈ 0) [75] polyisoprene-poly(vinylethylene) (PI-
PVE) system (either as a blend or a diblock) species selective techniques, un-
equivocally show a unimodal distribution of segmental times for each compo-
nent in the mixed system. For PI/PVE with a ΔTg ≈ 70 K, F(lnτ) becomes uni-
modal by considering chain connectivity effects which set a low intramolecular
cutoff in the accessible compositions sampled by each component, i.e.,2b/ξ < φPI
< 1, with b being the segmental length and ξ = V 1/3.

Vitrification of a single component fluid occurs not only by decreasing tem-
perature T but also by increasing pressure P, the influence of P on the dual seg-
mental relaxation spectrum of PI-b-PVE can be examined using dielectric spec-
troscopy. Since the “slow” and “fast” peaks in the DS spectra correspond solely to
the high and low-Tg components (the PVE and PI glass temperatures are at 272
and 208 K, respectively) then depending on the activation volume (ΔV) of each
species, pressure can give rise to the following scenarios: (i) enhance dynamic
symmetry and therefore induce local mixing (when ΔVfast > ΔVslow), (ii) unal-
tered dynamics (ΔVfast ≈ ΔVslow), (iii) enhance dynamic asymmetry and there-
fore induce local demixing (when ΔVfast < ΔVslow). Studies on the effect of P on
the segmental dynamics of PI [30, 31] and PVE [32] homopolymers and on the
chain dynamics of PI with DS, have shown that the homopolymers possess sig-
nificantly different activation volumes. Evidently, the small selectivity of the T-
dependent DS – through the different amplitudes of the “fast” and “slow” com-
ponents (for example in the PI-PVE system the dielectric strength (TΔε) of PI
and PVE, is 24 and 33, respectively) – can be significantly enhanced by selecting
homopolymers with different activation volumes. Here we employ an example
from a system exhibiting the first scenario, i.e., ΔVfast > ΔVslow and show that P,
can induce dynamic homogeneity.

The samples employed were prepared via anionic polymerization and size ex-
clusion chromatography resulted in a polydispersity of less than 1.1. The PI
composition in the PI-b-PVE diblock was 0.495 and the sample had a total
weight averaged molecular weight of 3.16 ¥ 105 g mol–1. The PVE homopolymer
had a number averaged molecular weight of 6.7 ¥ 104 g mol–1 and the two PIs
1.06 × 104 g mol–1 and 2.6 × 104 g mol–1. Both T- and P-dependent measurements
were made for the diblock copolymer at three temperatures (279, 294, and 309 K)
and for different pressures in the range (1 bar to 3.15 kbar).

Some typical dielectric loss spectra at different temperatures and at ambient
pressure are shown in Fig. 8.14. The spectra reveal a double peak structure orig-
inating from the fast PI segmental relaxation (notice that the PI chain relaxation,
i.e., the end-to-end vector relaxation through the cumulative dipole moment
along the chain contour, is too slow for the present molecular weight) and a
slower PVE segmental relaxation. In the inset, the same spectra are shown but
now shifted with a horizontal shift factor aT and a vertical shift factor bT to the
reference spectrum at 258 K. While the double peak structure is preserved, a



symmetric spectral broadening (at low frequencies) is evident with decreasing
T. The representation of the ε′′ spectra proceeds via a double Havriliak-Negami
function keeping the distribution parameters of the “fast” segmental relaxation
fixed to the values of the bulk PI homopolymer (α = 0.5 and γ = 0.7, indepen-
dent of T). Then the low frequency slope of the “slow” relaxation was found to
vary from 0.53 ± 0.02 at 273 K to 0.32 ± 0.02 at 248 K. The slow process due to
PVE corresponds qualitatively to the average Tg of the mixed glass whereas the
fast process due to PI is slightly slower than the PI homopolymer at the same T
as shown in the upper right inset to Fig. 8.14.

Isothermal dielectric loss spectra for different pressures are shown in
Fig. 8.15 at 309 K. The bimodal appearance of the ε′′( f ) spectra become less ap-
parent with increasing P as also seen in the reduced plots in the inset. In fact, as
seen in the shifted data, the spectra become more symmetric with increasing P.
Since T and P can influence differently the two segmental relaxations, one can
compare the loss spectra under iso-kinetic conditions; i.e., at (T, P) conditions
with the same relaxation time for the main (“slow”) process. For example,
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Fig. 8.14. Dielectric loss spectra ε′′ as a function of frequency for the symmetric PI-b-PVE di-
block copolymer shown at different temperatures: (open circles): 238 K, (open squares): 248 K,
(filled triangles): 258 K, (open inverted triangles): 268 K, (open lozenges): 278 K at ambient
pressure. The reduced spectra (Tref = 258 K) are shown in the upper left inset. The T-depen-
dence of the characteristic times of the fast (circles) and slow (squares) relaxation processes
are also plotted as an inset in the usual Arrhenius representation together with the PI and PVE
homopolymer relaxations in the bulk (solid lines) (from [33])



Fig. 8.16 compares two spectra taken at different (T, P) where the main peak for
both sets corresponds to 0.2 ms. Notice that this representation leads to a good
superposition at low frequencies; however, at high frequencies the two sets of
spectra are quantitatively different. The successful overlapping of the main low
frequency peak suggests that at these two (T, P) conditions in each case the lower
frequency process is the same distance T – Tg(P) from the Tg. Then, the dispar-
ity in the high frequency part of the spectrum of the pressurized sample can
arise from the distinctly different P-dependence of the “fast” process.

The strong P-dependence of the main process due to the “slow” PVE relax-
ation in the copolymer is shown in Fig. 8.17 for three temperatures. Up to the
highest applied pressure the plots of –logτ against P are linear for each temper-
ature which implies that log(τP/τo) = Λ(T)(P – Po), can be employed. The data
have been parameterized as, – log(τ [s]) = 5.14 – 2.06 × 10–3 P at T = 279 K,
–log (τ [s]) = 6.08 – 1.23 × 10–3 P at T = 294 K and – log (τ [s]) = 6.85 – 1.0 ×
10–3 P (P in bars) at T = 309 K. From the slopes of the data in Fig. 8.17 the fol-
lowing activation volumes have been deduced: 61, 71, and 112 cm3 mol–1 at 309,
294,and 279 K,respectively.The activation volume in the copolymer has a strong
T-dependence and increases with decreasing T in a qualitatively similar way
with the cooperative volume.

It is meaningful, therefore, to compare ΔV in the diblock and the pure ho-
mopolymers at T equidistant from Tg as shown in the inset to Fig. 8.17. Notice
that the homopolymers have significantly different activation volumes and that
this is also reflected in the monomer volumes implying local packing effects.
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Fig. 8.15. Dielectric loss spectra as a function of pressure shown at T = 309 K ((filled lozenges):
P = 1 bar, (open circles): P = 0.5 kbar, (filled circles): P = 1 kbar, (open squares): P = 1.5 kbar,
(open triangles): P = 2 kbar, (inverted open triangles): P = 2.4 kbar, (filled inverted triangles):
P = 2.77 kbar and (filled squares): P = 3.15 kbar. In the inset these spectra have been shifted to
the spectrum at a reference pressure (P = 2 kbar at 309 K) and allow a direct comparison of
the spectral shape (from [33])



The observed similarity of ΔV in the diblock with the pure PVE corroborates the
notion that the main relaxation in the former is due to the hard component
(PVE) that is noticeably characterized by a lower ΔV, as compared to the soft
block (PI) under similar ΔTg. For independent component dynamics, pressur-
ization of the copolymer would slow down more efficiently the fast (PI) rather
than the slow (PVE) component simply because of the higher ΔV requirement in
the latter. In fact, the spectrum of Fig. 8.16 at 3.15 kbar and 309 K can be ratio-
nalized by estimating the relative slowing down of the two components from:
Δ log(τPI/τPVE) = (ΔVPI – ΔVPVE) ΔP/(2.303 RT) ≈ 1.6 which is about the required
frequency shift for successful overlapping of the two processes of Fig. 8.16. In
this estimation we have assumed Tg = 233 K for both components in the diblock
and the ΔV values at ΔTg = 76 K. The utilization of ΔV of the bulk PI instead of
the corresponding quantity of the fast process in the diblock, is justified by the
observation that the characteristic times of the latter are in close proximity to
the bulk PI.

In conclusion, decreasing T and increasing P produce qualitatively similar
broadening at low frequencies; however, P unlike T has an additional function;
high P induces dynamic homogeneity in contrast to temperature. The former is
a property of the concentration fluctuations and the strong non-Arrhenius de-
pendence of the primary process, whereas the latter is a result of the different ac-
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Fig. 8.16. Comparison of the measured dielectric loss spectra under iso-kinetic conditions:
(filled triangles): T = 258 K and P = 1 bar, and (open circles): T = 309 K, P = 3.15 kbars. The
main peak for both spectra corresponds to about 0.2 ms (from [33])



tivation volumes of the species.As we will see below it is not always the soft com-
ponent that is the one with the highest activation volume.

8.5.2
The PS/PVME Homogeneous Blend

The dynamics in the miscible blend PS/PVME have attracted many investiga-
tions with a variety of techniques ([70] and references therein). Rheology has
been used and found that the time-temperature superposition principle fails in
the blends, meaning that the system is thermorheologically complex at both the
segmental and terminal regimes. DS has also been employed to probe the dy-
namics at the segmental level [70, 73]. Due to the much higher dipole moment of
PVME as compared to PS, DS allows the selective probing of the PVME dynam-
ics in the blends. The blend spectra were found to be asymmetrically broadened
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Fig. 8.17. Pressure dependence of the characteristic times corresponding to the main relax-
ation in the PI-b-PVE shown at three temperatures: (open squares): T = 279 K, (open trian-
gles): T = 294 K, (open circles) T = 309 K. The lines are linear fits to the experimental times.
In the inset the activation volume for the segmental relaxation of PI ((open circles):
MW = 2.6 × 104 g mol–1, (filled circles): MW = 1.06 × 104 g mol–1) and PVE (filled squares)
homopolymers as well as of the PI-b-PVE copolymer (open squares) are plotted at tempera-
tures equidistant from the corresponding Tg’s. For the Tg the following values were used: 272,
208 and 233 K for PVE, PI and PI-b-PVE respectively and correspond to the temperature
where the maximum relaxa-tion time in DS is 10 s. The lines are linear fits (from [33])
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Fig. 8.18. Dielectric loss spectra for pure PVME as a function of temperature at 1 bar (top) and
as a function of pressure at 294 K (bottom). The corresponding temperatures to the data taken
at 1 bar are: (filled squares): 251 K, (open squares): 256 K, (filled circles): 261 K, (open circles):
266 K, (filled triangles): 271 K, (open triangles): 276 K, (inverted filled triangles): 281 K, (in-
verted open triangles): 286 K, (filled lozenges): 291 K and (circled minus sign): 301 K. The cor-
responding pressures to the data taken at 294 K are: (filled squares): 1 bar, (open squares):
0.3 kbar, (filled circles): 0.6 kbar, (open circles): 0.9 kbar, (filled triangles): 1.2 kbar, (open tri-
angles): 1.5 kbar, (inverted filled triangles): 1.8 kbar, (inverted open triangles): 2.1 kbar, (filled
lozenges): 2.4 kbar and (open lozenges): 2.7 kbar (from [34])



towards the low frequency side and models based on concentration fluctuations
have been employed to account for the spectral shape. Here we review the effect
of pressure on the dynamic miscibility in PS/PVME blends [34]. Representative
dielectric spectra for the pure PVME are shown in Fig. 8.18 as a function of tem-
perature and pressure. In Fig. 8.19 use of the time-temperature (tTs) and time-
pressure (tPs) superposition allows “master curves” to be constructed from the
data shown in Fig. 8.18. The tTs allows the frequency dependence of the complex
permittivity ε* at any temperature to be determined from a master curve at a ref-
erence temperatures Tref according to

(8.29)

Similarly, the use of the tPs allows the frequency dependence of the complex per-
mittivity ε* at any pressure to be determined from a master curve at a reference
temperature Pref according to

(8.30)

It is evident that at each temperature (pressure), a single frequency-scale shift
factor aT (aP) and a single permittivity-scale shift factor bT (bP) allow superposi-

ε ε* *( ; ) ( ; )f P b a f PP P= ref

ε ε* *( ; ) ( ; )f T b a f TT T= ref
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Fig. 8.19. “Master curves” obtained by applying vertical (b) and horizontal (a) shift factors to
the data shown in Fig. 8.18. The corresponding temperatures to the data taken at 1 bar are:
(filled squares): 251 K, (open squares): 256 K, (filled circles): 261 K, (open circles): 266 K, (filled
triangles): 271 K, (open triangles): 276 K, (inverted filled triangles): 281 K, (inverted open tri-
angles): 286 K, (filled lozenges): 291 K and (circled minus signs): 301 K. The corresponding
pressures to the data taken at 294 K are: (filled squares): 1 bar, (open squares): 0.3 kbar, (filled
circles): 0.6 kbar, (open circles): 0.9 kbar, (filled triangles): 1.2 kbar, (open triangles): 1.5 kbar,
(inverted filled triangles): 1.8 kbar, (inverted open triangles): 2.1 kbar, (filled lozenges): 2.4 kbar
and (open lozenges): 2.7 kbar. On the left, the spectra taken at different temperatures were
shifted to the spectrum at 251 K, and on the right, the spectra taken at the different pressures
at 294 K, were shifted to the spectrum at 1.5 kbar (from [34])



tion of all dielectric spectra at temperature T (pressure P) with the spectra at the
reference temperature Tref (Pref). Since T and P completely define the thermody-
namic state of the system we conclude that the PVME relaxation is described by
a distribution function whose shape is independent of the thermodynamic state
of the system. However, in the blends, tTs and tPs fail due to the broadening of
the spectra towards the low-frequency side.

In Fig. 8.20 the relaxation times corresponding to the maximum loss are plot-
ted in the usual Arrhenius representation. Notice that the relaxation processes in
the blends are located in the vicinity of the pure PVME relaxation. The times
have been fitted to the VFT equation with parameters –12.1, 720 ± 70 K, 322 ±
3 K and –11.8, 622 ± 24 K, 200 ± 2 K for the PS and PVME homopolymers, re-
spectively. The corresponding parameters for the 30/70 and 50/50 blends are:
–11, 480 ± 30 K, 218 ± 2 K and –10.3, 460 ± 30 K, 220 ± 2 K, respectively.

The pressure dependence of the relaxation times corresponding to the maxi-
mum loss of the two homopolymers is shown in Fig. 8.21. The relaxation times
display a linear dependence within the investigated pressure range with differ-
ent slopes for the PVME and PS. For example, at 294 K (i.e., ΔT = T – T∞ = 94 K),
an increase of pressure by 1 kbar results in a slowing down of the PVME relax-
ation times by about 1.5 decades, whereas the same pressure applied at 418 K
(i.e., ΔT = T – T∞ = 96 K), results in the retardation of the PS times by about 3.5
decades. The corresponding relaxation times in the blends were found to have a
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Fig. 8.20. Temperature dependence of the relaxation times corresponding to the maximum di-
electric loss in the usual activation plot. The key to the symbols are: (filled squares): bulk PS,
(filled circles): bulk PVME, (open circles): PS/PVME (30/70) and (open triangles): PS/PVME
(50/50). The lines are fits to the VFT equation (Eq. 8.11) (from [34])



similar P-dependence as with the PVME. The corresponding activation volumes
are plotted in Fig. 8.22 for the PS, PVME homopolymers and their blends. In or-
der for this comparison to be meaningful the volumes are compared at temper-
atures equidistant from the respective “ideal” glass transition temperatures. The
result shows that the apparent activation volume of the process corresponding
to the maximum loss in the blends exhibit similar values and identical T-depen-
dence with the pure PVME being much smaller than the corresponding volume
in the PS.

To make the comparison between the homopolymers and their blends more
quantitative the various Tg(P) dependencies are compared in Fig. 8.23. Here Tg
is operationally defined as the T corresponding to a relaxation time of 100 s and
involves extrapolations from the isothermal and isobaric data. The P-depen-
dence of the glass transition temperatures can be parameterized as Tg

PS(K) =
373.4 + 22.8 P (kbar), Tg

PVME(K) = 249 + 9.21 P (kbar), Tg
70/30 (K) = 258 + 9.6 P

(kbar), and Tg
50/50 (K) = 264.6 + 9.0 P (kbar). The slopes dTg/dP are also plotted 

in the inset and confirm the assignment of the peak maximum as reflecting
mainly PVME relaxing segments in the blends. The concentration fluctuation
model employed earlier to account for the affect of blending on the shape of the
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Fig. 8.21. Pressure dependence of the relaxation times at maximum loss for the homopoly-
mers: filled symbols: PVME,open symbols: PS shown at different temperatures: (filled squares):
294 K, (filled circles): 301 K, (filled triangles): 308 K, (inverted filled triangles): 317 K, (filled
lozenges): 326 K, (open squares): 418 K, (open circles): 423 K, (open triangles): 428 K, (inverted
open triangles): 433 K. The solid and dashed lines are linear fits to the PVME and PS relaxation
times, respectively (from [34])
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segmental relaxation as a function of T [73, 76] can also be applied here to de-
scribe the effect of P on the concentration fluctuations.

8.6
Effect of Pressure on Polymer Crystallization

Pressure like temperature can induce polymer crystallization. Although the ef-
fect of pressure on the segmental relaxation of amorphous polymers has been
investigated, the corresponding effect on the complex relaxation spectra of
semicrystalline polymers is relatively unexplored. Pressure might also have ad-
ditional functions than temperature alone. For example, the densification of the
system may influence the dynamics and the crystallization kinetics. Such inves-
tigations require a polymer with strong dipole moment that undergoes crystal-
lization/melting at a convenient temperature range. Moreover, for intensity rea-
sons, the dipole ideally should be located near but outside the crystal.

A good example of a homopolymer undergoing crystallization which fulfill
these requirements is the semicrystalline polymer poly(n-octadecyl methacry-

Fig. 8.22. Activation volumes of the homopolymers PS (filled circles) and PVME (filled
squares) and of the blends PS/PVME (30/70) (open circles) and PS/PVME (50/50) (open trian-
gles) plotted as a function of the temperature difference (ΔT = T – T∞) from the respective
“ideal” glass temperature. The following T∞ values have been used: PVME: 200.3 K, PS: 322 K,
PS/PVME (30/70): 217 K and PS/PVME (50/50): 220 K (from [34])
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late) (PnODMA) with a melting temperature of 308 K [29]. PnODMA is a nice
probe for sidechain crystallization by using dielectric spectroscopy; being a
member of the poly(n-alkyl methacrylate) series has a strong dipole moment
which is located in the vicinity of both the backbone and the crystallizing units.
Static experimental probes can account for the morphology (wide-angle X-ray
scattering (WAXS), differential scanning calorimetry (DSC)) and dynamic
probes (DS) to monitor the relaxations in the melt and crystal states. For
PnODMA earlier WAXS [77, 78] and infra-red (IR) studies [79] have shown that
– at atmospheric pressure – part of the side-chains composed of about ten me-
thylene units crystallize in a lattice with a hexagonal symmetry. Can pressure 
affect the crystal characteristics such as crystal thickness and overall crystallin-
ity and influence the macroscopic properties of the material?

Some structural information is needed before the DS study. The (apparent)
melting temperature T¢m and the heat of fusion have been determined with DSC
and amount to 308 K and 45 J · g–1, respectively. WAXS measurements revealed
that the degree of crystallinity is about 50%. From the WAXS diffraction peaks,
the heat of fusion, the degree of crystallinity, and FTIR spectroscopy on
monomolecular layers, the following model has been proposed.According to the
model, shown in Fig. 8.32 (below), crystallites are formed by intercalating side

Fig. 8.23. Pressure dependence of the glass temperature for the homopolymers PS (filled
lozenges) and PVME (filled circles) and of the blends PS/PVME (30/70) (open squares) and PS/
PVME (50/50) (open triangles). For the Tg definition we have used the temperature at which
the relaxation times are 100 s. In the inset the dTg/dP is shown as a function of the PVME vol-
ume fraction (from [34])



chains pointing in opposite directions. The “amorphous” phase is composed of
the chain backbone and some portion of the side chains in their vicinity com-
posed of five to seven methylene units. The latter act as spacers to adjust for the
density difference between the hexagonally packed side-chains and the steric re-
quirements imposed up on the side-chains by fixing them to the polymer back-
bone. This leaves about ten methylene units within the crystallites.

Figure 8.24 gives some representative dielectric loss spectra of PnODMA ob-
tained by increasing T at atmospheric pressure (top) or by increasing pressure
at 321 K (bottom). Below the melting temperature (T o

m) for a given pressure or
above the critical pressure (Pc) at a given temperature, upon crystallization, the
dielectric spectra undergo significant changes: first they shift to lower frequen-
cies and broaden considerably towards the lower frequency side. In addition,
there is a loss of the crystal phase intensity relative to the melt which is both T-
and P-dependent.

DS apart from the dynamics provides valuable information through the in-
tensity of the process under investigation. The dielectric strength for segmental
dynamics depends on T and P and is given by

(8.31)

where ρ(T,P) is the mass density and g (T,P) is the Kirkwood correlation func-
tion which takes into account the short-range orientation correlations between
a reference molecule and its nearest neighbors. F(T, P) is the local field which is
given by

(8.32)

Since T and P enter in the expression through different factors we plot in Fig. 8.25
the normalized quantity, TΔε/ρF, which is proportional to g(T, P). In the melt,
the increase of the normalized strength with P signifies a strong g(T = constant,
P) dependence and the highest value of the orientation correlations is obtained
at the transition point. In the crystal state, the opposite trend results from the de-
crease in the number of mobile dipoles through the incorporation of methylene
units to the crystal which tends to increase the crystal thickness.Temperature has
a similar effect on the normalized strength. In the melt, increasing T weakens the
strong pair orientation correlations between adjacent dipoles. The effect is spec-
tacular: decreasing T within 40 K doubles the value of g(T, P = constant). This
strong T-dependence indicates that, by cooling towards the transition tempera-
ture, dipoles become increasingly correlated, i.e., there exists a pre-ordering
mechanism before the onset of crystallization. This could originate from the ex-
tension of the sidechains prior to crystallization which tend to increase g(T, P)
but does not involve complete ordering and thus is not observable in the diffrac-
tion experiments. Thus, DS through the intensity of the process can provide valu-
able information which is not accessible by static experiments.

The loss of crystal phase intensity with decreasing T is better shown in
Fig. 8.26 (top). Here the assumption is that the intensity in the semicrystalline
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Fig. 8.24. Dielectric loss spectra for PnODMA under isobaric (top) and isothermal (bottom)
conditions. The open and filled symbols correspond to spectra taken within the melt and crys-
tal phases, respectively. The corresponding temperatures for the isobaric spectra are: (filled
lozenges): 278 K, (inverted filled triangles): 283 K, (filled triangles): 288 K, (filled circles): 293 K,
(squared multiplication signs): 298 K, (squared plus signs): 303 K, (open circles with vertical
lines): 308 K, (open circles with horizontal lines): 313 K, (circled plus signs): 318 K, (stars):
323 K, (X): 328 K, (plus signs): 333 K, (open lozenges): 338 K, (inverted open triangles): 343 K,
(open triangles): 348 K, (open circles): 353 K, (open squares): 358 K. The pressures for the
isothermal spectra are: (open squares): 1 bar, (open circles): 0.3 kbar, (open triangles): 0.6 kbar,
(inverted open triangles): 0.9 kbar, (open lozenges): 1.2 kbar, (filled circles): 1.5 kbar, (filled
squares): 1.8 kbar, (filled triangles): 2.1 kbar (from [29])
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Fig. 8.25. Pressure (top) and temperature (bottom) dependence of the normalized relaxation
strength TΔε /ρF, shown for different temperatures: (filled squares): 294 K, (filled circles):
304 K, (filled triangles): 313 K, (inverted filled triangles): 321 K, (filled lozenges): 329 K, (plus
signs): 338 K, (X): 350 K and different pressures: (filled squares): 1 bar, (filled circles): 0.3 kbar,
(filled triangles): 0.6 kbar, (inverted filled triangles): 0.9 kbar, (filled lozenges): 1.2 kbar, (plus
signs): 1.5 kbar, (X): 1.8 kbar, (stars): 2.1 kbar. The open and filled symbols correspond to the
melt and crystal states, respectively. The lines are guides to the eye (from [29])



material results solely from dipoles excluded from the crystals, i.e., dipoles lo-
cated within the amorphous phase. This assumption seems realistic; the dielec-
tric relaxation within the crystal structure would be very slow and of extremely
low intensity since the dipole moment of PnODMA is located near the backbone
and this is excluded from the crystallizing units. In Fig. 8.26 we plot the ratio of
the dielectric strength in the semicrystalline material to the corresponding
quantity in the melt state (obtained by extrapolation). The intensity ratio at the
transition is about 0.5 which is in accordance with the crystallinity of 50% as ob-
tained from WAXS. However, by decreasing T this ratio displays a linear decrease
at constant crystallinity. A two-phase system composed from amorphous and
crystalline phases cannot explain the strong T-dependence of the ratio.
Alternatively, it has been proposed that the ratio provides a direct measure of the
material located within the interface, i.e., within the rigid amorphous phase
(RAP) [80–83]. The latter has a strong T-dependence originating from a T-de-
pendent number of dipoles that freeze by lowering T.At 250 K,most of the amor-
phous phase is composed from the RAP, whereas at the melting temperature the
RAP vanishes. At intermediate temperatures, the single but very broad relax-
ation process originates from “fast” and “slow” dipoles located within the mobile
amorphous and rigid amorphous phases, respectively. However, there is no tem-
perature where a dual relaxation could be found, that is, separate relaxations of
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Fig. 8.26. Temperature-
(top) and pressure-
(bottom) dependence of the
ratio of the crystal to melt
dielectric strength. In the
latter the intensity ratio is
plotted as a function of
pressure difference from the
critical pressure Pc (T)
needed to induce the crys-
tallization. The different
data sets in the latter corre-
spond to different tempera-
tures: (filled squares): 304 K,
(filled circles): 313 K, (filled
triangles): 321 K and (in-
verted filled triangles):
329 K. The lines are guides
to the eye (from [29])



the two fractions.As we will see below with respect to the kinetic studies, the ap-
pearance of a dual relaxation process depends strongly on the annealing at the
crystallization temperature Tc.

The effect of pressure on the number of mobile dipoles is also shown in
Fig. 8.26 (bottom) where the same ratio is now plotted as a function of the pres-
sure difference from the critical pressure for crystallization. The overall effect of
increasing P is qualitatively similar to that of decreasing T. For a more quantita-
tive comparison a relation between δT and δP (where d is the variation in T or
P) is required.Anticipating the result (see below), regarding the shift of the crys-
tallization temperature with pressure, we find that an increase of pressure of
2 kbars corresponds to a 35 K increase in temperature. By comparing the frac-
tions of the RAP produced by lowering T and increasing P we find that decreas-
ing T is more effective than increasing P in inducing the RAP.

The T- and P-dependence of the relaxation times is shown in Fig. 8.27. Within
the investigated T- and P- ranges both relaxation times, in the crystal and melt
states, display a nearly linear dependence on T–1 and P, and these dependencies
are consistently stronger in the crystal state. For a purely activated process we can
define the activation volume which is always higher in the crystal state as com-
pared to the melt. At the same time the apparent activation energy at a constant
pressure (E = 2.303R(∂ logτ/∂T–1)P) is also higher in the crystal as compared to
the melt state. The dependencies of the activation volume and activation energy
on P and T, respectively, are shown in Fig. 8.28. The melt activation energies and
activation volumes display a weak T- and P-dependence which together with the
narrow distribution of relaxation times (which is T- and P-independent) signify a
small cooperativity. In the crystal state, the activation volume and apparent acti-
vation energies are consistently higher which is suggestive of a hindered and thus
a more cooperative relaxation within the restricted amorphous phase.

The different τ(T,P) dependencies of the melt and crystal states can also be
discussed in terms of the “fragility plot”[84] where the relaxation times are plot-
ted as a function of reduced temperature. This representation for the lower
members of the series have shown a systematic dependence of the “steepness in-
dex”and thus of the fragility on the length of the alkyl side chain. The “steepness
index” [85] defined as

(8.33)

was found [86] to change systematically from 92 in poly(methyl methacrylate)
to 36 in poly(n-decyl methacrylate). The investigation of the static structure fac-
tor revealed that this dynamic behavior reflected on the increased intersegmen-
tal distances [86]. For the Tg definition, the T corresponding to a relaxation time
of 100 s was used and the extrapolations were made using both the isobaric
(Fig. 8.27, top) and isothermal (Fig 8.27, bottom) melt and crystal state relax-
ation times. With the above definitions of Tg the “fragility plot” has been con-
structed in Fig. 8.29. The steepness index is 19.7 and 28.2 for the melt and crys-
tal states, respectively, independent of pressure. These values are characteristic
of “strong” liquids with the melt value being one of the lowest reported.

m
T Tg

= d
d
(log )

( / )
maxτ
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The T- and P-dependencies of the relaxation times can be combined in a sin-
gle variable: the density ρ in a τ (ρ) representation. We have used the Tait equa-
tion (crystal: Ao = 0.983 cm3 g–1, A1 = 4.14 × 10–4 cm3 g –1 K–1 and melt: Ao =
1.002 cm3 g–1, A1 = 5.45 × 10–4 cm3 g –1 · K–1). The volume was then calculated 
from the isothermal and isobaric experiments and the τ (ρ) dependence is
shown in Fig. 8.30. The open and filled symbols signify the melt and crystal
states, respectively, and the long connecting lines result from the densification
up on crystallization. There are some points to be noticed: (i) variation of T is
more effective than P in shifting the relaxation times, (ii) melts prepared by T or
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Fig. 8.27. Temperature (top) and pressure (bottom) dependence of the relaxation times corre-
sponding to the maximum loss. The different pressures are: (open squares): 1 bar, (open cir-
cles): 0.3 kbar, (open triangles): 0.6 kbar, (inverted open triangles): 0.9 kbar, (open lozenges):
1.2 kbar, (plus signs): 1.5 kbar, (X): 1.8 kbar, (stars): 2.1 kbar and the different temperatures:
(filled squares): 294 K, (filled circles): 304 K, (filled triangles): 313 K, (inverted filled triangles):
321 K (filled lozenges): 329 K, (plus signs): 338 K and (X): 350 K. The open and filled symbols
correspond to the melt and crystal states, respectively and the solid lines are the result from
the linear fits (see text). Error bars are visible only when exceed the symbol size. The dashed
lines indicate the transition from the melt to the crystal states (from [29])
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Fig. 8.28. Apparent activa-
tion energies and activation
volumes plotted vs P and T,
respectively for the melt
(open symbols) and crystal
(filled symbols) states, re-
spectively. Notice that the
crystal state possess higher
activation energies and acti-
vation volumes. The error
bars for the melt data are
smaller than the symbol
size (from [29])

Fig. 8.29. Tg-scaled plot of
the melt (open symbols) and
crystal (filled symbols) re-
laxation times. The Tg(P) is
operationally defined as a
temperature corresponding
to 100 s. Dash-dotted and
dashed lines are linear fits to
the melt and crystal data
points [29]



P variations and compared under conditions of constant density differ in their
dynamics by one to two decades, but crystals compared under the same condi-
tions can differ as much as four decades. This happens despite the higher acti-
vation volume of the crystal as compared to the melt state and results largely
from the higher activation energy in the crystal state obtained under isobaric
conditions (P = 1 bar). Therefore, density is not the controlling parameter for
the segmental dynamics in the melt state and this is also true for the segmental
relaxation in semicrystalline polymers.

From the pressure dependence of the crystallization temperature we can draw
conclusions about morphological changes occurring in PnODMA. The Tg(P)
and Tc(P) dependencies are shown in Fig. 8.31. For the glass transition, both the
segmental relaxation in the melt and crystal states were used to define Tg

melt(P)
and Tg

crystal(P), respectively. In both cases, Tg(P) was obtained by extrapolating
the melt and crystal dynamics obtained at different temperatures and pressures
from both the isothermal and isobaric relaxation times. For the glass transition
temperature the operational definition was used (as the temperature where the
relaxation times attain a value of 100 s). For the Tc(P) definition, the crystalliza-
tion temperature (Tc) and pressure (Pc) at which the crystallization times be-
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Fig. 8.30. Relaxation map for the PnODMA as a function of density. The points are from a
compilation of data taken under isobaric and isothermal conditions. The (circled multiplica-
tion signs) data points correspond to the isobaric data (P = 1 bar) in the crystal state. Again,
the open and filled symbols correspond to the melt and crystal states, respectively: (filled
squares): 294 K, (filled circles): 304 K, (filled triangles): 312 K, (inverted filled triangles): 321 K,
(filled lozenges): 329 K, (plus signs): 338 K, (X): 350 K. Solid lines are only guides for the eye and
dashed lines indicate the transition regimes (from [29])



come very slow with characteristic times of the order of 104 s were used. The lat-
ter is not precisely the Po

m but is close to the true equilibrium pressure. The
Tg

melt(P), Tg
crystal(P), and Tc (P) dependencies shown in the figure display a linear

dependence as

(8.34)

These dependencies show a higher glass temperature for the amorphous poly-
mer in the semicrystalline state reflecting the restriction imposed by the pres-
ence of crystals. At atmospheric pressure the restricted amorphous phase in the
semicrystalline state has a glass temperature some 35 K higher with respect to
the melt Tg. Furthermore, the crystallization temperature displays a much
stronger dependence with dTc/dP ≈ 2.3 dTg

melt/dP, which can be traced back to
the transition being of first order giving rise to a different crystal structure. Note
that although Tg

crystal(P) > Tg
melt(P) the dTg

crystal/dP ≈ dTg
melt/dP implying that the

effect of restriction is mainly on the absolute value of the transition temperature
the slope being determined by the melt dynamics.
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Fig. 8.31. Dependence of the melt glass transition temperature Tg
melt (circles) and of the glass

transition temperature corresponding to the amorphous phase in the semicrystalline mater-
ial Tg

crystal (triangles) and of the crystallization temperature Tc (squares), on pressure. The Tg is
defined as the temperature corresponding to a relaxation time of 100 s. Both the isothermal
(filled symbols) and isobaric (open symbols) relaxation data were used in the extrapolations.
Notice the stronger P-dependence of the crystallization temperature (from [90])



From the linear increase of the Tc with P the slope dP/dT can be defined and
the Clausius-Clapeyron equation can be employed:

(8.35)

where ΔH is the latent heat of the transition and ΔV is the change in volume.
Using dP/dT = 0.0579 kbar K–1, ΔV = 0.0574 cm3 g–1 [87] and T = 296 K we de-
duce a latent heat of 98 J g–1. The latter is much higher than the latent heat ob-
tained from DSC at atmospheric pressure (45 J g–1). The higher latent heat re-
sults from the incorporation of additional CH2 units within the crystal phase.
Given that each methylene unit of lower alkanes contributes about 10 J g–1 to the
latent heat [88] we deduce that a pressure of 2 kbars results in the incorporation
of four to five additional methylene units in the sidechain crystal phase, thus in-
creasing the crystal thickness as shown in Fig. 8.32. Thus, pressure has a dual
function, not only slowing down the dynamics but also inducing morphological
changes to the semicrystalline polymer PnODMA. Interestingly, these morpho-
logical changes can be obtained from dynamic data alone using DS.

The main results from the T- and P-dependent DS experiments on the semi-
crystalline polymer PnODMA undergoing side-chain crystallization are as fol-
lows:

1. Time-Temperature-superposition (tTs) and time-Pressure-superposition
(tPs) works in the melt state and only approximately in the crystal state.

2. The T- and P-dependent crystal to melt intensity ratio suggests the existence
of a rigid amorphous phase.

3. The T- and P-dependencies of the characteristic relaxation times revealed
that the (single) relaxation process in the semicrystalline state possesses
higher activation energy, higher activation volume and a higher steepness in-
dex as compared to the melt.

d
d

P
T

H
T V

= Δ
Δ
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Fig. 8.32. Schematic representation of the structural changes imposed by a pressure of 2 kbars
(from [29])



4. Melts with the same density prepared by varying T and P differ in their re-
laxation times by two decades while crystals of the same density can differ
even more.

5. Pressure increases the number of the crystallizing methylene units thus in-
creasing the crystal thickness.

6. There is a strong increase of the pair correlations with decreasing T and in-
creasing P as the transition from the melt state indicative of pre-transitional
ordering is approached.

8.6.1
Crystallization Kinetics

DS under pressure can also be employed to follow the crystallization process, i.e.,
the crystallization kinetics. Despite the recent progress in understanding the
morphological changes during crystallization there is very little knowledge about
the associated dynamical changes during the crystallization process. The few ex-
perimental reports [2,82,83,89] are mainly through dielectric spectroscopy at at-
mospheric pressure. PnODMA offers the possibility of investigating the crystal-
lization kinetics. The advantage of using P-instead of T-jump experiments is that
the former can be considered as “instantaneous” thus allowing the investigation
of the “fast” crystallization dynamics. Furthermore, the pressure effect might be
considerably different to T, since P was found to affect the crystal morphology
and overall crystallinity. The evolution of the crystallization process can be stud-
ied in real-time by recording the changes in the dielectric spectrum [90].

The crystallization kinetics of PnODMA were obtained by performing T- and
P-jumps from an initial state corresponding to the melt to different final crys-
tallization temperatures and pressures. Figures 8.33 and 8.34 show the time-evo-
lution of the dielectric permittivity and loss for a temperature jump from 308 to
295 K at atmospheric pressure and for a pressure jump from 1 to 400 bar at
304 K. The spectra shown correspond to the isothermal crystallization at the fi-
nal temperature and pressure, respectively. Notice that all spectra get progres-
sively broad from the low frequency side and for long crystallization times they
appear as bimodal. The decrease of the intensity near the maximum at 2 × 104 Hz
correspond to the decrease in the number of dipoles within the amorphous ma-
terial whereas the increasing intensity near the minimum, at about 20 Hz, corre-
spond to a new process (called α′) originating from the increasing number of
dipoles in the restricted amorphous phase [2]. The appearance of the latter
process depends strongly on the final temperature and crystallization times as it
reflects the dynamics of dipoles in the vicinity of the crystallizing side-chains.
Apparently, long “equilibration” times are necessary for the appearance of the
slow α′ process. It is worth noting that at a frequency of about 1 kHz the two ef-
fects seem to be compensated; an isochronal measurement at this frequency
would conceal all the spectral changes occurring during the crystallization
process. Such isosbestic points have first been observed in the dielectric loss
spectra of side-chain liquid crystalline polymers and have been treated theoret-
ically [91]. An integration of the spectra in the vicinity of the maximum and
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minimum dielectric loss will reveal the characteristics of the processes a and α′,
respectively.

The evolution of the integrated intensities are shown in Fig. 8.35 for the three
crystallization temperatures. The higher the crystallization temperature the
longer it takes for the side-chains to crystallize; a decrease of the undercooling
ΔT = T o

m – Tc from 3 to 2 K slows down the kinetics by one decade (T o
m = 299 K,

as at this temperature the kinetics are extremely slow). Furthermore, identical
kinetics for the min and max were found implying that the same dipoles are re-
sponsible for the loss of the intensity of the α-process and the concomitant in-
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Fig. 8.33. Time evolution of the dielectric permittivity (top) and loss (bottom) spectra follow-
ing a temperature jump from 308 to 295 K. The key to the symbols: (filled squares): 222 s, (filled
circles): 422 s, (filled triangles): 621 s, (inverted filled triangles): 822 s, (filled lozenges): 1020,
(open squares): 1220 s, (open circles): 1420 s, (open triangles): 1620 s, (inverted open triangles):
1820 s, (open lozenges): 2020 s, (plus signs): 4020 s, (X): 6020 s and (stars): 8020 s. The hatched
areas indicate the frequency ranges around the minimum and maximum of the dielectric loss
used in the integration (see text) (from [90])



crease of the slower α′-process. The evolution of the integrated intensities can
be represented by the well-known KWW equation:

(8.36)

where A is the amplitude, t0 is an initial time required for the temperature equi-
libration, τ is the characteristic crystallization time, and βKWW is the KWW ex-
ponent. The result reveal that the isothermal crystallization following a T-jump
gives rise to slow processes with a stretched exponential relaxation typical of the
melt relaxation dynamics. The fractional exponents seem to indicate a strong ef-
fect of the crystallization mechanism on the transport and packing of chains.
The formation of crystals at atmospheric pressure inhibits the transport of
chains which have to move in a highly cooperative way.

Pressure has considerably different functions on the side chain crystallization
of PnODMA. First, the Tc(P) is much stronger than Tg(P) (Fig. 8.31). Further-

′′ = − − +∑ε τ βΔf A t t cexp( (( )/ ) )0 KWW
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Fig. 8.34. Time evolution of the dielectric permittivity (top) and loss (bottom) spectra follow-
ing a pressure jump from 1 to 400 bar at 304 K. The hatched areas indicate the frequency
ranges around the minimum and maximum of the dielectric loss used in the integration (see
text) (from [90])



more, pressure results in a higher crystallinity through the incorporation of ad-
ditional methylene units to the side-chain crystals. Therefore inducing the crys-
tallization by pressure jumps is expected to result in considerably different ki-
netics.

Figure 8.36, gives the evolution of the dielectric susceptibility and loss fol-
lowing a P-jump from 1 bar to 400 bar at 304 K. As described above, at this tem-
perature it would not be possible for the chains to crystallize without the assis-
tance of pressure. At first glance the spectra evolution seem very similar to the
corresponding T-jump experiments; the spectra get broader with time especially
from the low frequency side. Again at a frequency of 1 kHz no significant
changes occur. In contrast to the T-induced kinetics, the analysis of the inte-
grated intensities at minimum and maximum positions have shown a com-
pletely different dependence of the crystallization kinetics. The integrated in-
tensities cannot be described by a KWW function since they exhibit a stronger
dependence on time. Instead, the evolution can now be described by the well-
known Avrami equation

(8.37)

where A is the contrast factor, z is the crystallization rate, and n is the Avrami ex-
ponent which is a function of the type of the nucleation process (i.e., homoge-
neous vs heterogeneous) and the dimensionality of growth. The characteristic

′′ = − +∑ε Δf A ztnexp ( ) d
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Fig. 8.35. Time evolution of
the integrated intensities
corresponding to the maxi-
mum (top) and minimum
(bottom) of the relaxation
spectra obtained during the
T-jump from 308 to differ-
ent crystallization tempera-
tures; squares: 297 K, circles:
296 K, and triangles: 295 K.
The lines are fits according
to Eq. (8.36) [90]



crystallization half-times are obtained as t1/2 = (ln2/z)1/n. The resulted param-
eters for the different crystallization temperatures are plotted in Fig. 8.37 as a
function of the final crystallization pressure.

The Avrami exponent has a strong P-dependence; the lower the final crystal-
lization pressure (or the under-pressure) the lower the exponent which attains
values in the range from 1 to 3. Such drastic change of the exponent implies
changes of the crystallization mechanism (a change from homogeneous to het-
erogeneous nucleation can only increase the value of the exponent by 1) but ad-
ditional changes on the dimensionality of crystal growth have to be invoked to
explain the higher values. For example, the results at higher under-pressures
suggest a nucleation and growth mechanism with a spherulitic superstructure
whereas the result at lower under-pressure are suggestive of a fibrilar growth in-
stead. A possible explanation for the different dimensionality of growth can be
provided through an apparently “paradoxical” increase of mobility with in-
creasing pressure. According to Fig. 8.31, increasing pressure results in an in-
crease of the temperature difference Δ = Tc – T g

melt; at atmospheric pressure this
difference is about 106 K, whereas at 2.5 kbars it is 133 K. The increase of Δ at el-
evated pressures implies that in the super-pressurized melt and just before the
onset of crystallization, the chains are more mobile than at atmospheric pres-
sure. This increase in mobility might be responsible for the more isotropic
growth of crystals.
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Fig. 8.36. Time evolution of
the integrated intensities
corresponding to the maxi-
mum (top) and minimum
(bottom) of the relaxation
spectra obtained during the
P-jump from 1 bar to differ-
ent crystallization pressures:
(filled squares): 350, (filled
circles): 400, (filled trian-
gles): 450 and (inverted filled
triangles): 500 bar. The lines
are fits according to
Eq. (8.37) (from [90])



As with the T-induced kinetics, the characteristic crystallization times exhibit
a strong P-dependence. In analogy to the equilibrium melting temperature at at-
mospheric pressure one can define the corresponding equilibrium melting pres-
sure as the pressure where the crystallization time becomes infinite. Based on
this analogy, an undercooling of 1 K results in the same dynamics as an over-
pressure of 0.2 K kbar–1, i.e., δT/δP ≈ 5 K kbar–1, a value close to the dTg

melt/dP
which suggests a strong influence of the transport term in the kinetics.

In conclusion, the crystallization and subsequent melting of PnODMA in real
time induced by temperature and pressure jump experiments can be followed by
DS. In both experiments, the single α-process in the melt was found to split in
two processes (α and α′) reflecting the dynamics of the relatively mobile and re-
stricted dipoles. In the isothermal/isobaric crystallization experiments induced
by T-jumps the kinetics follow a stretched exponential relaxation whereas in the
corresponding P-jump experiments the kinetics follow the typical nucleation
and growth kinetics with a spherulitic structure at higher under-pressures.
The distinctly different dimensionality of growth could be explained by the ap-
parently “paradoxical” situation of increasing chain mobility with increasing
pressure.
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Fig. 8.37. Characteristic crystallization times as a function of crystallization pressure Pc for
three different temperatures: (open saquares): T = 304 K, (open circles): T = 313 K, and (open
triangles): T = 329 K (from [90])



8.7
Conclusion

In this chapter we have reviewed earlier work on the effect of pressure on sepa-
rating mixed processes and provided recent examples from systems where the
thermodynamic state of the system is of importance. Pressure is the ideal vari-
able if a separation of mixed processes is needed. As an example, earlier pio-
neering work has shown that pressure can separate the local β-process from the
segmental process. The effect of pressure in slowing down the segmental mode
is strong and results in the approach with the longest normal mode process, at
high pressures. However, the entanglement molecular weight is not affected by
compression, which is of importance in polymer processing. Pressure was
shown to affect the spectrum of concentration fluctuations and to induce dy-
namic mixing in certain polymer blends. Finally, pressure is sensitive to the or-
dering prior to crystallization and consequently is a sensitive probe of the crys-
tallization process. As such it can be used to monitor the crystallization process.

The above are only some examples where the application of pressure can elu-
cidate the structure and dynamic behavior of polymeric systems using DS.
There are many other cases where pressure can be employed to elucidate the
complex dynamic behavior; one example is systems exhibiting orientational or-
der such as stiff backbone polymers and liquid crystalline polymers. More work
is expected in these areas in the near future.

Acknowledgements. I would like to thank C. Gravalides, M. Mierzwa, G. Fytas
(FORTH), T. Reisinger, and G.Wegner (MPI-P) for their participation in parts of
this work. I would also like to thank G. Williams for many comments and sug-
gestions concerning the problem of crystallization under pressure.

List of Abbreviations and Symbols

A Constant
AT VFT-parameter
BT VFT-parameter
C0, C1, C2 Constants
c1, c2 WLF-coefficients
D Constant
F Local field
f Fractional free volume
g Kirkwood correlation function
M Molecular weight
Me Entanglement molecular weight
m Steepness index
P Pressure
Q Apparent activation energy
V Volume
T Temperature (in Kelvin)
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t1/2 Crystallization half-time
Tc Crystallization temperature
Tg Glass temperature
T∞ “Ideal” glass temperature
T 0

m Equilibrium melting temperature
T0 Reference temperature in WLF
α Shift factor
αf Thermal expansion coefficient of free volume
βf Isothermal compressibility of free volume
βKWW Exponent of the KWW function
γ Constant
Δε Dielectric strength
ΔV Activation volume
ε* Complex dielectric function
θ Temperature (in °C)
τ Relaxation time
η Viscosity
ρ Density

VFT Vogel-Fulcher-Tammann
WLF Williams-Landel-Ferry
RAP Restricted amorphous phase
DSC Differential scanning calorimetry
WAXS Wide-angle X-ray diffraction
PVAc Poly(vinyl acetate)
PVC Poly(vinyl chloride)
PET Poly(ethylene terephthalate)
PMA Poly(methyl acrylate)
PEA Poly(ethyl acrylate)
PMMA Poly(methyl methacrylate)
PEMA Poly(n-ethyl methacrylate)
PnBMA Poly(n-butyl methactylate)
PnODMA Poly(n-octyl methacrylate)
PnNMA Poly(n-nonyl methacrylate)
PnLMA Poly(n-lauryl methacrylate)
PnODMA Poly(n-octadecyl methacrylate)
PI Polyisoprene
PVE Poly(vinylethylene)
PI-PVE Poly(isoprene-b-ethylene)
PS-PVME Polystyrene-poly(vinyl methyl ether)
PPO Poly(propylene oxide)
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9 Dielectric Spectroscopy of Reactive Network-
Forming Polymers

J. Mijovic

9.1
Introduction

There are very good reasons for the current surge of interest in fundamental 
and applied aspects of dielectric spectroscopy (DS) of polymeric materials.
Fundamental investigations of the dielectric response yield a wealth of infor-
mation about different molecular motions and relaxation processes. A unique
characteristic of DS is the wide frequency range, from 10–5 Hz to 1011 Hz, over
which polymers respond to an applied electric field. This remarkable breadth is
the key feature that enables one to relate the observed dielectric response to slow
(low frequency) and/or fast (high frequency) molecular events. Complementary
information to DS studies can be obtained from nuclear magnetic resonance
(NMR), dynamic mechanical analysis (DMA), quasi-elastic light scattering
(QELS), quasi-elastic neutron scattering (QENS), transient fluorescence depo-
larization, and ultrasonic measurements, but none of those techniques can cover
as wide a frequency range. A strong industrial interest in dielectric and electri-
cal properties of polymers reflects the growing use of these materials in elec-
tronic interconnect devices, optoelectronic switches, printed board circuitry,
microwave assemblies for radar, batteries, fuel cells, and so on.

Detailed accounts of the basic aspects of dielectric behavior of polymeric ma-
terials can be found in this book and several other books and key reviews [1–10],
although the information in those sources pertains almost exclusively to the sys-
tems that do not change with time. Systematic studies by DS of systems charac-
terized by a temporal evolution of structure have a more recent origin. The great
potential of dielectric spectroscopy in such investigations has been pointed out
in an excellent recent article by Williams [11]. Examples include systems that
undergo a chemical and/or physical change as a result of chemical reaction,
crystallization, vitrification, phase separation, etc. In this chapter we shall focus
attention on the use of dielectric measurements to follow cross-linking or cure,
i.e., the conversion of (usually) liquid prepolymers into a three-dimensional
thermoset polymer network.

The principle objective of this chapter is to present an overview of the effect
of network formation on two principal polarization mechanisms in polymers,
namely charge migration and dipole orientation.We shall begin in Sects. 9.2 and
9.3 by briefly recapping the origins of polarization in polymers and the relevant
experimental aspects. The major portion of this chapter is devoted to the de-



scription of how the advancement of cure affects charge migration (Sect. 9.4)
and dipole reorientation (Sect. 9.5). In Sects. 9.4 and 9.5 we shall summarize the
fundamental background, review the published information, and present a few
selected examples.

9.2
Polarization Mechanisms

When an electric field is applied across the faces of a parallel plate capacitor
containing a dielectric, the atomic and molecular charges in the dielectric are
displaced from their equilibrium positions and the material is said to be polar-
ized. There are two major polarization mechanisms in polymeric materials that
are studied by dielectric spectroscopy: 1) polarization due to charge migration,
and 2) polarization due to orientation of permanent dipoles. Migration of
charges gives rise to conductivity [12]. The measured conductivity encompasses
contributions from extrinsic migrating charges (e.g., ionic impurities) and in-
trinsic migrating charges (e.g., proton transfers along hydrogen bonds).
Extrinsic conductivity is commonly assumed to be inversely proportional to
viscosity according to the viscous model for charge transfer (Stokes law), imply-
ing that highly viscous materials should exhibit zero conductivity,which is never
the case. This means that the origin of conductivity in highly cross-linked poly-
mer networks could be traced, at least partly, to the intrinsic migrating charges,
whose existence in solids is documented in the literature [14–17]. However,
while extrinsic conductivity decreases during reaction as a result of the increase
in viscosity, intrinsic conductivity can follow a more complex pattern, and hence
the trend exhibited by the overall (measured) conductivity will depend on which
mechanism (extrinsic or intrinsic) dominates the dielectric response.As a direct
consequence of this interplay between extrinsic and intrinsic contributions, the
measured value can display different trends, as was exemplified elsewhere [18].
In Sect. 9.4 we shall describe how the progress of network formation affects po-
larization by charge migration.

When materials that contain permanent dipoles are placed in the electric
field, dipole orientation or dipole polarization is produced as a result of the
alignment of dipoles in the direction of the applied field. The orientation of per-
manent dipoles involves cooperative motions of molecular segments in a vis-
cous medium with time scales measurable by dielectric spectroscopy. The time-
dependent loss of orientation of dipoles upon removal of the electric field is
called dipole relaxation. In Sect. 9.5 we shall discuss the effect of cross-linking
and network formation on dipole dynamics.

There are two additional aspects of induced polarization that one should rec-
ognize and account for in the interpretation of experimental results. The first is
electrode polarization, which results from the accumulation of ions at the poly-
mer-electrode interface. The second aspect is the polarization due to the build-
up of charges at the interface (or in the interphase) between components in het-
erogeneous systems. This polarization is known as interfacial, space charge, or
Maxwell-Wagner-Sillars polarization.
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9.3
Experimental

9.3.1
Principles of Measurements

Derived complex quantities that can be obtained from dielectric spectroscopy
include impedance, admittance, dielectric modulus, dielectric constant, and sus-
ceptibility. The interrelations between all these parameters are tabulated else-
where (e.g., [19]).

9.3.2
Instrumentation

By a broad definition, the frequency range of dielectric measurements varies
from 10–5 Hz to 1011 Hz. Early descriptions of methodology and instrumentation
for dielectric measurements can be found in the classic text by McCrum et al. [1]
and the book by Hedvig [3], while a treatment of dielectrics at microwave fre-
quencies can be found in the book by Metaxas and Meredith [20]. More recently,
an excellent review of the instrumentation for broadband dielectric spec-
troscopy was written by Kremer and Arndt [21].

9.3.3
Cells and Sensors

In the course of a dielectric measurement voltage is applied across the sample
between two conductive electrodes. The most commonly used types of elec-
trodes are parallel plate and comb. Acquisition and interpretation of data is
readily achieved with parallel plate electrodes but the control of plate area and
spacing must be extremely accurate for quantitative analysis. The reproducibil-
ity of data obtained with comb electrodes may be superior but these are typi-
cally larger than the parallel plate electrodes. In either case, a bridge is designed
to calculate the impedance (or admittance) between the electrodes when the
field is applied. The signal is then processed and the dielectric constant calcu-
lated from the measured values of impedance.

A simultaneous use of DS and another technique can be quite revealing. For
example, there have been reports of simultaneous dielectric and dynamic me-
chanical analysis (e.g., [22]), and dielectric and dynamic light scattering mea-
surements (the latter example is discussed in Sect. 9.5.2). However, particularly
revealing results can be obtained from the simultaneous dielectric/infrared (IR)
spectroscopy. One such set up, designed in our laboratory, had as the common
element a disposable sample cell composed of two glass slides separated by a
Teflon spacer, with thin aluminum electrodes placed on the inside surface of
each glass slide [23]. A special high-temperature adhesive was used to bond
Teflon to glass and a guarded electrode was introduced to minimize the fringe
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fields and eliminate the possibility of surface conduction. The receiving and
transmitting legs of the optical fiber were inserted through the Teflon spacer
and centered inside the cell just above the electrodes. The measurements were
conducted in the transmission mode using a near-IR source and select results
were published elsewhere (e.g., [24, 25]).

The use of sensors is an attractive feature of dielectric measurements and is
conducive to in situ real time monitoring of chemical and physical processes. In
the early 1980s, a technique for in situ measurements of dielectric properties has
been developed and termed microdielectrometry [26].The microdielectrometer
sensor is a comb electrode fitted with a pair of field-effect transistors that com-
bines the best features of parallel plate and comb electrodes. The sensor is fab-
ricated in silicon and consists of an aluminum interdigitated electrode on SiO2.
When placed in the electric field, this sensor measures the so-called complex
transfer function (which is related to the admittance) from which the dielectric
function is calculated. The sensor has dimensions 2.5 × 5 mm and is packaged in
a flexible polyimide ribbon cable, 9 mm wide and 0.4 mm thick. The sensor also
includes a thermal diode that records temperature. Further details about this
sensor, including schematics and photos, are available in the literature [27–29].
Another sensor for in situ monitoring of dielectric response, known as fre-
quency-dependent electromagnetic sensor (FDEMS), has been developed by
Kranbuehl et al. [30–32]. This capacitative interdigitated sensor, commercially
available as DekDyne microsensor, has an area of ca. 2.5 × 1.2 cm2 and is about
125 μm thick. The conductor part is copper and the substrate is polyimide. The
sensor produces an approximately 30 μm deep fringing electric field over its ac-
tive surface. Further details regarding this sensor are available elsewhere
[30–32]. Similar sensors for in situ monitoring of cure at microwave frequencies
are not currently available, although the concept of microwave dielectrometry
has been put forward.

9.3.4
In Situ Real Time Monitoring of Cure

In situ dielectric monitoring of processes holds great appeal for materials and
process engineers, with the principal advantages being threefold. First, the in
situ acquired information eliminates the need for off-line collection and analy-
sis of control samples. Second, dielectric measurements have a distinct advan-
tage over other characterization techniques of being able to monitor cure con-
tinuously, as the resin changes from viscous liquid to gel to cross-linked glass.
Third, the fundamental character of the sensed information allows a continuous
verification of chemical and physical changes inside the reactor against a known
processing model and provides an input for “smart”closed-loop process control.
The key characteristic of a smart system is its ability to self-adjust to the varia-
tions in the material and/or processing parameters and thus guide the process
along an optimum path.

Over the years, thermocouples and pressure transducers were almost exclu-
sively used for in situ monitoring of cure. Precise monitoring of temperature is
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particularly important in thick samples, such as polymer composites, where
high reaction exotherms and low heat dissipation rates could result in consider-
able temperature gradients within the sample,but the knowledge of temperature
as a function of time and location offers little insight into the molecular nature
of cure.The pressure gradient across the thickness of the composite is important
in the analysis of resin flow but alone, like temperature, reveals little about what
happens on the molecular level. Dielectric measurements have the advantage of
providing a more fundamental response that could be related to the two main
processing parameters, namely degree of cure and viscosity. Naturally, the use of
dielectric measurements is not limited to in situ monitoring of processing of
polymers and composites. Attractive possibilities for their use exist in diverse
fields, including the microelectronic and semiconductor industry; the pharma-
ceutical industry for measurements of dissolution rates of tablets and capsules,
studies of electrolytes, polyelectrolytes, and salt/metal complexes; the chemical
industry for polymerization, separation, extraction, and catalytic processes, and
so on.

9.4
Polarization Due to Migrating Charges

9.4.1
Modeling Concepts – Equivalent Circuits

One attractive feature of dielectric spectroscopy lies in its applicability to the
studies aimed at the development of direct correlation between the response of
a real system and an idealized model circuit composed of discrete electrical
components. In such modeling studies one seeks to match experimental imped-
ance with the impedance of an equivalent circuit composed of ideal resistors and
capacitors. General accounts of models based upon equivalent circuitry have
been given in several key references [19, 33–35], but their use in the studies of
polymers has a much more recent origin.

Phenomenologically, a resistance R is taken to represent the dissipative 
component of the dielectric response, while a capacitance C describes the stor-
age component, i.e., the ability to store the electric field. Resistance(s) and ca-
pacitance(s) can be combined in a variety of forms, leading to an array of phe-
nomenological models that can describe various combinations of polarization
mechanisms in dielectric materials. Inductance L requires the storage of energy
in a magnetic field but there is no appreciable a.c. magnetic field energy present
in the low current (mA) DS measurements.

The simplest equivalent circuits are obtained by combining resistance and ca-
pacitance in parallel or series.

An R-C parallel circuit (Fig. 9.1A), its simplicity notwithstanding, is often an
adequate model of polarization by charge migration over a given frequency
range. A single resistance that encompasses the dissipative contributions of all
migrating charges, extrinsic and intrinsic alike, is all that is needed to describe
the overall loss because the dissipative contributions due to electrode polariza-
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tion and dipole relaxations occur at lower and higher frequencies respectively.
The lone capacitance, on the other hand, embodies the overall ability of the di-
electric to store the electric field by all polarization mechanisms. The overall im-
pedance of a parallel circuit, (equal to the reciprocal overall admittance, Y*), is
given by the sum of the contributions from resistance and capacitance:

(9.1)

where i = (–1)1/2 and ω is the angular frequency, ω = 2πf.
The real and imaginary components of impedance are given by

(9.2)

and

(9.3)

where RC is equal to τ, the circuit characteristic time. In the case of dipole po-
larization, τ represents the relaxation time. Two (or more) charge-migration
mechanisms that are well separated in the frequency domain can be modeled by
a series of two (or more) R-C parallel circuits.

When resistance and capacitance are placed in series (Fig. 9.1B), the resulting
combination leads to the classic Debye equations for a single dipole or many
dipoles with a single relaxation time. In reality, however, the contribution to
stored energy from atomic and electronic polarization is always reflected in the
measured dielectric response, and that is accounted for in the models by intro-
ducing an additional capacitance (C1) in parallel with the dipole contribution
(C2-R series). The overall impedance of that circuit (Fig. 9.1C) is given as

(9.4)

where τ = R1C1. This expression is often reported in terms of the complex di-
electric function ε* = Y*/(iω ε0)

(9.5)

By separating Eq. (9.5) into its real and imaginary components we obtain
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Fig. 9.1A–G. Equivalent circuit diagrams for modeling of material properties



Equations (9.6) and (9.7) are commonly referred to as Debye equations. When
plotted in the complex plane (ε′′ vs ε′), Eqs. (9.6) and (9.7) yield a semicircle of
radius (εs – ε∞)/2 known as the Cole-Cole plot [36].

Inherent in Eqs. (9.6) and (9.7) is the assumption of a single relaxation time.
In polymeric materials, however, the mobility of different dipoles depends upon
the local restrictions imposed by their immediate surroundings. The spatial
variations of these restrictions result in a distribution of relaxation times. An
equivalent circuit that accounts for the distribution of relaxation times is shown
in Fig. 9.1D. Analytically, a distribution of dipole relaxation times can be taken
into account in different ways, as described in Sect. 9.5.

Let us now consider several equivalent circuits characterized by the presence
of two or more polarization mechanisms. For example, the elements of the cir-
cuit in Fig. 9.1E represent the following dielectric events: capacitance Cmc in-
cludes the contributions of atomic and electric polarization, as well as the ca-
pacitance (i.e., non-lossy contribution, if any) inherent in polarization due to
migrating charges; resistance Rmc represents the dissipative component of po-
larization due to migrating charges; capacitance C2 and resistance R2 describe
dipole(s) with a single relaxation time. An equivalent circuit that, in addition to
the above phenomena, also accounts for a distribution of relaxation times, can
be modeled as shown in Fig. 9.1F. Finally, particularly at low frequencies it is of-
ten important to take into account the presence of the electrode-blocking layers,
which introduce an infinite resistance to the passage of current and can be mod-
eled with two additional capacitances Ce in series, shown as identical in
Fig. 9.1G.

9.4.2
Graphical Representation and Evaluation of Characteristic Parameters

We shall now briefly describe the various methods of graphical representation
of impedance data and the quantitative evaluation of circuit parameters of an
R-C parallel circuit. The first representation is based on the plots of imaginary
vs real impedance, often referred to as Nyquist plots.An R-C parallel equivalent
circuit yields a semicircle in the complex plane: the resistance is obtained from
the intersection of the semicircle and the Z′ axis. The second representation of
impedance data consists in plotting the absolute value of impedance, |Z *| =
[(Z′)2 + (Z′′)2]1/2, as a function of the logarithm of frequency. The resulting
Bode plot is used to obtain the value of resistance from the intersection of the
extrapolated (low) frequency-independent horizontal line and the log |Z| axis.
At higher frequency the dielectric response is purely capacitive and impedance
is directly proportional to frequency with slope of –1. The third graphical rep-
resentation is based on the plots of imaginary impedance in the frequency do-
main. In general, three zones characterize this type of plot: a low frequency
zone where electrode polarization dominates, an intermediate frequency zone
where polarization by migration charges plays a major role, and a high fre-
quency zone where dipole relaxation takes place. In many instances, the dielec-
tric response in a frequency range dominated by charge migration (dipole loss
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is negligible) reduces to a single R-C parallel model whose imaginary imped-
ance is given by Eq. (9.3). Taking the derivative of Z′′ with respect to angular fre-
quency, we get

(9.8)

Equation (9.8) is equal to zero at the peak in the Z ′′ vs frequency plot and that
condition is met for ω = 1/RC. By combining Eqs. (9.3) and (9.8) we obtain

(9.9)

which enables one to calculate the unknown resistance directly from the plot 
(R = 2 Z ′′max).

Naturally, the numerical values of the elements of the model circuit change in
the course of chemical reaction. The progress of reaction is followed by fre-
quency sweeps over the broadest possible frequency interval. It is important to
ensure that the time scale of the experiment is negligible in comparison with the
time scale of the structural changes in the system, so that each measurement can
be taken to represent an iso-structural state. As an illustration of the changes in
Z ′′ vs frequency as the material cures, we present Fig. 9.2, where changes in both
the Z ′′max peak location and peak intensity can be observed.

Reverting to the methodology described above and utilizing spectra obtained
at various stages of cure, we calculate resistance from Eq. (9.9) as a function of
reaction time. Next, the resistivity, ρ (or its reciprocal – conductivity, ρ = 1/σ) is
calculated from the following equation

(9.10)

where S/L is the cell constant. The extent of reaction (or degree of cure), α, is
then obtained from resistivity using an empirical equation that often takes the
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Fig. 9.2. Three-dimensional
plot of imaginary part of
impedance as a function of
frequency and cure time for
a reactive system



following form:

(9.11)

Here, αm denotes the maximum value of extent of reaction attainable at a given
cure conditions prior to vitrification [37], ρm is the corresponding resistivity,
while the subscript 0 denotes initial conditions. There are numerous example in
the literature of the plots of extent of reaction vs time for various thermosetting
polymers, including comparative studies of cure kinetics by DS and other tech-
niques, such as FTIR spectroscopy, GPC, and so on (see, e.g., [38]).

Finally, Eq. (9.11) (or another empirical equation) could be substituted into
any suitable chemorheological expression that enables one to calculate viscosity
during cure (e.g., [39–41]). An example is Eq. (9.12) proposed by Opalicki and
Kenny [42]

(9.12)

where ηg0, C1n, C2n, and n are parameters to be obtained by fitting procedure and
αg is the extent of cure at gelation. These authors reported good agreement be-
tween the measured viscosity and the prediction of phenomenological models
based on dielectric results for both isothermal and non-isothermal cure of a
tetraglycidyl diaminodisphenyl methane (TGDDM) epoxy and diphenyl di-
aminosulfone (DDS) amine.

9.4.3
Examples of In Situ Dielectric Cure Monitoring

We begin this section by emphasizing that an early review of the dielectric 
analysis of thermoset cure was written by Senturia and Sheppard in the 
mid-1980s [43] and several reviews have appeared subsequently [38, 44]. Most
recently, Kranbuehl [45] wrote an excellent article on the dielectric monitoring
of polymerization and cure, in which he showed a number of examples of the
use of sensors to monitor the dielectric response during cure in molds, auto-
claves, adhesives, films and, coatings. Consequently, our goal here is not to be
comprehensive but rather to highlight the most interesting aspects of this 
subject.

Following the introduction of dielectric sensors in the 1980s, a number of
investigators [46–53] and particularly Kranbuehl and coworkers [54–56] have
continued to use sensors for in situ monitoring of processing. The emphasis 
in those studies, however, was predominately on the application of sensors 
and instruments to a growing number of different materials while the essen-
tial features of sensors and the sensing methodology have remained un-
changed.
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The starting point in the analysis of dielectric data is the following equation:

(9.13)

The main premise in this approach is that at some experimental frequency the
contribution of dipole loss to the total loss is negligible and hence

(9.14)

With this inequality Eq. (9.13) becomes

(9.15)

The apparent conductivity, which is of interest and is referred to in the literature
as “ionic conductivity”, can then be calculated from

(9.16)

This apparent conductivity has been identified as the dielectric parameter of in-
terest because it can be related, at least qualitatively, with the fundamental pro-
cessing parameters of thermoset networks before gelation. Specifically, ionic
conductivity is inversely proportional to viscosity, while the time derivative of
ionic conductivity mimics the rate of cure. Also, the temperature dependence of
ionic conductivity can be modeled by the classic WLF equation. In practice, the
inequality expressed by Eq. (9.14) is met at some frequency that is not known a
priori. Two methods for the calculation of ionic conductivity of thermoset poly-
mers based on this approach have been described by Senturia and coworkers
(e.g., [27–29]) and Kranbuehl and coworkers [30–32]. Fundamentally, the two
methods differ little and were contrasted from the point of view of accuracy and
reproducibility in the fine paper by Ciriscioli and Springer [57].

At this point it is appropriate to comment briefly on the usefulness and limi-
tations of the use of ionic conductivity for in situ monitoring of cure. It is our
opinion that the following three principal requirements must be met before a
complete and successful implementation of this methodology is possible:

1. The availability of sensors and instruments for fast, reliable and reproducible
measurements of the dielectric response during cure

2. The development of fundamental understanding of the nature of measured
conductivity

3. The development of models that relate the measured dielectric response to
the chemorheological characteristic of the resin

What is the current status? The first requirement has been largely met, the sec-
ond and third not yet. Ionic conductivity is calculated assuming that some ions
are initially present in the resin formulation.Although that is probably true, nei-
ther the type and concentration of such ions nor their effect on the measured re-
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sponse have been identified, much less systematically studied, while the contri-
bution of intrinsic conductivity, with a few exceptions, has been all but ignored.
When one considers a large variety of resin formulations and the inevitable vi-
cissitudes of the batch-to batch characteristics and their hygro-thermal histo-
ries, it is clear that any presently used model based on the measured conductiv-
ity is bound to be empirical and batch-specific. Current work by a group in Lyon
is interesting and worth mentioning [58]. These authors are using time of flight
(TOF) technique, which measures only the changing mobility of ionic species,
along with dielectric spectroscopy (DS), which measures the product of the con-
centration, charge, and mobility. Thus, by contrasting the results of TOF and DS,
they hope to identify both the changing concentration and mobility of ionic
species during cross-linking in different polymer networks. Further research
along these lines is warranted. Nonetheless, it is also true that, notwithstanding
the lack of understanding of fundamental nature of the measured conductivity,
dielectric spectroscopy is the only currently available technique for in situ mon-
itoring of kinetics and rheology of cure.

9.5
Polarization by Dipole Orientation

A distinct advantage of broad-band dielectric relaxation spectroscopy (DRS) is
its ability to probe molecular dynamics (of dipoles) at all times during cure:
from the early stages of a high temperature cure, where the dipolar relaxation
times are on the order of tens of picoseconds (fmax ~ 10 GHz) to the late stages of
cure (after gelation) through the vitrification process where the glassy state re-
laxation times are tens or hundreds of seconds. Throughout cure, accompanying
the relaxation time changes, are changes in static dielectric constant, high fre-
quency dielectric constant (index of refraction), the shape parameters of the re-
laxation spectrum, and the separation of secondary, high frequency, local relax-
ation processes.We will discuss these changes in turn and show examples of how
cure may be monitored by experimental observation of them.

9.5.1
Dipolar Relaxation Processes – Classification Scheme

The major dielectric relaxation in polymers is termed α relaxation – its molec-
ular origin lies in the segmental motions. Since the principal role in determin-
ing the glass transition is played by the time scale for segmental motions, and
not the Rouse or sub-Rouse modes, α relaxation is associated with the “dielec-
tric glass transition”. Secondary relaxations, labeled β, γ, and so on, in the order
of decreasing temperature (at constant frequency) or increasing frequency (at
constant temperature) are associated with localized motions in the glassy state.
Secondary processes generally have the following characteristics: located at high
frequencies (short time scales <10–5 s), broad dispersions, Arrhenius tempera-
ture dependence, low activation energy, low intensity, and are present above and
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below Tg. The origin of these so-called β relaxations remains elusive, but appeals
have been made in the literature to explanations ranging from far-IR phonon ex-
citations [59], cage-rattling motions [60, 61], a universal glassy state phenome-
non [62], and various types of local/side-chain motions [1, 63]. For the purpose
of this chapter we rest with providing an operational definition of the process.
At high temperatures (and therefore frequencies) the α and β processes merge:
the faster moving (with temperature) α process catches up with and merges with
the slower moving (with temperature) β process to become the αβ process. It is
also important to point out that α and β relaxations have different length and
time scales but are interrelated since often the same dipoles contribute to both
processes.

In some polymers it is also possible to distinguish between different types of
dipoles (or components of the same dipole) on the basis of their location and
orientation in the electric field. Stockmayer [64] has classified all dipoles into
three categories: type A – oriented parallel to the chain contour; type B – ori-
ented perpendicular to the main chain; and type C – located in the side chain. A
well-known and widely studied example is cis-polyisoprene, which contains
type A and B dipoles whose relaxations can be resolved in the frequency domain
[65–71].The important point here is that the relaxation of type B dipoles in poly-
mers is associated with segmental motions and is therefore synonymous with
the α process. Type A dipoles give rise to a relaxation at lower frequency (at con-
stant temperature) with the characteristic relaxation time that is affected by the
fluctuations of the end-to-end vector and is therefore a function of the molecu-
lar weight. This relaxation is referred to as normal mode. Another relaxation at
lower frequency (at constant temperature) than the α process was reported in
crystalline polymers and is assigned to the molecular motions of amorphous
entities within the crystalline phase.

A prerequisite for the use of DRS in the studies of molecular dynamics is that
the materials under study contain a permanent dipole. In network-forming
polymers, however, the type and concentration of dipoles can vary during cross-
linking. To systematize the various scenarios possible, a classification scheme
was recently proposed [72] based on four general classes of cross-linking reac-
tions that result in network formation and can be probed by DRS. Class 1:
dipoles present in the reactants are not involved in the chemical reaction so that
the product contains the same concentration (normalized for density changes)
and type of dipolar groups (e.g., telechelic polymer chains with low polarity re-
active end groups and dipolar groups in the polymer backbone – such as vinyl-
terminated siloxane polymers). Class 2: dipoles present in the reactants (though
not necessarily all of them) are involved in the reaction and a new type of
dipoles is formed (e.g., a reactive mixture of epoxide- and amine-containing
molecules which react to form secondary and tertiary amines and hydroxyl
groups). Class 3: dipoles present in the reactants (not necessarily all of them) re-
act to form nonpolar groups (e.g., cyanate ester resins which cross-link to form
symmetric nonpolar triazine rings). Class 4: no dipoles are present among the
reactants but are formed during the reaction (e.g., oxidation of polyethylene by
radiation cross-linking). General examples of all of these classes are illustrated
in Fig. 9.3.
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Note that the above scheme encompasses only systems that undergo chemi-
cal cross-linking and does not include physical and thermoreversible cross-link-
ing (e.g., [73, 74]), hydrogen bonded structures, reversible gels, or linear poly-
mers (e.g., [75–78]).

9.5.2
Changes In Relaxation Time (
) During Network Formation

In order to monitor and analyze effectively and accurately the time-dependent
change in a material during chemical reaction (or crystallization or phase sepa-
ration), a measurement must be made of a fundamental material property, in-
dependent of the specific type of test. The dipolar relaxation time, a fundamen-
tal material parameter, will be shown to be an effective tool for the study of re-
active systems. The knowledge of relaxation time serves a twofold purpose: 1) it
can be used to describe the dynamics of networks at various stages of cure, and
2) it can be used in conjunction with an appropriate kinetic model to relate mo-
lecular dynamics to chemical kinetics. Both aspects are discussed below.

Epoxy-amine formulations are by far the most widely studied (by DRS)
generic group of network-forming materials. According to the classification
scheme of Fig. 9.3, these are class 2 systems. Consider a typical epoxy-amine
mixture undergoing isothermal cure.We present in Fig. 9.4 dielectric permittiv-
ity and loss in the frequency domain with extent of cure (obtained by simulta-
neous FTIR measurements) as a parameter.

Similar dielectric results were reported by several groups [79–81] and 
the general features of the underlying physics can be described as follows.
During cross-linking, as molecular weight and connectivity increase and the
accompanying bulk physical properties develop (Tg rises, etc.), the dipolar 
dynamics encounter the three regimes illustrated in Fig. 9.4. They are: regime I
– early cure, merged αβ process, picosecond relaxation time; regime II – the 
α and β processes separate with the α process shifting to lower frequencies;
and regime III – towards the completion of cure, at which time the α process
shifts to very low frequency (indicating glass formation), while the secondary 
β process remains at high frequencies. An interpretation of the corresponding
microscopic events is as follows. The unreacted mixture response (the αβ
process) is essentially of a local nature due to a large degree of thermal kinetic
energy; all motions are within domains of similar size and the number of atoms
involved in the relaxation (number of atoms per domain) is small. As the re-
action progresses, the increasing molecular connectivity leads to a wider 
distribution of domain sizes and an increase in the number of atoms per 
domain. When the domain size is much larger than the scale of local motions,
we observe the splitting into distinct α and β processes; beyond this time in 
the reaction the α process continues to evolve to longer relaxation times. To 
indicate more clearly the divergence of the αβ process we extract from Fig. 9.4
the relaxation times, τ (τ = 1/2π fmax), where fmax is the frequency of loss maxi-
mum, and plot in Fig. 9.5 log τ as a function of conversion for all of the above
regimes.
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The curve running through the data is a modified version of the VFT func-
tional form:

(9.17)

The β process is described by an Arrhenius-like equation:

(9.18)

In Eqs. (9.17) and (9.18), % denotes extent of reaction, and τ0, F1, and F2 are 
best-fit parameters to the data in Fig. 9.5. We point out that τ, for α and β
processes, does not diverge to infinity at the gel point, as translational processes
do, since the segmental α process becomes independent of molecular weight
above a material-dependent critical chain length.
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Fig. 9.4. Dielectric loss and permittivity in the frequency domain at different extents of cure
for DGEBA/DETA isothermal reaction at 50 °C. The solid line is a fit to a two-term Havriliak-
Negami (HN) function



We have recently gained further insight into dynamics of epoxy-amine net-
works by contrasting the changes in the α relaxation time with conversion ob-
tained from the dielectric (DRS) and dynamic light scattering (DLS) data [82].
We obtain τDRS, as stated above, i.e., from the reciprocal of the ε′′ peak frequen-
cies. For the DLS data we use the following well-known relation to connect the
apparent relaxation time to the KWW τ *

(9.19)

where Γ is the Gamma function. As seen in Fig. 9.6, the agreement in relaxation
times between the two techniques is excellent, leading us to suggest that the un-
derlying origin of the α process as probed by the two technique is the same.

In the conversion range where the α process has an associated time scale slow
enough to be found within the DLS autocorrelation time window, the DLS ex-
periment is measuring the longitudinal density fluctuations (at lower conver-
sions we measure a different process – concentration fluctuations, not consid-
ered here). At any given instant, the fluctuating density will be frozen, and a hy-
pothetical instantaneous microscopic snapshot is that of a distribution of do-
mains of various densities (the macroscopic density being the ensemble average
of these subsystems). We note that the connection between the micro-Brownian
α process, the glass transition, and density fluctuations observed via DLS has
been amply demonstrated in the literature. Regions of higher density are as-
sumed to relax more slowly, lower density more quickly; the distribution of den-
sity domains thus yields the distribution of relaxation times. That dipole dy-
namics exhibit the same α relaxation characteristics as time-dependent density
fluctuations suggests that the α process as measured by DRS is also broadened
by the density domain heterogeneity. The factors influencing the density do-
mains are evidently also those that govern both the distribution of dipolar re-
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laxation times and the mean of the relaxation times for the α process.
Interestingly, there exists conflicting evidence in the literature for other com-
parisons between DRS and DLS data. For some polymers, including PPG, PVAc,
PS, and PEA, it was found that when comparing data at the same temperature
τDRS < τDLS and the KWW parameter βDLS < βDRS [83]. For other polymers, in-
cluding PMPS [84], PHMA [85], and poly(n-laurel methacrylate) [86], and for
low molecular weight liquids BKDE and BCDE [87], the α processes have equiv-
alent DRS and DLS τ and KWW β parameters.

9.5.3
Correlation Between Chemical Kinetics and Molecular Dynamics 
During Network Formation

The primary requirement for monitoring a chemical reaction using dipolar re-
laxation spectroscopy is, of course, that there be present some polar portion of
one of the reactants and/or products. That requirement being met, there are four
chemical reaction possibilities that lead to networks, as schematically shown in
Fig. 9.3. Historically, the types of chemical reactions most often monitored by
DRS are those in which the reactants are low molecular weight liquids and on ex-
posure to appropriate conditions (usually heating or exposure to radiation (UV
or microwave) or the addition of a catalyst) react to form various polymeric
structures: linear and branched polymers and cross-linked networks with vari-
ous physical states: viscous liquids, rubbery gels, amorphous solids or semi-
crystalline solids. This diversity is governed by the structure and functionality
of the reactants and the thermodynamic and kinetic considerations.

Fundamental studies aimed at correlating dipole dynamics with the kinetics
of network formation have a recent origin. Early attempts at modeling of cure
from dielectric measurements of dipole relaxation were reported in several pa-
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pers by Seferis and coworkers [88–90]. They recognized and clearly expressed
the need to relate the dielectric signal to the change of some fundamental prop-
erty of polymer network during cure. The essential feature of their model is cor-
relation between dielectric function (dielectric permittivity and loss) and net-
work parameters (viscosity and degree of cure). The average relaxation time was
tracked during cure and related to viscosity. The viscosity, in turn, was corre-
lated to the degree of cure by a multi-parameter equation reported earlier by
Dusi et al. [91]. Good agreement was found between the measured and predicted
results, despite the empirical nature of the model and an oversimplified physical
picture. In the early 1990s Johari and coworkers initiated a series of comprehen-
sive dielectric studies of curing kinetics [92–94]. They used the complex electri-
cal modulus formalism to describe d.c. conductivity and dipolar relaxation. The
decrease in d.c. conductivity obeyed a power law form used to describe critical
phenomena and approached a negligible value at gelation. That led to a contro-
versial and harshly criticized [95] conclusion that gelation could be character-
ized by dielectric measurements. The isothermal spectra of dielectric permittiv-
ity were fitted to a KWW functional form with stretch exponent termed γ (to dis-
tinguish it from the KWW β) that varied with curing temperature and molecu-
lar architecture, and was identified as a curing parameter for the vitrification of
thermosets. The following equations have been applied to isochronal cure data
[94], where a modified version of the normalized complex permittivity (ωτ0 is
substituted for ω) is used:

(9.20)

and

(9.21)

where φ is the polarization decay function, τ0 is the modified KWW function re-
laxation time, and the other variables have their usual meanings. In this
isochronal method of data fitting the γ parameter represents an average of the
KWW β parameter that would be found from a frequency sweep over the ex-
perimental time range of the isochronal ε′′ peak. It is a less precise shape para-
meter determination than the frequency domain method; however, it may be
necessary to undertake under constrained experimental situations, and can still
be somewhat revealing. This work was later extended to cover non-isothermal
cure of thermosets and a general expression for dielectric properties during
cure was written. To calculate dielectric permittivity and loss from Eq. (9.20) one
needs to know the relaxation time τ, which, in turn, is a function of the degree 
of cure α. Thus a kinetic equation is needed that relates τ to α. Parthun and
Johari [94] used a general kinetic expression proposed by Barton [96], assumed
a simple first order reaction mechanism, and reported a good agreement with
experimental results for a DGEBA-EDA mixture cured at two heating rates. An
important contribution to this field of study was made by Fournier et al. [97],

φ
τ

γ

( ) expt t= − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

′′ = + − − ∂
∂

⎛
⎝⎜

⎞
⎠⎟∞ ∞

∞

∫ε ωτ ε ε ε ωτ φ
( ) ( ) exp( )0

0
s i

t
td

9.5 Polarization by Dipole Orientation 367



who generated 3-D plots of dielectric permittivity (and dielectric loss) against
the curing time and frequency, and developed a theoretical working model that
allows DRS to predict the course of the reaction in the vitrification range. A
strategy for the monitoring of cure via τ dynamics can be briefly outlined as fol-
lows (additional details may be found in the recent literature [97, 98]). Usually,
the first step is to perform a series of kinetic and DRS measurements on the ma-
terial at selected isothermal reaction temperatures. From the kinetic data (ob-
tained by DSC, FTIR, titration, GPC, etc.) one generates the plots of extent of re-
action vs reaction time. A kinetic equation is then derived that describes the re-
action mechanism and accounts for the presence (when necessary) of diffusion
control [99–103]. The rates and mechanisms of cross-linking reactions vary as a
function of chemical composition and many such studies have been reported in
the literature. For example, the widely studied epoxy-amine mixtures are almost
always characterized by autocatalytic kinetics and the interested reader is re-
ferred to several comprehensive reviews of this subject [104–106]. Utilizing an
appropriate kinetic equation, the temperature dependent reaction rate constants
and the activation energy are obtained. Next, the DRS data are analyzed. The fre-
quency of maximum loss, fmax, is related to the average relaxation time, τ, by

(9.22)

The increase in molecular weight and cross-link density is accompanied by a
concomitant decrease in the molecular mobility and an increase in the relax-
ation time. An exponential dependence (experimentally observed) of the relax-
ation time on reaction time affords a good description of the process and hence
we write

(9.23)

or

(9.24)

where the time of maximum dielectric loss, tmax, is chosen to define an opera-
tional reaction time with respect to the measuring frequency, fmax(0) is the fre-
quency of the maximum loss for the uncured material, and k is a constant for a
given reaction temperature.The next step is to introduce the kinetic information
into Eq. (9.24). First we write the rate of polymerization dα/dt, in the following
general form

(9.25)

where f ′(α) defines the kinetic expression and f ′′(α) is the diffusion control fac-
tor. For further treatment of diffusion-controlled kinetics the reader is referred
to the literature (e.g., [99–103]). Equation (9.25) can be rewritten to yield the
time t(α) needed to reach a given extent of reaction:
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When Eqs. (9.25) and (9.26) are combined, the frequency at maximum loss for a
fixed reaction temperature can be expressed as a function of the degree of cure
as follows:

(9.27)

Equation (9.27) relates molecular dynamics to chemical kinetics. In the conver-
sion range where diffusion control is absent, the second term under the integral
is equal to unity (f ′′(α) = 1).

The following equation was reported by Fournier et al. [97] in their study of
the cure of DGEBA-PACM system:

The plots of log fmax vs α gave important information. For example, the slopes of
the straight lines log fmax vs α in the kinetically controlled region were seen to
decrease with increasing temperature of cure Tcure. At higher Tcure, the loss peak
remains at high frequency until vitrification, and then decreases abruptly. The
rapid decrease of fmax indicates that α is always close to αf in the diffusion-con-
trolled region. Building upon the original work of Fournier et al. [97], Andjelic
and Mijovic obtained similar results in their study of dynamics and kinetics of
a carbonyl-modified-epoxy/amine network [98].

We now turn our attention to polymers that belong to class 1 cross-linking
systems (see Fig. 9.3). We begin by presenting the results of Roland, who used
DRS to study constraints on local segmental motions in poly(vinyl ethylene)
(PVE) networks [107]. Different cross-linked densities were realized by adding
varying quantities of dicumyl peroxide to PVE. No KWW fits were possible and
the relaxation time was calculated from the frequency at maximum loss. Roland
observed an increase in relaxation time and glass transition temperature with
increasing cross-link density. Fragility (or cooperativity) plots were character-
ized by a systematic increase in temperature sensitivity with increasing cross-
link density, suggesting that segmental relaxation in the more densely cross-
linked networks is associated with stronger intermolecular coupling. That led to
the argument that the junctions and the chains emanating from them are effec-
tively constraining the motions of segments well removed from junctions. Glatz-
Reichenbach et al. [108] also studied dielectric relaxation of class 1 networks ob-
tained by cross-linking styrene-butyl acrylate (SB) copolymer with divinyl ben-
zene (DVB). Relaxation time and glass transition temperature were found to in-
crease with increasing cross-linking and it was speculated that the segments
near the chain ends may have a different activation energy than those further
away. We shall return to the arguments of Roland and Glatz-Reichenbach et al.
later in the text in conjunction with the effect of cross-links on the breadth and
shape of the distribution spectrum, but first we present the results for an end-
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group functionalized network-forming poly(methylphenylsiloxane) (PMPS).
Three cross-linked PMPS networks were prepared and investigated [72], with
the extent of cross-linking varying as follows: PMPS374 > PMP747 > PMPS149.
Dielectric permittivity and loss were measured for each network composition
across a wide frequency and temperature range. Because permittivity and loss
are directly related via the Kramers-Kronig relations, for simplicity only the loss
data are presented in Fig. 9.7.

The solid curves are HN function fits with the low conductivity contribution
subtracted. Since the τHN is not equivalent to the apparent relaxation time (recall
that τapp = τ = 1/2π fmax), we must calculate it from

(9.29)

The temperature dependence of τ for selected compositions is shown in 
Fig. 9.8.

Data of Boese et al. [109] on a higher molecular weight linear PMPS sample
are included for comparison. Also included are several high frequency data
points, omitted in Fig. 9.7 for clarity. The solid curves in Fig. 9.8 are VFT fits.
While different PMPS networks have different Tgs, evidenced by the low tem-
perature τ behavior, the trends are similar. This is verified when scaling τ
by Tg

*/T (where Tg
* is the operational definition of Tg – the temperature at which

τmax is 100 s), as shown in Fig. 9.9.
The solid line in the main plot of Fig. 9.9 is the Arrhenius limiting case. The

inset of Fig. 9.9 shows a magnified portion of the low-temperature region of the
main plot. We point out the apparent high fragility of PMPS, intuitively unex-
pected considering the flexibility of Si-O backbone and a low Tg. The high
fragility is not caused by secondary relaxations; the secondary process of inter-
est is the phenyl ring flip but this process is not dielectrically active and the low
temperature dielectric data (where secondary relaxations would be most no-
ticeable) are featureless for all compositions. However, let us for the moment
change the discussion from the topic of fragility and focus our attention on the
implications of changing cross-link density on the length scale of the segmental
dynamics. First, the fragility index of PMPS has been shown to be independent
of cross-link density, molecular weight, and Tg. Also independent of these vari-
ables is the relaxation shape (characterized by a KWW β parameter). The fact
that no change in the fragility index was found may not be significant, since sev-
eral dissimilar materials were found to have equivalent indices. However, the
fragility information taken together with the unchanged relaxation shape sug-
gests the following conclusion. Since these segmental dynamics measures are
not sensitive to the different PMPS structures examined, gels and linear chains,
this implies that the relaxing segments are smaller than the distance between
cross-links (approximately 14 repeat units). An understanding of primitive seg-
mental dynamics is, unfortunately, not directly accessible through a DRS test, as
the dipole-containing segments are relaxing within cooperatively rearranging
domains. It is not possible to predict how the domains ought to behave on the
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Fig. 9.7. Dielectric loss in the frequency domain at specified temperatures for indicated PMPS
networks



basis of the molecular structure at present, although a recent attempt has been
made [110]. Nevertheless, if the domain size distribution had been affected by
cross-linking, one of the manifestations in a DRS test would be through the re-
laxation distribution (KWW β parameter). Since this is not the case for the
PMPS network here, we may infer that the characteristic domain size is smaller
that the distance between cross-links. In other terminology, although density
fluctuations are quenched in regions very close to cross-links, fluctuations in
density between the cross-links are not significantly disturbed. In this respect,
there is an apparent difference in the effect of cross-linking on segmental relax-
ation in cross-linked PVE [107], SBDVB [108], and PMPS [72] networks. If the
characteristic domain size were larger than this distance, upon cross-linking all
fluctuations on this scale would be quenched and only local (non-cooperative)
modes would be observed [111]. We conclude that the distance between cross-
links (28 skeletal Si-O bond lengths, approximately 50 Å) is greater than the
length of the primitive segment and the cooperatively rearranging domain;
therefore, the length scale of the α process in PMPS networks is less than 5 nm.
The upper length bound would be somewhat smaller than 5 nm if there is some
immobilization near the cross-links. This size is in agreement with the value of
about 2–5 nm, recently reported in several investigations of the cooperative
length scale in polymers and molecular liquids (e.g., [112]).

9.5.4
Changes in Relaxation Strength During Network Formation

Another approach to cure monitoring based on dipole polarization is the char-
acterization of the extremes in dielectric constant: static, ε s, and high frequency,
ε∞ , or the difference Δε =ε s – ε∞ , relaxation strength. The motivation behind
this approach is, as we shall see, a direct relationship between a materials dipole
composition and the static permittivity, ε s. When the dipolar composition
changes in the course of network formation in a systematic manner, measure-
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pendence of apparent relax-
ation time, τ, for various
PMPS networks



ment of εs will give fundamental information on the makeup of the reactive sys-
tem at any time during cure.

Accompanying the chemical change and increase of molecular weight is usu-
ally a density increase and therefore an increase in dipole density that should re-
sult in an increase in dipolar relaxation strength. However, an increase in permit-
tivity is usually not observed for reactive systems because in most instances prod-
uct dipoles are less polar or not polar entities. An exception has recently been
found [18] where the product dipoles are of a higher dipole moment than the re-
actants via a possible specific interaction induced molecular conformation.

The relaxation between relaxation strength and a material’s constituent
dipoles has been derived from fundamental principals by Debye and later mod-
ified by Fröhlich [113] as

(9.30)

where εs and ε∞ are the limiting low and high frequency dielectric permittivity, Ni
is the concentration of dipoles of type i in the material, μi the type i dipole mo-
ment, k the Boltzmann constant, and T the absolute temperature. In situations
where the reactant dipole moments are greater than the products,which is the case
for most epoxy-amine systems, a systematic decrease in εs or Δε will be found.

In the early stages of cure the decrease in ε ′ is gradual; later when the system
vitrifies an abrupt drop is observed. In the early reaction stages (pre-vitrifica-
tion) what is being measured are changes in the material’s εs. However, in the
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Fig. 9.9. Tg/T scaled temperature dependence of apparent relaxation time for all compositions.
Inset shows magnification of Tg/T range from 0.85 to 1



reaction time window of vitrification, we are instead measuring a continuous
change from εs to ε∞ (the material’s lowest permittivity value, ignoring for the
moment any β relaxations, as they have for the present purpose negligible re-
laxation strength). As the foregoing isochronal approach is a typical (prevail-
ing) one in the literature it will be useful to explore these ideas further using a
series of illustrations. We show in Fig. 9.10A a set of frequency sweeps that 
represent qualitatively the general trend for dielectric permittivity changes
during cure, while in Fig. 9.10B we extract isochronal information as a function
of cure time.

We point out the ε s changes can only be monitored while the majority of the
relaxation process remains in the available experimental frequency window.
That condition fails eventually because the lowest measured frequency must be
kept sufficiently high so that the measurement time is short compared with
chemical changes. It is this vitrification time period in cure where modeling ap-
proaches are needed to account for the dependence of the α relaxation on Tg in-
cluding the relaxation strength, relaxation time, and shape parameters. We dis-
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Fig. 9.10. A Illustration of
dielectric permittivity vs
frequency with cure time as
a parameter. B Extracted di-
electric permittivity at fre-
quency ( f1) vs cure for ma-
terial in A



cuss these features in the following section. It should be also mentioned that care
must be exercised when presenting isochronal data to avoid choosing a fre-
quency which includes interfacial or electrode blocking influences, as discussed
in the previous section on polarization by migrating charges.

In an industrial application, microwave frequency measurements are often
useful for both cure monitoring and for material characterization (particularly
necessary when processing materials with microwave heating).As mentioned in
the charge migration polarization section (Sect. 9.4), typically at frequencies
greater than 1 MHz the only relevant polarization mechanisms are the dipolar
relaxation and faster resonance processes. For this reason electrode effects and
conductivity contributions to the measurement are avoided.

Great strides have been made in high frequency instrumentation and signal
analysis techniques [114, 115] that result in rapid and accurate microwave band
frequency measurements on reactive systems. For industrial processing pur-
poses it may be sufficient to monitor a dielectric response at a single microwave
frequency if the material permittivity changes during cure are systematic. The
types of probes used are either flat surface strip-line measurements [116], coax-
ial airlines filled with sample [81, 117–119], open-ended semi-rigid coaxial lines
terminated by a volume of the sample [120], or resonant cavities tuned to a spe-
cific frequency band and adjusted to obtain the samples permittivity [121, 122].
While such isochronal measurements reveal little about the underlying molecu-
lar nature of the relaxation process and are batch-specific, they can be useful for
industrial cure monitoring.

9.5.5
Changes in Relaxation Spectrum During Network Formation

Another approach to the analysis of cure data is to examine changes in the shape
parameters of a fit relaxation function. The most robust and general function is
the well-known Havriliak-Negami (HN) equation [123]

(9.31)

where both the α and β processes are accounted for (see appropriate subscripts)
and ω is the angular frequency, i is (–1)1/2, εs – ε1, and ε1 – ε∞ are the relaxation
strengths of the α and β processes, τα and τβ are their relaxation time, aα, bα, aβ,
bβ are the processes shape parameters. The final term in Eq. (9.31) accounts for
conductivity (σ), ε0 is the permittivity of free space, and d is a scaling constant,
usually with a value of one for migrating charge polarization. In Fig. 9.4 we have
applied this functional form to the data. It is apparent that one of the strengths
of this analysis is the ability to deconvolute distinct but overlapped processes.
We hasten to add that as the nature of the β process is poorly understood, so to
the nature of the merging region of α and β processes (e.g., [124]), therefore the
linear deconvolution may eventually be found to be in error. However, trends in
the behavior of the relaxation times beyond this region where the processes ap-
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pear to be distinct are reasonable; until these issues are resolved its continued
use for this purpose is warranted.

Other functional forms such as the Kohlrauch-Williams-Watts (KWW) [125]
stretched-exponential functional form are also often applied:

(9.32)

where τ* is the relaxation time and β is the stretching exponent ranging from 0
to 1. There are several different fundamental physical arguments for the de-
scription of the α process [126–128] that arrive at a functional form for the re-
laxation phenomena in the form of a stretched-exponential (KWW). One of the
most accessible arguments is the work of Ngai and Roland [129], in which sys-
tematic changes to polymer structures were observed to result in systematically
altered α process Tg-reduced temperature dependencies. The trends, as pre-
dicted from the fundamental argument, become visually convincing when pre-
sented in the cooperativity plot (or fragility plot [130]) in which log τ is pre-
sented as a function of Tg/T. Actually, the cooperative nature of a reactive sys-
tem was first considered by Matsuoka et al. [131], who proposed a model for the
curing reactions of epoxy resins based on the similarity between chemical
cross-linking and structural relaxation in glassy thermoplastics. During cross-
linking, the configurational entropy will decrease while the temperature below
which the equilibrium state cannot be reached (T *) and the relaxation time (τ)
will both increase. The authors calculate T * by assuming that it varies in pro-
portion with the degree of cure and then substitute the calculated value in the
Adam-Gibbs expression [132], in order to obtain the relaxation time. The re-
laxation time, on the other hand, is contained within an “apparent” rate con-
stant and is thus related to the reaction kinetics (simple first-order kinetics is
assumed). The Adam-Gibbs expression and a distribution spectrum obtained
from dielectric relaxation of poly(vinyl acetate) were employed to model the
curing process for both isothermal and nonisothermal histories.Additional de-
tails regarding cooperativity dynamics in epoxy-amine system may be found in
the recent literature [23].

We mention finally the two power-law form of Jonscher [6]:

(9.33)

(9.34)

where ω0 = 1/τ. It has been explored recently in the context of curing systems
[133, 134] in an attempt to ascribe significance to the slope (m and –n) on either
side of the relaxation peak in terms of length scales of motion being probed, i.e.,
low frequency side applying to long length scales and the high frequency side to
short. The short time n parameter arrived at by a percolation model for the glass
transition [135] was found to be in agreement with their experimental findings.
Historically, the interpretation of shape parameters in terms of the length-scale
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of the relaxation originated with the work of Schönhals and Schlosser [136] on
non-reactive amorphous polymer systems.

In general, after the splitting of the αβ peak early in cure, the α peak tends to
broaden as cross-linking develops. Let us examine the changes in model param-
eters with cure using the familiar epoxy/amine reactive system. The HN param-
eters (Eq. 9.31) show the following trends: the 1 – aα linearly decreases, the bα is
insensitive to cure, and the 1 – aβ and 1 – aβ both increase and then decrease in
a parabolic trend with minima occurring at the same cure time. Interpretation
of these complex trends is avoided by the other models with fewer parameters.
Nevertheless, the pattern in HN relaxation time change with cure accurately re-
flects the apparent relaxation times gleaned from the frequency sweep data and
therein lies the utility of the model. The trend in the Jonscher model m and n pa-
rameters are a constant linear decrease in m with cure from 1 to 0.5 up to 65%
of conversion and a linear decrease in n but with a more gradual slope from 0.4
to 0.2. In this way the systematic broadening of the α process is quantified.
Finally, the KWW β parameter reveals the same broadening trend, while con-
taining only one parameter. KWW β decreases from 0.5 to 0.32 up to 65% con-
version. For this system the linear changes in the shape parameter allow for the
direct monitoring of conversion to just beyond the gel point. The limitation to
the highest extent of cure that can be covered by the relaxation peak shape
analysis comes from an experimental concern: the low frequency measurement
time cannot exceed appropriate values determined by the system’s chemical ki-
netics.

The use of changes in a model parameter to monitor cure is not appropriate
for all types of reactive mixtures. In some reactive systems the changes are too
small to be accurately monitored. A reactive urethane system, for example, ex-
hibits a very small change in the Jonscher m and n parameters: m decreases from
approximately 0.85 to 0.8, while n increases from 0.2 to 0.25 [137]. In this system
the product of the reaction is a lightly cross-linked rubber, where the final Tg of
the system is much lower than the reaction temperature, and the relaxation time
of the α remains in the MHz region at completion of cure. In this case the broad-
ening of the α process due to cooperativity on approaching the glass transition
does not play a role.

As a final example we examine the broadening of the α process during net-
work growth in a cyanate ester resin. As conversion increases, the α process ap-
pears to broaden, while its intensity decreases. It is well known that the loss
shape can be temperature dependent. To assess the influence of a temperature-
dependent change of shape on the increasing breadth of the α process, we replot
the original data at an “isomobility” temperature, i.e., at a temperature where the
loss has a convenient loss maximum of 104 Hz. These plots are shown in Fig. 9.11
(raw data), and the normalized spectra are shown in Fig. 9.12, illustrating that
with increasing conversion the α loss peak indeed becomes more broad.

No significant influence from conductivity was found in the frequency region
near the loss peak and hence the foregoing analyses lead us to conclude that the
broadening is a real feature of the relaxation itself. The shapes of the peaks in
Fig. 9.12 are characterized and quantified by the Jonscher model. The Jonscher
parameters m = 0.62 and n = 0.55 for the neat resin are comparable to those of
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many polymers and low molecular weight materials; however, with increasing
conversion both parameters decrease, but the m parameter becomes smaller
than n, This behavior is unusual. In Jonscher’s monograph [6] where the param-
eters are given for 65 different materials, only 18 have smaller m’s than n’s. The
broadening of the α process with cross-linking is not a new finding, but pre-
cisely why the broadening occurs remains unclear. We envision two aspects of
the broadening of the α process. First is broadening due to microscale composi-
tion variations (concentration fluctuations). Such broadening phenomena have
been studied for polymer blends using DSR by Katana et al. [138], who investi-
gated the binary blend of bisphenol A polycarbonate (BPAPC) and tetramethyl
bisphenol A polycarbonate (TMBAPC) and found a maximum in the broaden-
ing of the α process at approximately 40 mol% of TMBAPC but, interestingly,
found no difference in ΔTg (temperature range of calorimetrically determined
glass transition) or ΔCp(Tg) (extrapolated heat capacity difference between liq-
uid and glass) for these blends. Kumar et al. [139] developed a mathematical
model based on nanoscale concentration fluctuations, predicting a broadening
of ΔTg and width of the α process for miscible polymer blends.Arguments along
similar lines have been set forth by Roland and Ngai [140], though they refer to
the phenomenon generically as heterogeneous broadening. We acknowledge a
contribution to the broadening in cross-linked cyanate ester networks due to
these compositional fluctuations; however, it appears that the severity of the
broadening for our network’s α process must have an additional explanation.We
have shown above (Sect. 9.5.3) that the breadth of the α process in PMPS net-
works remains unchanged when the distance between cross-links is greater than
the length scale of the cooperatively rearranging domain (CRD). In the cyanate
ester network, consisting of rigid cross-link nodes and rigid sections connect-
ing those nodes, we propose that the CRD is relatively large and of the order of
(or larger than) the distance between the cross-links (approximately 18 Å). In
this case the α dynamics will become increasingly disturbed and heterogeneous
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Fig. 9.11. Dielectric loss
spectra for 0, 10, 20, 30, and
40% samples at an “isomo-
bility” temperature (tem-
perature where the fre-
quency of ε′′max is 10 kHz).
Solid lines are fits to the
Jonscher model



with the progress of cross-linking, with an ultimate disappearance of the α
process in perfect networks of this kind. We assert that this influence on the
broadening of the α process is greater than the influence of concentration fluc-
tuations mentioned above.

9.6
Conclusions

In this chapter we have demonstrated how dielectric spectroscopy can be used
to monitor network formation in chemically reactive systems. The two major
polarization mechanisms that are studied by dielectric spectroscopy are (1) po-
larization due to charge migration and (2) polarization due to orientation of
permanent dipoles. Migration of charges gives rise to conductivity that is af-
fected by network formation and hence can serve as an indicator of the progress
of cure. Phenomenological models that match experimental impedance with the
impedance of an equivalent circuit composed of resistors and capacitors are
used to describe polarization due to migrating charges. The study of dipole re-
orientation provides a more fundamental insight into molecular the dynamics
of network-forming polymers. Depending on the type and destiny of dipoles
present, there are four classes of cross-linking reactions that result in network
formation and can be probed by DRS. Common to all these classes, however, is
the change in the segmental relaxation (the α process) during network forma-
tion. The advancement of network formation can be quantified and modeled by
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Fig. 9.12. Normalized dielectric loss spectra for 0, 10, 20, 30, and 40% samples at an “isomo-
bility” temperature (temperature where the frequency of ε′′max is 10 kHz). Solid lines are fits to
the Jonscher model



following the change in the relaxation time, the breadth of the relaxation spec-
trum, the spectral shape parameters, and the dielectric relaxation strength.
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List of Abbreviations and Symbols

C Capacitance
f Frequency
k Kinetic rate constant
L Inductance
m,n Power-law parameters
N Concentration of dipoles
R Resistance
T Temperature
Tg Glass transition temperature
Tg

* T at which τ = 100 s
Y* Admittance
Z* Impedance
β KWW exponent
Γ Gamma function
ε* Complex dielectric function
ε′ Dielectric permittivity (real part)
ε′′ Dielectric loss (imaginary part)
εs Limiting low-frequency ε′
ε� Limiting high-frequency ε′
Δε εs – ε�

Φ Polarization decay function
η Viscosity
τ Average relaxation time
ω Angular frequency

CRD Cooperatively rearranging domain
DETA Diethylene triamine
DGEBA Diglycidylether of bisphenol A
DLS Dynamic light scattering
DRS Dielectric relaxation spectroscopy
DS Dielectric spectroscopy
HN Havriliak-Negami
KWW Kohlrausch-Williams-Watts
PMPS Poly(methylphenylsiloxane)
VFT Vogel-Fulcher-Tammann
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10 Molecular and Collective Dynamics of (Polymeric)
Liquid Crystals

F. Kremer · A. Schönhals

10.1
Introduction

Thermotropic liquid crystals form a class of matter which is located between the
crystalline and the isotropic state [1, 2]: In crystals molecules have maximal (po-
sitional and translational) order and minimal mobility while in liquids the re-
verse is the case. In liquid crystals (LC) aspects of both states are combined and
– so-called – mesomorphic phases are developed in which order and mobility
compete. The former results in anisotropic (optical) properties, the latter en-
ables one to modify (to “switch”) the orientation of the molecules by use of ex-
ternal electric or magnetic fields. Broadband dielectric spectroscopy has turned
out to be a versatile tool to study the dynamics in these systems.

The literature concerning the dielectric properties of (low molecular weight
and polymeric) liquid crystals is vast. (For reviews see for instance [3–7].) It
would be far beyond the scope of this contribution to discuss it in detail. Thus
the present chapter is written out of the personal perspective of the authors
mainly based on their own experiments.

10.2
Molecular and Mesomorphic Structures of Liquid Crystals

10.2.1
Low Molecular Weight Systems

Numerous organic molecules form due to their shape anisotropy liquid crys-
talline phases [7, 8]. Most of them are rod-like, but also bent-shaped and disc-
like molecules can show liquid crystalline properties. The mesophases can be di-
vided into nematics and smectics.

The nematic phase is the liquid crystalline state with the lowest order and it
appears usually at temperatures just below the isotropic state. The molecules
have all translational degrees of freedom and therefore no long range positional
order [1] exists. Their long axes are preferentially aligned with respect to a com-
mon unit vector n, the director (see Fig. 10.1a). For uniaxial molecules n = –n
(uniaxial nematic phase). For chiral molecules the spatial variation of n leads to
a helical superstructure (with pitch pH) in the so-called cholesteric phase.



For smectic phases, in addition to the orientational, a positional order is ob-
served. Therefore on time-average the centres of mass of the molecules are
fixed and equidistant layered structures are developed. The mean orientation of
the molecules within the layers can be parallel (smectic A) or tilted (smectic C)
with respect to the direction of the layer normal (Fig. 10.1a). For smectic A and
C phases there is no positional order of the molecules within a layer and they
can be regarded as a two-dimensional fluid. For higher organized smectic
phases (B, E, F, ...) an increasing positional order of the molecules within a layer
(and also between neighboured layers) is established which is accompanied by
a reduced rotational and translational mobility. For chiral molecules with tilted
smectic phases – as in cholesterics – a helical superstructure is formed (see
Sect. 10.5).

The degree of orientation of the molecules is described by the order parame-
ter S defined as

(10.1)S = −1
2

3 1〈 〉cosθ
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Fig. 10.1. a Some examples for rod-like molecules forming mesomorphic phases. n indicates
the direction of the director and Tx/y symbolizes the phase transition temperatures. b Some ex-
amples for disk-like mesogens which can form nematic and columnar liquid crystalline
phases. c Some examples of architectures for polymeric liquid crystals. The basic units are
monomers with rod- or disk-like mesogens which are attached via a spacer as a side group or
which may form part of the main chain

a)
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Fig. 10.1 (continued)

b)

c)



where θ is the angle between the direction of the long axis of the molecule and
the director n; the brackets denote the statistical average. For an isotropic liquid
S = 0 holds and for a fully aligned LC phase  S = 1.

Also disc-shaped molecules (see for instance [9, 10]) like hexa-alkanoate or
benzene and triphenylene derivatives can form mesomorphic phases (see
Fig. 10.1b). In columnar discotic phases superstructures – analogous to smectics
– can be observed.

10.2.2
Polymeric Systems

Liquid crystals can be readily combined with polymers of different architecture by
use of a flexible spacer which decouples the mesogenic moieties from the polymer
chain ([7, 11], see Fig. 10.1c). In side chain liquid crystal polymers (SCLCP) [12]
which have received much attention since their first synthesis [13, 14] the meso-
genic units are located in a side chain of the polymer backbone.For rod-like meso-
genic moieties the coupling with regard to the spacer groups can be parallel or
perpendicular. It is expected that such materials can be applied as active compo-
nents for optical data storage, holographic applications and electro-optical de-
vices [15]. In main chain liquid crystalline polymers (MCLCP) the mesogenic
moiety is part of the polymeric backbone. Due to the stiffness of the mesogenic
building blocks,materials of extraordinary mechanical properties can be realized.
In addition to SCLCP and MCLCP, combined side chain/main chain [16, 17] sys-
tems or liquid crystalline copolymers [12] or networks [18] can be synthesized.

10.3
Theoretical Considerations

The theoretical treatment of the static dielectric properties of LCs was pioneered
by Maier and Saupe (see for instance[19–22]).They introduced an additional
contribution to the interaction energy of the system depending on the orienta-
tion of the molecules, the nematic potential Ui [2]. For that is assumed in a mean

field approximation where θi is the angle between the direc-

tion of the long axis of the molecule and the director n and S the order param-
eter. In a simplified version neglecting internal field and polarization effects for
the mean square dipole moments parallel 〈μ2

||〉 and perpendicular 〈μ2
⊥〉 to the di-

rector [2]

(10.2a)

(10.2b)〈 〉μ μ
⊥ = + −⎡
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is obtained where Ψ is the angle between the dipole moment � and the long axis
of the molecule (kB is the Boltzman constant and T the temperature).
Equations (10.2a) and (10.2b) give for the difference in the quasi static permit-
tivities parallel εS,|| and perpendicular εS,⊥ to the director ( , see
Chap. 1)

(10.2c)

where N is the number of dipoles, V the volume of the system and ε0 the per-
mittivity of free space. The sign of the dielectric anisotropy δε is positive if Ψ is
small. Otherwise the sign of δε is negative1. In Fig. 10.2 the temperature depen-
dence of the dielectric anisotropy is presented for two low molecular weight LC
having a positive and a negative value of δε. In the isotropic state δε vanishes for
both materials.

δε ε ε μ
ε

= − = − −⊥S S
Bk T

N
V

S,|| , ( cos )
2

0

2

2
1 3 Ψ

ε ε ω
ωτ

S = ′lim ( )
�1
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1 The corresponding materials are called dielectric positive (δε > 0) or dielectric negative 
(δε < 0).

Fig. 10.2. Temperature dependence of the quasi-static permittivities parallel and perpendicu-
lar to the director εS,|| and εS,⊥ for p–n–alkoxy benzoic acid (δε > 0). The inset shows the same
for n(4′-ethoxybenzylide) 4-aminobenzonitrile (δε < 0). All lines are guides for the eyes. The
figures are redrawn from [1]



The extension to dynamical properties was initiated by the work of Nordio et
al. [23] and continued by Attard et al. [24] and Araki et al. [25] who developed an
approach without prior specification of the character of the motions involved.
The starting point is the consideration that each mesogenic unit has two com-
ponents of its molecular dipole vector longitudinal and transverse to its long
axis μL and μT respectively. From a microscopic point of view the dielectric prop-
erties are determined by the correlation functions of the polarization fluctua-
tions parallel and perpendicular to the nematic director. These can be expressed
by four different molecular relaxation modes given by correlation functions of
the longitudinal and transverse component of the molecular dipole vector pro-
jected parallel and perpendicular to the nematic director (see Fig. 10.3). In that
semi-microscopic treatment the measured dielectric function parallel ε*

||(ω) and
perpendicular ε *

⊥(ω) to n comprises different weighted sums of the four under-
lying relaxation modes depending on the macroscopic orientation of the 
sample

(10.3a)

(10.3b)

where ε∞,|| and ε∞,⊥ are the limiting high frequency permittivities parallel and per-
pendicular to the local director n and G is a constant. Ci

j (ω) (i = L, T; j = ||, ⊥)
denote the one-sided Fourier transformations (see Chap. 1) of the correlation
functions of the longitudinal and transverse component of � projected parallel
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Fig. 10.3. Possible relaxation modes for a mesogenic unit in an uniaxial nematic phase de-
pending on its orientation with regard to an outer electric field (redrawn from [6])



and perpendicular to n. It could be shown that Eq. (10.3) can be derived by as-
suming small step rotational diffusion [26] but also without an assumption
about the underlying motional process [27, 28]. Four different relaxation modes
are predicted according to the four different correlation functions.

For the corresponding relaxation rates ν i
j holds:

(10.4)

According to this approach, depending on the orientation of the sample with re-
gard to the outer electrical field, different relaxations should be observed.
If E is parallel to the director two modes are possible. The correlation function
CL

II(ω) involves fluctuations of μL around the short axis of the mesogenic unit
and is also called δ-process. Using polar coordinates CL

||(ω) is expressed by

(10.5)

where FT indicates the Fourier transform, β is the angle between the long axis of
the molecule and the z-axis (see Fig. 10.3) and the brackets denote the ensemble
average. CT

||(ω) is due to fluctuations of μT projected to the direction of E which
can only be observed for S<1 (see Eq. 10.3). In the opposite case if E is perpen-
dicular to n, CL

||(ω) is connected with fluctuations of the longitudinal component
of the dipole moment μL around the long axis of the mesogen and is observed
only for S < 1. CT

⊥(ω) involves reorientations around the short axis of the meso-
genic unit. The complex dielectric function of an unaligned sample corresponds
to the average

(10.6)

For a partially aligned LC sample of uniaxial symmetry the complex dielectric
function is given by [24]

(10.7)

where SD is the director order parameter which describes the average orienta-
tion of the director with respect to the measuring field direction. SD is equal to 0
for an unaligned (see Eq. 10.6), sample and equal to 1 for homeotropic and to
–1/2 for planar alignment.

For applications in display technology liquid crystals must be aligned. Hereby
the exerted dielectric torque is proportional to δε. Sometimes it is of advantage
to apply an a.c. voltage in order to avoid a disturbance of the orientation due to
polarization effects.Because of the frequency dependence of ε*

||(ω) and ε*
⊥(ω) the

kind of orientation (homeotropic or planar) depends on the applied frequency
of the a.c. field. A positive dielectric material (δε > 0) will be aligned ho-
meotropically at low frequencies and planarly at high frequencies [5, 24, 25].
The kind of the electrically induced alignment changes at a certain critical fre-
quency νc which is similar to the isosbestic point well known in optical spec-
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troscopy. It can be estimated from a diagram where ε′ of a homeotropic, of a pla-
nar and of an unaligned sample is plotted vs frequency. At νc all three ε′ traces
cross each other. Of course νc depends on temperature. This is the principle of
two frequency addressing [30].

10.4
Molecular Dynamics

10.4.1
Low Molecular Weight Systems

As suitable model systems alkyl-cyanobiphenyls, like heptyl-cyanobiphenyl
(7CB), can be used having a dipole moment parallel to the long axis only. For an
unaligned sample of 7CB in the nematic state two relaxation processes indicated
by peaks in ε′′ can be observed (Fig. 10.4, see also Fig. 10.5) which are assigned
to the tensorial components of the complex dielectric function parallel and per-
pendicular to the director (see Eqs. 10.3 and 10.4). The process assigned parallel
to the director corresponds to rotational fluctuations of the molecule around the
short axis (δ-process, correlation function CL

||(ω), see Fig. 10.3). Above the clear-
ing temperature the two processes collapse into one broadened relaxation

392 10 Molecular and Collective Dynamics of (Polymeric) Liquid Crystals

Fig. 10.4. Dielectric loss vs frequency and temperature for 7CB. The phase transition from the
nematic to the isotropic phase takes place at T = 317 K



(Fig. 10.4 and inset Fig. 10.5).Additionally, a β-relaxation takes places in systems
having a dipole component perpendicular to the long axis of mesogen assigned
to librational fluctuation of the molecule around its long axis [29].

The relaxation rate at maximal loss (mean relaxation rate) νmax is extracted by
fitting model functions of Havriliak/Negami [31] to the data which reads

(10.8)

where νHN is a relaxation rate connected with the peak frequency νmax, βHN and
γHN are shape parameters (0 < β HN, γHNβ HN ≤ 1) due to the symmetric and
asymmetric broadening of the loss peak and Δε is the relaxation strength (for
details see Chap. 3.). Figure 10.5 shows an example for a fit in the nematic as well
as in the isotropic state.

Figure 10.6 gives the temperature dependence of the relaxation rates νmax in
the different states where data for aligned samples [3, 32] were also included.
Both sets of data agree well with each other proving the assignment of the re-
laxation process for the unaligned sample.

ε ν ε ε
ν ν β γHN

HN HN HN
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= +
+∞

Δ
1 i
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Fig. 10.5. Fit of two Havriliak/Negami (HN) model functions to the dielectric loss in the liq-
uid crystalline state of 7CB at T = 310.6 K. ε′′|| (dotted line): Δε = 7.5, log (νHN [Hz]) = 6.76,
βHN = 1, γHN = 0.908; ε⊥′′ (dashed line): Δε = 2.6, log (νHN [Hz]) = 7.94, βHN = 0.7, γHN = 0.7. The
solid line is the superposition of both fit functions. The inset shows the fit of one HN-func-
tion in the isotropic state of 7CB at T = 360.3 K. Δε = 6.855, log (νHN [Hz]) = 8.075, βHN = 0.99,
γHN = 0.766
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The Arrhenius equation

(10.9)

where EA is activation energy and ν∞ is a prefactor, can be used to describe the
temperature dependence of the relaxation rates (see Fig. 10.6 and Table 10.1).
The activation energy estimated for the δ-process is high because of the nematic
potential. The shape of the relaxation function is nearly Debye-like (see also
[33]) as predicted by theory. The activation energy for εL

⊥(ω) is lower related to
molecular fluctuations of the long axis of the molecule inside the nematic po-

ν νmax exp = −⎡
⎣⎢

⎤
⎦⎥

∞
E
k T

A

B

Fig. 10.6. Temperature dependence of the relaxation rates of 7CB. Open symbols are own mea-
surements. The data for the filled symbols are taken from [32]. The lines are fits of the
Arrhenius equation to the data. The inset shows (d log νmax/dT)(–1/2) vs T for the isotropic state.
The line is a linear regression to the data

Table 10.1. Activation parameter for the different processes observed for 7CB

log (ν∞ [Hz]) EA [kJ mol–1]

Parallel 22.2 91.1
Perpendicular 15.3 43.8
Isotrop 12.7 31.7



tential (correlation function CL
⊥(ω)). The shape of the relaxation function is

broadened indicating a distribution of relaxation times.
A more detailed analysis of the temperature dependence of the relaxation rate

in the isotropic state νmax,I by the derivative technique (see Chap. 4) shows that
the data can be better described by the Vogel/Fulcher/Tammann/Hesse (VFT)
[34–36] equation (see inset of Fig. 10.6):

(10.10)

where ν∞ and A are constants and T0 is the Vogel temperature.
Deviations from the Arrhenius-like dependence of the relaxation rate in the

temperature range of mesophases were first reported by Zeller for pentyl-
cyanaobiphenyl (5CB) [37] and later also found for other nematic and smectic
liquid crystals [38]. Based on the free volume concept Diogo and Martins [39]
derived for νmax,||

(10.11)

where Ã is a proportionality constant. Equation (10.11) describes the tempera-
ture dependence of dielectric relaxation rates [38] as well as of viscosity coeffi-
cients [39] for different systems. A temperature dependence according to
Eq. (10.10) or (10.11) is in general characteristic for glass forming systems [40,
41] (for details see Chaps. 4 and 5).

Generally the relaxation rates νmax, || and νmax,⊥ in the liquid crystalline state
can be related to that in the corresponding extrapolated isotropic phase νmax , I by
reduction factors γ||(S) and γ⊥(S):

(10.12)

In principle the dependence of the reduction parameters on the order param-
eter S can be calculated in the frame of the Maier/Saupe theory [19–22] where
some approximate relationships are given in [42–44]. For instance, Eq. (10.12) is
used to calculate the order parameter from dielectric measurements which
agrees well with theoretical predictions [32, 45]. Strobl and coworker developed
a method to measure the rotational viscosity of both molecular LCs [33, 46] and
liquid crystalline polymers [42, 47] by application of dielectric relaxation spec-
troscopy.
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10.4.2
Polymeric Systems

10.4.2.1
Side Chain Polymers

Dielectric spectroscopy on liquid crystalline side chain polymers (SCLCP) was
pioneered by Kresse and coworkers (see for instance [48–52]), followed by the
work of Haase et al. [53, 54] and by extensive studies of the group around
Williams (see for instance [5] and the references quoted therein). Zentel et al.
[55] developed a nomenclature for dielectric relaxation processes of SCLCP.
Several recent reviews are also available [3–6, 56].

In SCLCP the mesogens are decoupled from the main chain by a spacer, which
is usually made out of aliphatic segments. The molecular dynamics in these sys-
tems is the result of a complicated interplay between the polymer backbone
which forms a glassy melt and the liquid crystalline moieties in their different
mesophases. In Fig. 10.7a SCLCP based on a poly(methacrylate)/poly(arylate)
main chain is sketched. (For details of the synthesis and the characterization see
[57–60].) Already small variations in the residues R1 to R4 and/or in the number
of aliphatic units have a strong impact (Tables 10.2 and 10.3) on the thermody-
namics of the system as manifested in the existence of mesophases or its se-
quence.

The overall molecular dynamics (Fig. 10.8) is characterized by three relax-
ation processes, the high-frequency β-, the α- and the δ-relaxation. In the fol-
lowing these processes will be discussed in detail2 for a set SCLCP based on a
poly(methacrylate)/poly(acrylate) main chain.

�-Relaxation. The β-relaxation 3 corresponds to librational fluctuations of the
mesogen around the long molecular axis as proven by a manifold of dielectric
[3, 6, 16, 55, 61], NMR [62] and combined dielectric/NMR [63] studies. The tem-
perature dependence of its relaxation rate ν(β)

max, || is Arrhenius-like (see Eq.
(10.9), Fig. 10.9). Details of the structure of the mesogenic group (compare the
values for the samples P4 and P5) or of the main chain have a weak influence
only on its librational dynamics (Table 10.2). Analysing the activation energy
EA

(β) and the prefactor ν ∞
(β) of the Arrhenius equation delivers only for the non

liquid crystalline polymer P1 values which are in accord with the interpretation
of a single fluctuating mesogen in a potential formed by its neighbours. For the
systems with mesophases for both EA

(β) and ν∞
(β) extraordinary high values are

obtained which increase sensitively with the order of the mesophase in which it

396 10 Molecular and Collective Dynamics of (Polymeric) Liquid Crystals

2 In addition to these, other processes like a γ-relaxation related to rotational fluctuations of
the tail or terminal groups can be observed depending on the system under investigation.
For more details see [6].

3 This well defined β-relaxation should not be interchanged with the general nomenclature in
amorphous systems where “β-relaxation” simply means some secondary relaxation (see
Chaps. 4, 5 and 7).



is measured (Fig. 10.10) indicating that the picture of a single mesogen librating
in the potential formed by its surrounding molecules cannot be correct. Instead
it is suggested that neighbouring molecules are involved as well in the librational
dynamics of the β-relaxation [58, 59, 64]. This interpretation is also supported
by the finding that with increasing spacer length EA

(β) and ν∞
(β) increase (inset A

of Fig 10.10) [60] because of the better formation of smectic phases in the sys-
tem (see Table 10.3). The increase of ν∞

(β) with decreasing mean lateral distance

10.4 Molecular Dynamcis 397

Fig. 10.7. Molecular structure of the liquid crystalline poly(methacrylate)s/poly(acrylate)s
The definition of the R1 groups is given in Tables 10.2 and 10.3

Fig. 10.8. Relaxation rates of the different processes vs reciprocal temperature for the sample
P13 (see Fig. 10.7 and Table 10.2): (filled squares) β-, (filled circles) α- and (filled triangles) 
δ-relaxation
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of the mesogens d extracted from X-ray measurements supports this conclusion
as well (inset b in Fig. 10.10).

�-Relaxation. The α-relaxation 4 is assigned to fluctuations of segments of the
polymer main chain between structural substates as they are observed in glass
forming systems (see Chaps. 4 and 5). Its relaxation rate ν (α)

max shows a tempera-
ture dependence according to the VFT-equation (Eq. 10.10). For the polymers P1
and P11 which do not form mesophases (Table 10.2) the VFT-temperature de-
pendence is observed as expected for an isotropic melt (Fig. 10.11). For the sim-
ilar sample P4 having a nematic and a smectic A phase the relaxation rate is
identical in the isotropic state to ν(α)

max of the polymers P1/P11 but it becomes
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Fig. 10.9. Arrhenius diagram for the β-relaxation for different poly(methacrylate) samples
given in Fig. 10.7 and Tables 10.2 and 10.3: (open triangles)-P1; (open squares)-P2; (open cir-
cles)-P4; (open diamonds)-P5; (open inverted triangles)-P8. The inset a shows data for the
poly(acrylate)s: (open squares)-P3; (open circles)-P7. The inset b shows data for samples hav-
ing azobenzene in the side group: (open squares)-A2; (open circles)-A3; (open triangles)-A4;
(open diamonds)-A5. Lines are fits of the Arrhenius equation to the data. The fit parameters
are given in Tables 10.2 and 10.3. (Reproduced from [56] with permission)

4 In this chapter only the peculiarities for the samples having phenylbenzoate in the side
group is discussed. A detailed discussion of the samples having fluorinated azobenzene in
the side group can be found elsewhere [60].



higher in the temperature range of the mesophases. This is explained by the mi-
crophase separation between the mesogens and the polymer backbone which
takes place at the phase transition [65]. Thereby the local concentration of stiff
moieties in the neighbourhood of the main chain segments is strongly reduced
resulting in an increased segmental mobility and hence in a decrease of Tg.
(Fig. 10.11) [57]. The possibility of an additional confinement effect (see
Chap. 6) cannot be excluded.

With increasing spacer length m the dynamic glass transition of the polymer
chain becomes faster (Fig. 10.12). This results in a pronounced decrease of Tg be-
cause the segregation of the mesogenic units into the liquid crystalline struc-
tures increases with m and enhances the internal plasticizer effect of the
aliphatic spacer groups on the comparably stiff poly(methacrylate) chain.

For a detailed analysis of the temperature dependence of ν(α)
max derivative plots

are employed [66] (see Chap. 4). As exemplified for sample P2 and P13 at high
temperatures ν(α)

max follows an Arrhenius equation (Fig. 10.13a) which turns into
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Fig. 10.10. Prefactor logν∞
(β) vs activation energy EA

(β) for the different samples: (filled dia-
monds) isotropic state; (open circles, filled circles)-nematic phase; (open squares, filled
squares)-smectic A phase; (filled inverted triangles)-smectic B phase. Solid symbols –
poly(methacrylate)s; open symbols – poly(acrylate)s. Inset a: data for poly(methacrylate)s
having azobenzene in the side group: (multiplication sign) A1; (filled triangles) A2-A6. The
lines are linear regressions through the data. Inset b: lateral distance of the mesogenic units d
vs prefactor ν∞

(β): (filled squares) poly(methacrylate)s having phenylbenzoate in the side
group; (filled diamonds) poly(methacrylate)s having fluorinated azobenzene in the side
group; (plus sign) sample A1 (see Table 10.3). The solid line is a linear regression through all
data points



402 10 Molecular and Collective Dynamics of (Polymeric) Liquid Crystals

Fig. 10.11. logνmax
(α) vs inverse temperature T–1: (filled squares) sample P4 (liquid crystalline);

(filled circles) sample P1, (filled triangles) sample P11 (polymeric melt without mesophases). The
dotted lines are fits of the VFT-equation to the data. (Reproduced from [56] with permission)

Fig. 10.12. logνmax
(α) vs T–1 for different poly(methacrylate)s having a similar mesogenic core but

different spacer length:(filled diamonds) P14 (m = 2); (filled triangles) P2 (m = 4); (filled
squares) P4 (m = 6); (filled circles) P12 (m = 8); (filled inverted triangles) P13 (m = 10). Lines
indicate Tg as estimated by DSC. (Reproduced from [56] with permission)
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Fig. 10.13. a d(logν max
(α) )/d(T–1) vs 1/T for the polymers P2 (open circles) and P13 (open 

squares). The solid lines are the average values in the high temperature range while the dashed
lines are a guide for the eyes. The intersection of both lines defines a characteristic tempera-
ture TB. Due to the derivation procedure the data show a large scatter. Reproduced from [67] 

with permission. b vs temperature for the liquid crystalline polymers: (open 

triangles) m = 2 (P14), (open circles) – m = 4 (P2), (open squares) m = 10 (P13). The solid lines
are linear fits to the low temperature data where dashed lines are fits to the Arrhenius equation
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a VFT-like dependence (Fig.10.13b) at a temperature TB. That indicates a change
in the molecular dynamics of the system.

The temperature TB decreases with increasing spacer length (Fig.10.14). In no
case does TB agree with a phase transition temperature of the system while the
ratio TB/Tg is constant for all polymers in the homologous series (inset
Fig. 10.14).As for conventional glass forming systems this temperature TB might
be interpreted as the temperature at which cooperative fluctuations start to de-
velop (Chap. 4). Some further discussion can be found in [67].

The Vogel temperature T0 obtained from the dielectric data (Fig. 10.13b) cor-
relates well with the glass transition temperature measured by calorimetric
methods (Fig. 10.15). This and the fact that the latter depends in a similar way
on the number of aliphatic spacers for non-LC poly(n-alkyl methacrylate) and
for the corresponding SCLCP (see inset of Fig. 10.15) is a further prove for a sim-
ilar glassy dynamics related to segmental motions in both systems [67].

The dielectric strength Δε(α) of the α-relaxation shows (Fig. 10.16) a temper-
ature dependence which is characteristic for the dynamic glass transition (see
Chaps. 4 and 7, [68]) with no discontinuity at the phase transition [73]. In con-
trast the δ-relaxation behaves completely different (see. inset of Fig. 10.16): Δε(δ)

is constant in the isotropic phase but decreases to zero with decreasing temper-
ature in the nematic phase.

Temperature modulated differential scanning calorimetry (TMDSC) allows
one – unlike dielectric spectroscopy – to sense entropy fluctuations in their fre-
quency dependence. In this method a periodically modulated (with frequency v)
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Fig. 10.14. Crossover temperature TB vs number m of (CH2) spacers. The line is a guide for the
eyes. The inset shows the ratio TB/Tg vs number m of (CH2) spacers. The line is the mean value
of all data
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Fig. 10.15. The Vogel temperature T0 estimated from dielectric measurements vs glass transi-
tion temperature Tg from calorimetric experiments. The line is a guide for the eyes. The inset
shows Tg of the liquid crystalline poly(methacrylate)s vs Tg of the poly(n-alkyl methacrylate)s.
The solid line is the linear regression through all data points

Fig. 10.16. Δε (α) vs inverse temperature for the sample P2. The line is a guide for the eyes. The
dashed line indicates the phase transition temperature. The inset gives Δε(δ) vs inverse tem-
perature. Reproduced from [69] with permission



temperature is added to a linear cooling or heating ramp and the resulting re-
sponse, the complex heat capacity C*

p(ν) = C ′p(ν) – iC ′′p (ν), is measured. The
comparison 5 with the dielectric α-relaxation shows that both methods measure
the same process [69] (Fig. 10.17). Derivative plots allow again a more detailed
analysis of the dynamics. The thermal and dielectric data obey a VFT law with
the same Vogel temperature (inset Fig. 10.17).

�-Relaxation. The δ-relaxation is assigned – similar to that in low molecular
weight LCs – to librational fluctuations of the mesogen around the short mole-
cular axis. Presumably it is rather a multistep process with motional averaging
[70] rather than a 180° flip-flop jump of the mesogen.

The temperature dependence of its relaxation rate ν(δ)
max (Fig. 10.18) shows

some resemblance to that of the α-relaxation 6 in the shift with increasing spacer
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Fig. 10.17. logν (α)
max vs inverse temperature for the sample P2: (open squares) dielectric α-re-

laxation; (filled squares) dynamic glass transition measured by TMDSC taken from the maxi-
mum value of tan δDSC vs temperature for different frequencies. Lines are guides for the eyes.
Inset [d logν (α)

max/dT]–1/2 vs temperature: (open squares) dielectric α-relaxation; (filled squares)
dynamic glass transition measured by TMDSC. The solid line is a linear fit to the low temper-
ature dielectric data. The dashed dotted line is a fit according to the Arrhenius equation. The
dashed line indicates the Vogel temperature T0

5 Both quantities can be compared because they are both generalized compliances (see
Chap. 1).

6 In the literature it was argued sometimes that the temperature dependence of the relaxation
rate of the δ-relaxation seems to be Arrhenius-like (for an overview see [3]). At least the es-
timated activation energies must be regarded as apparent ones.
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Fig. 10.18. logν (δ)
max vs T–1 for different poly(methacrylate)s having a similar mesogenic core

but different spacer length: (filled diamonds) P14 (m = 2); (filled triangles) P2 (m = 4); (filled
squares) P4 (m = 6); (filled circles) P12 (m = 8); (filled inverted triangles) P13 (m = 10)

length (compare Figs. 10.12 and 10.18) but it can be described neither by an
Arrhenius-nor by a VFT-law (compare as well Fig. 10.8).

As a process originating from fluctuations of the mesogen and depending on
the microviscosity of its surrounding molecules, the δ-relaxation reflects the in-
terplay between mesogens and the polymer chain. In order to analyse this in

more detail a comparison of the vs T for the non-LC polymers P1 and P11

and the LC polymer P4 is instructive (Fig. 10.19).While the former are nearly in-
dependent on temperature the latter strongly changes with temperature show-
ing a discontinuity at the phase transition N/I (Fig. 10.19). This is related to an

increase of order with decreasing temperature [67]. From the ratio (T) the

molecular order parameter can be calculated using a modified Maier/Saupe the-
ory [57]. Good agreement with NMR-measurements [71] is obtained (Fig. 10.20).

Polysiloxanes (Fig. 10.21a) 7 form a class of SCLCPs which has – due to the
high flexibility of the main chain – lower glass transition temperatures com-
pared to poly(methacrylate)s/poly(acrylate)s. In principle the dynamics is com-
parable, thus a β-, an α- and a δ-relaxation have to be expected. The α-relaxation
scales with the glass transition Tg and also with the relaxation rates of entropy
fluctuations [72].At the phase transition SmC/I it shows no discontinuity in con-
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max
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ν
ν
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7 The material is obtained from Merck, catalogue no LC1
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Fig. 10.20. Temperature dependence of the order parameter S for polymer P11 (filled squares)
estimated from the temperature dependence of ν (α)

max/ν (δ)
max, (filled circles) estimated from NMR

measurements [71], (filled triangles) estimated from NMR measurements in the glassy state.
The line is a guide to the eyes. The inset shows the power law dependence of S near the phase
transition. Reproduced from [57] with permission

Fig. 10.19. log(ν (α)
max/ν (δ)

max) temperature for amorphous polymers P1 (filled circles) and P11
(filled triangles) as well as for the liquid crystalline sample P4 (filled squares). Solid lines are
guides for the eyes. The dashed lines indicate the phase transition temperatures
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Fig. 10.21. a log νmax vs inverse temperature for the α- (open circles) and for the δ- (open trian-
gles) process of the liquid crystalline polysiloxane LCP1. Tg= 266 K; TSmC/I = 350 K. These tem-
peratures are indicated by dashed lines. The solid lines are fits of the Arrhenius equation to the
data of the δ-process. b d (log(ν (α)

max)/d(1/T) vs inverse temperature for the liquid crystalline

polysiloxane LCP1. The lines are guides for the eyes. The inset shows vs

temperature. The solid line is a linear fit to the low temperature branch of the data. The dashed
line is a guide for the eyes
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trast to the δ-relaxation which has an Arrhenius-like temperature dependence
with an activation energy of 88 kJ mol–1 in the isotropic and 136.7 kJ mol–1 in the
SmC phase. The temperature dependence of the α-relaxation can be analysed in
more detail by the derivative technique. Clear indications for an Arrhenius-de-
pendence at high temperatures and a VFT-dependence below a transition tem-
perature TB are found (Fig. 10.21b). So similar features are observed as in
poly(methacrylate)s/poly(acrylate)s.

Based on the concept outlined in Sect. 10.3 and refined investigations on
aligned polysiloxanes (see [4, 5, 25, 73, 74] and references quoted therein) the 
α-relaxation was interpreted in a different way and assigned to fluctuations of
both the transverse and the longitudinal dipole moment of the mesogenic unit.
For clarification broadband dielectric investigation on aligned samples are
needed.

In conclusion the molecular dynamics in liquid crystalline side chain poly-
mers is characterized by tree major processes8 – the β-, α- and the δ-relaxation
in order of decreasing frequency (Fig. 10.22). It reflects the result of a delicate in-
terplay between the dynamics the polymer backbones which form a glassy melt
and the mesogenes in the their liquid crystalline phases. While the processes 
(β-, δ-relaxation) originate from fluctuations the mesogenes the α-relaxation
corresponds mainly to that of the polymer backbone.
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8 In several systems further secondary processes (γ-relaxation) can be observed.

Fig. 10.22. Scheme of liquid crystalline side chain polymers. Possible dielectric relaxation
processes are indicated by arrows



10.4.2.2
Main Chain Polymers

Main chain liquid crystalline polymers are widely applied because of their out-
standing mechanical properties9. In comparison to the numerous dielectric stud-
ies on SCPLC, systematic investigations on MCPLC are rare and limited mainly to
ester systems (see for instance [3, 6, 76–78]). The molecular fluctuations of the
mesogenic unit around its short axis (δ-relaxation) is not possible because they
are incorporated in the main chain. In principle the dielectric response is similar
to other semi flexible chains (see Chap. 7) showing a local β-relaxation and the
dynamic glass transition (α-relaxation). However, compared to that they can
have microphase separated structures where the morphology depends on the
concentration of mesogens as well as on thermal history [79–83]. Moreover
transester reactions cannot be excluded at high temperatures.

To illustrate the dielectric response of an MCLCP isochronal spectra of the
random copolyester PET/xPHB (PET – poly(ethylene terephthalate), PHB – 
p-hydroxybenzoic acid, x = 0.5) is plotted vs temperature (Fig. 10.23). These
copolymers form liquid crystalline phases for x > 0.25 with a hierarchical struc-
ture. At low temperatures (high frequencies) the β-process takes place.

10.4 Molecular Dynamcis 411

9 Recently it has also been demonstrated that main chain liquid crystalline polymers can be
used as active material in light emitting diodes [75]. They can have also ferroelectric prop-
erties (see Sect. 10.5)

Fig. 10.23. Dielectric loss vs temperature at different frequencies for PET/0.5PHB: (open cir-
cles) 147 Hz, (open diamonds) 103 Hz, (open squares) 104 Hz. Reproduced from [56] with per-
mission



Furthermore the systems shows two dynamic glass transitions (α′ and α-relax-
ation) which are also confirmed by DSC measurements. The α′-process is as-
signed to the segmental dynamics in amorphous microphases rich in PHB while
the α-peak is due to PET-rich islands [81].

10.5
Collective Dynamics in Ferroelectric Liquid Crystalline Systems

In 1975 Meyer et al. [84] predicted and proved experimentally that smectic
phases of chiral liquid crystals exhibit ferroelectric properties (FLC). This dis-
covery initiated a dramatic development leading to a manifold of low molecular
weight, polymeric and elastomeric ferroelectric liquid crystalline systems
[85–88].Moreover in recent years antiferroelectric liquid crystalline (AFLC) sys-
tems were found. Dielectric spectroscopy is, besides NMR and dynamic light
scattering, the main experimental tool to analyse the dynamics in these systems.

The ferroelectricity in FLC is a local property restricted to a single smectic
layer. Due to interactions between the mesogenic molecules in the tilted smectic
phase the distribution of lateral dipole moments becomes anisotropic (“bi-
ased”), hence giving rise to a polarization vector PL which is perpendicular to
the layer normal. In order to minimise the free energy of the system as a whole
the cL director resp. the polarisation vector PL form a helical superstructure hav-
ing a pitch pH in the micron range. By that an incommensurable (liquid) crystal
is formed (Fig. 10.24a). In order to make the microscopic ferroelectricity of the
single smectic layers macroscopically observable the helical superstructure has
to be “unwound” (Fig. 10.24b). This can be achieved for instance by applying an
external electric field or by surface effects. Net polarisation vectors of a magni-
tude between 1 and 1000 nC cm–2 can be realised.

The supermolecular arrangement of the molecules gives rise to collective mo-
tions of the polarisation vector in addition to the usual molecular fluctuations.
Broadband dielectric spectroscopy is an ideal tool to unravel this dynamics.

10.5.1
Low Molecular Weight Systems

In order to orient the FLC in the so-called bookshelf geometry (where the ex-
ternal electric field is oriented perpendicular to the normal of the smectic lay-
ers) the metal electrodes (diameter: 5 mm, spacing: 10 μm) are coated with
crosslinked polyimide which was rubbed. Such a sample cell (Fig. 10.25a,b) can
be used in the entire frequency range from 10–2 Hz to 1010 Hz, hence enabling
one to study both collective and molecular dynamics in the same probe [89–95].
The measured net polarisation in such a sample cell compares well with that ob-
served in commercial sample cells used for electro-optical studies.

The dielectric properties of FLC in the frequency range below 1 MHz are
dominated by one huge loss process – the Goldstone-mode (Fig. 10.26) It is re-
stricted to the ferroelectric SmC-phase and vanishes above and below the phase

412 10 Molecular and Collective Dynamics of (Polymeric) Liquid Crystals
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Fig. 10.24. a Scheme of ferroelectric liquid crystals in the smectic mesophase. In order to de-
crease the free energy of the system the polarisation vector of the single smectic layers (thick-
ness: 2–3 nm) forms a helical superstructure (pitch: ~ μm). Hence the whole ensemble can be
regarded as an incommensurable liquid crystal. b Applying an external electric field E in the
plane of the smectic layers enables one to “unwind” the helical superstructure. By that the 
(local) ferroelectricity of the single smectic layers becomes macroscopically observable 
(“induced spontaneous polarization”)

Fig. 10.25. a Scheme of the sample cell orienting the ferroelectric liquid crystalline system in
bookshelf geometry. A spacing of 10 μm is maintained by use of glass fibres. The surfaces of
the electrodes are coated with rubbed polyimide. The sample cell can be used in the entire fre-
quency range between 10–2 Hz to 1010 Hz. b Chemical structure of sample FLC1. The phase se-
quence is C SmC SmA IK K K322 328 338← →⎯⎯ ← →⎯⎯ ← →⎯⎯**



transitions to the SmA resp. the crystalline phase. The Goldstone-mode has a
negligible temperature dependence which proves that it cannot be compre-
hended as a simple relaxation process. Instead it is assigned to fluctuations of
the phase of the helical superstructure (phason). It is a non-ideal zero-frequency
mode which approaches zero if the wave vector k of the helical pitch with 

goes to zero.

Applying a superimposed d.c.-bias field to the measuring a.c.-field enables
one to suppress continuously the helical superstructure (Fig. 10.27a,b). By that
the strength of the Goldstone-mode contribution decreases strongly (Fig. 10.28)
and a second collective mode becomes observable; the soft mode. It is charac-
terised by a critical slowing down of the relaxation rate (frequency at maximum
dielectric loss) and the inverse of the dielectric strength (Fig. 10.29a,b).

The soft mode corresponds to motions of the amplitude of the helical super-
structure (amplitudon). It shows a negligible d.c.-bias field dependence only.
Both the Goldstone- and soft-mode are well known from the theory of incom-
mensurable crystals [96].

For frequencies above 1 MHz only the β-relaxation is observed which corre-
sponds to librations (hindered rotations) around the long molecular axis of the
mesogenes. This fluctuation was assumed to be – if hindered – the origin of the
spontaneous polarisation [97, 98]. Dielectric spectroscopy in the microwave
range is especially suitable to analyse this process in detail. Employing the iden-
tical sample cell as used in the low frequency experiments the molecular dy-
namics can be measured in its frequency and temperature dependence. For both
the chiral sample (Fig. 10.30) and its racemic mixture (Fig. 10.31a,b) a very sim-
ilar behaviour is found.

k = 2π
pH

414 10 Molecular and Collective Dynamics of (Polymeric) Liquid Crystals

Fig. 10.26. Dielectric loss ε″ vs frequency and temperature of sample FLC1. Sample thickness
10 μm; a.c.-field strength 1000 V cm–1; d.c.-field strength: 0 V cm–1
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Fig. 10.27. a Dielectric loss ε″ vs frequency and temperature after application of a d.c.-bias
field of 5000 V cm–1. Otherwise as Fig. 10.26. b As a but with a d.c.-bias field of 8000 V cm–1.
Otherwise as Fig. 10.26



By fitting the data using the Havriliak/Negami equation [31] the mean relax-
ation rate and the dielectric strength Δε can be determined (Fig. 10.32a,b). At the
phase transition SmA/SmC* resp. SmA/SmC neither for the chiral resp. for the
racemic sample any discontinuity is observed. Hence the conjecture that the β-re-
laxation is slowed down in the ferroelectric phase is not correct. As expected one
finds the dielectric strength to increase in steps at the phase transition I/SmA.This
is caused by the change in the molecular order influencing the component of the
dipole moment which interacts with the external electric field.At the transition to
the crystalline state the dielectric strength of the β-relaxation vanishes, because
the corresponding molecular fluctuation becomes arrested. It is worth mention-
ing that the β-relaxation does not show any indications of a splitting or discontin-
uous broadening at the phase transition SmA/SmC*. This was predicted by theo-
ries based on an extended Landau expansion of the free energy [99, 100].

Superimposing a d.c.-bias electric field to the measuring a.c.-field enables
one to increase the dielectric strength (Figs. 10.33 and 10.34). In order to rule out
the possibility that alignment effects influence this finding it was shown that by
applying both positive and negative d.c.-bias fields similar results are obtained.

The d.c.-bias field dependence of the dielectric strength increases with de-
creasing temperature (Fig. 10.35). This is due to the fact that the net polarisation
increases with decreasing temperature in the SmC*-phase.After the transition to
the non-ferroelectric N*-phase the d.c.-bias field dependence vanishes. In the
racemic mixture neither in the SmC- nor in the SmA-phase any d.c.-bias field
dependence is found.

The β-relaxation is a molecular fluctuation which is assigned to a hindered
rotation (libration) of the mesogenes around the long mesogenic axis. This
process takes place in a similar way in the ferroelectric and in the non-ferro-
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Fig. 10.28. Dielectric loss ε′′
vs frequency at a fixed 
temperature of 326.4 K.
Sample FLC1, sample thick-
ness: 10 μm. Applying a
d.c.-bias field between 0 and
8000 V cm–1 enables to sup-
press the Goldstone-mode.
The a.c.-field strength:
1000 V cm–1. Inset: field de-
pendence of the dielectric
loss ε′′ at a frequency of
2.51 kHz and a temperature
of 326.4 K
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Fig. 10.29. Critical slowing down of: a the relaxation rate at maximum loss; b the inverse of the
dielectric strength at the phase transition . Sample FLC1, sample thickness:
10 μm; a.c.-field strength: 1000 V cm–1. The effect of a superimposed d.c.-bias field is 
indicated as well

SmA SmCK338← →⎯⎯ *

Fig. 10.30. Chemical structure of sample FLC2. Its phase sequence is

C SmC SmA IK K K325 358 366← →⎯⎯ ← →⎯⎯ ← →⎯⎯**



electric phase as well as in chiral FLC and racemic mixtures. However, while in
the non-ferroelectric state (SmA isotropic) the angular distribution of the lat-
eral dipole moments is isotropic, it becomes strongly anisotropic (biased) in the
ferroelectric SmC*-phase (Fig. 10.36). This anisotropy is induced by the chiral-
ity and the tilt of the mesogenes. Applying an external d.c.-bias field increases
this anisotropy while in parallel the helical superstructure and hence the
Goldstone-mode is suppressed. Such a counteracting dependence is observed
indeed (Fig. 10.37).

In summary, one finds in low molecular weight FLCs three dielectric loss
processes (Fig. 10.38) which are quite different in their physical origin. Below
106 Hz two collective processes, the Goldstone-mode and the soft-mode, are ob-
served. While the Goldstone-mode can be comprehended as a driven oscillator,
the soft-mode corresponds to a fluctuation which exhibits critical behaviour
when approaching the phase transition SmA/SmC*.
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Fig. 10.31. Dielectric loss ε″
vs frequency and tempera-
ture for: a the chiral sample
FLC2; b its racemic counter-
part. The samples were
aligned in bookshelf geom-
etry. Sample thickness:
10 μm, diameter of sample
capacitor: 5 mm
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Fig. 10.32. Dielectric strength (filled squares) and relaxation rate (filled circles) vs temperature
for the measurements: a in Fig. 10.31a (chiral FLC); b in Fig. 10.31b (racemic sample). The
phase transition temperatures determined by polarised microscopy are indicated

Fig. 10.33. Chemical structure of sample FLC3. The phase sequence is

C SmC N IK K K305 328 341← →⎯⎯ ← →⎯⎯ ← →⎯⎯*
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Fig. 10.34. Dielectric loss ε′′ vs frequency for varying d.c.-bias fields; sample FLC3, sample
thickness: 10 μm, Sample diameter: 3 mm, a.c.-field strength: 1000 V cm–1

Fig. 10.35. Dielectric strength of the β-relaxation vs d.c.-bias field at different temperatures as
indicated in the SmC* and N*. Sample FLC3
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Fig. 10.36. Scheme of the
distribution of the lateral
dipole moments in the SmA
and the SmC* phase

Fig. 10.37. Comparison of
the d.c.-bias field depen-
dence of the maximum di-
electric loss ε′′max

(GM) of the
Goldstone-mode and of the
strength of the β-relaxation.
Sample FLC3

Fig. 10.38. Dielectric loss ε′′ vs frequency for different temperatures slightly below and above
the phase transition SmC*/SmA for sample FLC1 (open circles) 331.3 K, (open diamonds)
330.4 K, (open asymmetric diamonds) 329.4 K, (crosses) 328.5 K, (open triangles) 327.5 K, (open
squares) 326.5 K. The contributions of the collective processes (Goldstone- and soft-mode)
and the molecular β-relaxation are well separated



In the frequency regime between 106 Hz and 1010 Hz one dielectric loss
process is observed, the β-relaxation, which is assigned to the libration of the
mesogenic groups around their long molecular axis. This process is a local fluc-
tuation which is not directly influenced by the collective rearrangements which
take place at the phase transition SmA/SmC*. The experimental results lead to a
precise picture for the origin of ferroelectricity in chiral liquid crystals. It is
caused by the anisotropy in the distribution of the lateral orientation of the mol-
ecular dipole moments induced by the chirality and the tilt of the mesogenes.
A slowing down of molecular fluctuations at the phase transition SmA/SmC* is
not observed (Fig. 10.39).

10.5.2
Polymeric Systems

Ferroelectric liquid crystals can be incorporated into a variety of different poly-
meric architectures, e.g. side-group liquid crystalline polymers [12], main chain
polymers [101], combined side group/main chain systems [102, 103], or elas-
tomers [104–107]. The collective and molecular dynamics remains well compa-
rable to low molecular weight systems. Two collective modes are observed
(Goldstone- and soft-mode) and one molecular relaxation, the β-process being
assigned to librations around the long molecular axis.

Siloxane main chains are, because of their high flexibility (and hence low
glass transition temperature), suitable systems for polymeric FLC. In side chain
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Fig. 10.39. Scheme of the collective and molecular dynamics in FLC: The Goldstone-mode
corresponds to fluctuations of the phase φ (phason) and the soft-mode of the amplitude θ
(amplitudon) of the helical superstructure. The high frequency β-relaxation is assigned to li-
brations of the mesogen around its long molecular axis
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Fig. 10.40. Chemical structure of the side-group polymer FLCP1 under study. The phase tran-
sition temperatures for the different mol-(%) fractions y are indicated in Table 10.4

Table 10.4. Composition of the copolymer sample FLCP1. Mw and Mn are weight- and number-
averaged molecular weights, respectively. Ps is the spontaneous polarization

Sample x y Mw Mn Ps Phase sequence [K]
[10–3 [10–3 [nC cm–2]
g mol–1] g mol–1]

FLCP1a 3.2 1 23 14 104 g, 273; SmX, 319; SmC*, 371; SmA, 417 I
FLCP1b 1.1 1 53 27 130 g, 286; SmX, 327; SmC*, 397; SmA, 441 I
FLCP1c 0.5 1 51 29 161 g, 293; SmX, 345; SmC*, 411; SmA, 455 I
FLCP1d 0 1 28 13 211 g, 294; SmX, 330; SmC*, 434; SmA, 456 I

polymers the chiral mesogene is decoupled from the main chain by a flexible
alkyl spacer (Fig. 10.40). The density of the mesogenic side groups can be con-
tinuously varied by changing the ratios y :x in the copolymer.

Measuring the collective and molecular dynamics in this system (Fig. 10.41)
delivers a similar performance as in low molecular weight FLC (Fig. 10.38).
Below 1 MHz two collective modes are observed, the Goldstone- and soft-mode
and above 1 MHz the β-relaxation takes place (Table 10.4).

Applying a d.c.-bias electric field enables one to suppress continuously the
Goldstone mode, which is in contrast to low molecular weight systems shifted to
lower frequencies by about three decades (Fig. 10.42). If the helical superstruc-
ture is suppressed, a second collective process – the soft-mode – becomes ob-
servable. As is to be expected, it shows in the frequency position at maximum
loss and in the inverse of the dielectric strength a slowing down with a minimum
at the phase transition temperature SmA/SmC* (Fig. 10.43). In contrast to low
molecular weight systems (Fig. 10.29) the relaxation rate (Fig. 10.43a) does not
increase in the SmC* phase. This might be caused by the strongly enhanced vis-
cosity of the polymeric system compared to low molecular weight FLC.

In the high frequency regime above 1 MHz the β-relaxation is observed
(Fig. 10.44). As expected it shows an Arrhenius-like temperature dependence
and no discontinuity at the phase transition SmA/SmC*.
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Fig. 10.42. Dielectric loss ε′′ vs frequency for different d.c.-bias fields for sample FLCP1a,
otherwise as Fig. 10.41

Fig. 10.41. Dielectric loss ε′′ vs frequency for sample FCLP1a at different temperatures (see
Table 10.4) slightly below and above the phase transition SmC*/SmA; sample thickness 10 μm,
sample diameter: 3 mm; a.c.-field strength 1000 V cm–1



10.5 Collective Dynamics in Ferroelectric Liquid Crystalline Systems 425

Fig. 10.43. Critical slowing down of: a the relaxation rate at maximum loss; b the inverse di-
electric strength at the phase transition SmA/SmC*. Sample FLCP1a from Table 10.4; other-
wise as Fig. 10.41

Fig. 10.44. Dielectric strength and relaxation time for the β-relaxation of sample FLCP1a from
Table 10.4; otherwise as Fig. 10.41
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Fig. 10.45. Critical slowing down of the soft-mode relaxation rate for the copolymer sample
FLCP1a with varying content of chiral mesogenes. Sample thickness: 10 μm, sample diameter:
3 mm; a.c.-field strength: 1000 V cm–1

Fig. 10.46. Relaxation time vs inverse temperature for the β-relaxation of the copolymer sam-
ple FLCP1a with varying content of chiral mesogenes; otherwise as Fig. 10.45
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Fig. 10.48. Relaxation time vs inverse temperature for the β-Relaxation of sample FLCP2 with
varying spacer length: (open squares) FLCP2a, (open circles) FLCP2b, (open triangles) FLCP2c,
(open diamonds) FLCP2d, (plus signs) FLCP2e)

Table 10.5. Number of (CH2) spacers n and weight-averaged molecular weight Mw for the side
group polymer sample 5

Sample n Mw [g mol–1]

FLCP2a 2 117,000
FLCP2b 6 83,000
FLCP2c 8 27,000
FLCP2d 11 38,000
FLCP2e 11 240,000

Fig. 10.47. Chemical composition of the side-group polymer (sample FLCP2) with varying
spacer length. The phase transition temperatures are indicated in Table 10.5

Diluting the mesogenes by changing the ratio y :x decreases the net polariza-
tion of the system (Table 10.4). In the slowing down of the relaxation rate of the
soft-mode this is reflected as a decrease in the critical behaviour (Fig. 10.45). In
contrast the local β-relaxation is nearly uninfluenced by the dilution of the
mesogenes (Fig. 10.46). In the 25% diluted system it is slightly faster compared
to the undiluted side chain polymer.



It is an interesting question as to how long the alkyl-spacer has to be in order
to decouple the β-relaxation dynamics from the main chain (Fig. 10.47). To
analyse this for a polyacrylate main chain the spacer length was systematically
varied between 2 and 11 alkyl units (see Table 10.5). As shown in the activation
plot for the β-relaxation (Fig. 10.48) a twofold spacer decreases the relaxation
rate by almost half a decade compared to a sixfold or longer spacer.

10.6
Conclusions

In low molecular weight liquid crystals the following relaxation processes are
typically observed which depend strongly on the mesophase in which they take
place: (i) the β-relaxation which is assigned to librational fluctuations of the
mesogen around the long molecular axis; (ii) the δ-relaxation which corre-
sponds to librational fluctuations around the short molecular axis. In the ne-
matic phase a further relaxation is observed corresponding to small angular
fluctuations around the short molecular axis.

In side chain liquid crystalline polymers the molecular dynamics of the
mesogens is decoupled from the main chain by use of a flexible (aliphatic)
spacer. Three relaxation processes are observed: the β-relaxation and the δ-re-
laxation having the same assignment as for low-molecular weight systems and
additionally an α-relaxation corresponding to the dynamic glass transition of
the main chain. The latter may be enhanced in its dielectric strength by contri-
butions from polar components of the mesogens.

In main chain liquid crystalline polymers beside the β- and α-relaxation a
further α′ process is often observed which corresponds to the dynamic glass
transition in a microphase separated state. No δ-relaxation takes place.

The collective and molecular dynamics (10–2 Hz to 1010 Hz ) in (low molecu-
lar weight and polymeric) ferroelectric liquid crystals (FLC) is characterized by
two collective and one molecular process. Below 1 MHz the Goldstone- and the
soft-mode are observed. The Goldstone-mode is assigned to fluctuations re-
spectively modulations of the phase angle of the helical superstructure (pha-
son). The soft mode corresponds to fluctuations of the amplitude (amplitudon)
of the helical superstructure. It has a negligible a.c.- and d.c.-field dependence.
In the frequency regime from 106 to 1010 Hz one relaxation process takes place,
the β-relaxation, which corresponds to the libration of the chiral mesogene
around its long molecular axis. This process is not directly involved in the mol-
ecular rearrangements which take place at the phase transition.

Incorporating chiral mesogenic groups into polymeric architectures (side
chain, main chain, combined side group/main chain systems, copolymers, net-
works) it is possible to combine the electric and dielectric properties of ferro-
electric liquid crystals with the viscoelastic properties of polymers. By that
means new materials can be tailored (e.g. photochromic, ferroelectric polymers,
single crystal, ferroelectric liquid crystalline rubbers, etc.) with completely new
technological perspectives.
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List of Abbreviations and Symbols

A Constants
c*

p(ν) Complex heat capacity
c′p Real part
c′′p Imaginary part
Ci

j(ω) Fourier transform of the correlation function
EA Activation energy
kB Boltzmann constant
Mw, Mn Weight- and number-average molecular weight
n Director
S Molecular order parameter
SD Director order parameter
T Temperature
T0 Vogel temperature
Tg Glass transition temperature
TB Characteristic temperature
V Volume
βHN, γHN Shape parameters of the Havriliak/Negami function
δε Dielectric anisotropy
Δε Dielectric strength
ε0 Permittivity of the free space
εs

ε∞

ε*, ε′, ε′′ Complex dielectric function, real part and imaginary part
ϑ Tilt angle
μ Dipole moment
ν Frequency
νmax Relaxation rate at maximum dielectric loss
ν∞ Relaxation rate for T → ∞
τ Relaxation time
ω Angular frequency

C Crystalline
5 CB Pentyl-cyanobiphenyl
7 CB Heptyl-cyanobiphenyl
DSC Differential Scanning Calorimetry

lim
ωτ

ε ω
�1

′( )
lim

ωτ
ε ω

�1
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FLC Ferroelectric liquid crystal
FT Fourier transform
HN Havriliak/Negami
I Isotropic
L Longitudinal (subscript)
LC Liquid crystal
MCLCP Main chain liquid crystalline polymers
N Nematic
PET Poly(ethylene terephthalate)
PHB p-Hydroxybenzoic acid
SCLCP Side chain liquid crystalline polymers
SmX Smectic X (X = A, B, C, …) phase
T Transversal (superscript)
TMDSC Temperature modulated differential scanning calorimetry
VFT Vogel/Fulcher/Tammann
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11 Molecular Dynamics in Thin Polymer Films

L. Hartmann · K. Fukao · F. Kremer

11.1
Introduction

The structural and dynamic properties of thin supported and freely standing
polymer films are in the focus of scientific discussion [1–4]. Up to now, broad-
band dielectric spectroscopy has turned out to be a convenient experimental ac-
cess which enables one to measure directly the molecular fluctuations of polar
moieties in these systems in an extraordinary broad frequency and temperature
range. A further benefit results from the fact that its sensitivity increases with
decreasing sample thickness and hence with decreasing amount of sample ma-
terial.

Many studies pursue the question if the glass transition in the confinement of
thin supported or freely standing polymer films is altered in comparison to that
in the bulk material. This was done for instance by ellipsometry [5, 6], neutron
and X-ray reflectivity measurements [7], positron annihilation life time spec-
troscopy (PALS) [8], thermal probe measurements [9], capacitive scanning
dilatometry [11–13], thermal expansion spectroscopy [10, 14] and, in case of
freely standing films, Brillouin light scattering [15, 16]. Both increases and de-
creases of the glass transition temperature Tg were found which are attributed to
strong or weak interactions between the polymer and its boundary. Recently,
several attempts were made to explain these observations within the scope of
theoretical models [17–19] and computer simulations [20–22]. Based on the re-
sults for freely standing polystyrene films of high molecular weight, it was pro-
posed by de Gennes [23, 24] that an additional mode besides the dynamics
known from the bulk polymer is active in films with a thickness being compa-
rable to the radius of gyration. This “sliding motion’’ of the polymer chains along
their own contour originates from an enhanced mobility of chain segments if
they are close to a free surface.

This chapter is structured as follows: Details of the preparation are given in
Sect. 11.2. The results for thin films of two typical glass forming polymers,
namely poly(methyl methacrylate) (PMMA) and polystyrene (PS) are discussed
in Sect. 11.3. Whereas in thin films of PS only a dielectrically active α-relaxation
is observable, in the case of PMMA the secondary β-relaxation can be studied as
well. In Sect. 11.4 the application of dielectric spectroscopy to investigate the
molecular dynamics in thin grafted films of poly(γ-benzyl-L-glutamate) (PBLG)
is demonstrated. The techniques to graft polymers on surfaces have been devel-



oped recently and so far only information concerning the structure is available.
Again, dielectric spectroscopy is used to provide a deeper insight into the mole-
cular dynamics in such films.

11.2
Preparation and Methodical Aspects

11. 2.1
Preparation of Thin Polymer Films

Thin polymer films (Table 11.1) were prepared from solutions of the polymer in
toluene or chloroform by use of the spin coating technique on aluminium-
coated glass substrates. The film thickness was controlled by changing the con-
centration of the solution. Subsequently, the films were annealed above Tg under
vacuum for several days to remove solvents and to let the as-spun films equili-
brate.

An array of sample capacitors was obtained by evaporation of aluminium
stripes being perpendicular to the ground electrodes onto the polymer film.
Typical arrangements of sample capacitors are given in Fig. 11.1.

The film thickness was determined using the formula for the capacity of a
flat-plate capacitor, C ′ = ε′ε0A/d, where ε′ is the real part of the permittivity of
the polymer, ε0 is the permittivity of the vacuum, A is the area of electrodes
(2.3 mm2 and 8 mm2 for thin films of isotactic PMMA and atactic PS respectively
as well as 0.8 cm2 and 3.1 cm2 for bulk samples) and d is the film thickness. For
the determination of d the limit of ε′ at high frequencies, ε∞, is used which is as-
sumed to be independent of the film thickness. Respective values for ε′ are
found in [25, 26]. To determine the glass transition temperature Tg, supplemen-
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Table 11.1. Molecular weight Mw, polydispersity index Mw/Mn, radius of gyration Rg and bulk
glass transition temperature Tg

bulk of the glass forming polymers PS and PMMA. Data are
taken from [12–14, 27, 34]

Polymer Mw [g mol–1] Mw/Mn Rg [nm] Tg
bulk [K]

a-PS 6.67 × 106 a 1.22 79 373
1.80 × 106 b 1.03 41 373
2.80 × 105 c – d 16 373
3.60 × 104 a 1.06 6 370
3.60 × 103 a 1.06 2 341

a-PMMA 4.90 × 105 c 4.11 18.6 373
i-PMMA 1.65 × 105 a 1.30 4.7 331

4.50 × 104 a 1.21 8.9 331

a Polymer Source Inc.
b Aldrich Co. Ltd.
c Scientific Polymer Products, Inc.
d Data not available.



tary ellipsometric studies were carried out on thin films of isotactic PMMA pre-
pared on the SiOx surface layer of silica wafers. This substrate had to be used
since the results of ellipsometric measurements on aluminium do not allow an
unambiguous determination of Tg for two reasons: (i) the contrast in the real
part of the refractive indices of i-PMMA (n ≈ 1.4) and aluminium (n = 1.3…1.4
for λ = 500…600 nm) is too low and (ii) the evaporated aluminium shows a
quite uneven surface. Details of the ellipsometric studies on thin i-PMMA films
on SiOx are given in [27, 31, 32].

A detailed description of the preparation of grafted films is beyond the scope
of this chapter; it can be found in [28]. Instead, we focus here on an alternative
way to prepare the upper electrode, which has been successfully applied for the
investigation of the dynamics in films of grafted PBLG [29]. The direct evapora-
tion of the upper electrode has the drawback that a metal layer of about 70 nm
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Fig. 11.1. A, B Arrangements of sample capacitors as used for the studies on thin films of iso-
tactic poly(methyl methacrylate) [27] (A) and of atactic polystyrene, poly(vinyl acetate) and
atactic poly (methyl methacrylate) [12–14, 34] (B), respectively. C Vertical section through the
sample capacitor



has to be deposited on an underlying organic film with a thickness in the order
of 10 nm. Therefore, one cannot rule out that the films will be damaged by this
treatment and show afterwards defects such as pinholes and cracks or artefacts
caused by Schottky contacts. These disadvantages can be circumvented by use of
freshly cleaved lamellae of mica being evaporated with aluminium as upper
electrodes. This technique is demonstrated to be equivalent to the direct evapo-
ration of upper electrodes [29].

Details concerning the measurement technique used in the studies which are
summarized in this chapter can be found in [27, 34]. It should be noted that the
resistance of the aluminium electrodes cannot be neglected because it forms a
series circuit together with the sample capacitor. This causes an artificial loss
process at frequencies typically greater than 105 Hz. Since this artefact can be de-
scribed in the frequency domain by a simple Debye-type ansatz, the data can be
corrected for it [30].

11.2.2
Thermal Expansion Spectroscopy

The experimental setup used for dielectric relaxation spectroscopy (DRS) can
be employed as well for thermal expansion spectroscopy (TES) [11, 14]. The lat-
ter technique allows for investigation of the slow dynamics of the thermal ex-
pansivity and for the determination of Tg in both bulk [10, 11] and thin films
[12–14]. Compared to ellipsometry, the combination of dielectric spectroscopy
and thermal expansion spectroscopy offers the advantage to determine Tg and
to investigate the α-relaxation at long relaxation times in thin polymer films on
the identical sample. The determination of Tg can be carried out in two ways. In
a ramping experiment the temperature dependence of the film thickness, d(T),
can be recorded. Tg is then defined as the temperature at which a kink occurs in
d(T) due to the change in the thermal expansion coefficient from the value of the
glassy state to that of the liquid (capacitive scanning dilatometry, CSD [11–13]).
The determination of Tg can be done as well by TES, i.e. by probing the dilato-
metric dynamics on a time scale of 100 s. The corresponding temperature is con-
sidered as Tg. For this purpose, the dependence of the thermal expansion coeffi-
cient on a sinusoidal modulation of the sample temperature T(t) = 〈T〉 +
ΔTωTeiωTt [11, 14] is measured. The response in capacitance with the same angu-
lar frequency ωT as the temperature modulation is monitored within a linear ap-
proximation as

(11.1)

where ωT = 2πνT with νT being the frequency of temperature modulation, 〈T〉 is
the average temperature, 〈C ′〉 is the averaged capacitance, ΔTωT is the amplitude
of the temperature modulation with an angular frequency ωT, ΔC ′ωT is the am-
plitude of the capacitive response with the same angular frequency ωT and θ is
the phase lag between the temperature modulation and the change in the ca-
pacitance.

′ = ′ − ′ +C t C C
T

Ti t( ) ( )〈 〉 Δ ω
ω θe
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For a flat-plate capacitor the geometrical capacitance in dependence on a
temperature change ΔT is given by

(11.2)

and the real part of the permittivity is expressed by

(11.3)

where ε∞ is the real part of the permittivity in the high frequency limit, ωE is the
angular frequency of the electrical field, αt and αn are the linear thermal expan-
sion coefficients parallel and normal to the surface of the thin polymer film,
ΔT = T–Ts and Ts is a reference temperature. The term Δε in Eq. (11.3) is related
to the dispersion of the dielectric loss due to molecular relaxation processes.
The detection frequency, i.e. the frequency νE (ωE = 2πvE) of the electrical field
which is necessary to monitor the capacitance, has to be set to such a value that
no relaxation process is present in a wide temperature range. Thus, the con-
tribution Δε can be neglected in Eq. (11.3) and the temperature dependence of
ε′ is given by

(11.4)

where

(11.5)

(11.6)

–––αj (11.7)

Here, Nj(T) is the number density at a temperature T and –––αj is the polarization
of the j-th atom. Furthermore, the Clausius-Mossotti relation,

–––αj with Nj (T) = Nj (Ts) (1 – αnΔT) is used and it is assumed that the
films are constrained along the surfaces. Hence, for αt and αn holds

(11.8)

where μ is the Poisson ratio and α∞ is the bulk linear coefficient of thermal 
expansion [13]. For example, in the literature [25] one finds for atactic poly-
styrene μ = 0.325 and α∞ = 0.57 · 10–4 K–1 for T < Tg and μ = 0.5 and α∞ =
1.7 · 10–4 K–1 for T > Tg. Combining Eqs. (11.2), (11.4) and (11.8) one obtains the
following relation for the linear thermal expansion coefficient normal to the
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film surface αn:

1 dC¢      1    ΔC¢ωTαn = –ζ
06

= ζ 
09

eiθ (11.9)
C¢(Ts) dT      C¢(Ts)  ΔTωT

where C′(T) is the capacitance at a temperature T and Ts is a standard tempera-
ture. For atactic polystyrene ζ ≈ 0.5 was found [13].

As long as the response obeys the change in the external field without any de-
lay, the phase lag θ in Eq. (11.1) is zero. However, in presence of a relaxation
process with a characteristic time in the order of 1/ωT the phase lag θ is unequal
to zero and αn becomes a complex number which is denoted by α*

n = α′n – iα′′n
Here, α′n and α″n are the real and the imaginary part of the complex thermal ex-
pansion coefficient.

Both DRS and TES measure the complex capacitance of thin films and can
therefore be employed to obtain dynamical properties from the identical sample
in a frequency range from 10–3 Hz to 104 Hz [14]. If νT = 0 and νE is varied at a
fixed temperature, the complex dielectric permittivity is obtained. Thermal ex-
pansion spectroscopy is performed when νT is varied at a given temperature and
νE is fixed to a value distinct from the rate 1/τmax of any dielectric relaxation. For
the measurements on atactic polystyrene which are presented in Sect. 11.3.2, the
average temperature 〈T〉 is controlled to increase with a constant rate of
0.1 Kmin–1 or 0.5 Kmin–1. The amplitude ΔTωT is set between 0.2 K and 0.6 K. For
the capacitance measurements in the TES measurements the frequency νE is set
to 100 kHz.

11.3
Thin Films of Glass Forming Polymers

11.3.1
Poly(methyl methacrylate) (PMMA)

Studies on PMMA in thin films revealed that the thickness dependence of the
glass transition temperature, Tg(d), as determined by ellipsometry [6, 31] or
thermal probe analysis [9], is strongly influenced by the interaction of PMMA
with the underlying substrate. With decreasing film thickness, Keddie et al.
found a decrease in Tg of PMMA films on gold, whereas Tg remains almost con-
stant with tendency for a slight increase if the films were deposited on SiOx [6].
Grohens et al. demonstrated that Tg increases in thin films of atactic and iso-
tactic PMMA (a- and i-PMMA) while it decreases in case of syndiotactic
PMMA (s-PMMA) [31, 32]. These findings do not depend on the substrates
used in these studies (silicon- or aluminium-wafers). In case of i-PMMA an in-
crease of Tg of 40 K was found for a film thickness of 20 nm. At this film thick-
ness, the value of the Tg shift in all other studies was about 15 K for both in-
creases or decreases of Tg. Fryer et al. proved that the increase in Tg in thin films
on SiOx can be switched to a decrease by a treatment of the substrate surface
with hexamethyldisilazane (HMDS) (silanisation). Prucker et al. found a de-
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crease of Tg in thin films of PMMA on silanised SiOx substrates independent on
the inner architecture of the PMMA film [33]. In this study, spin-cast, grafted
and Langmuir-Blodgett-Kuhn films were compared by measuring the temper-
ature dependence of the refractive index and the film thickness by means of op-
tical waveguide spectroscopy.

A recent dielectric study analyses the influence of a confinement given by the
thin film geometry on both the α- and the β-relaxation in films of a-PMMA
(Table 11.1) [34]. The molecular mechanism of both relaxation processes in the
bulk is elucidated by multi-dimensional NMR measurements (see Chap. 18). For
thin films of a-PMMA it is found that the temperatures Tα and Tβ correspond-
ing to the maximum of the dielectric loss ε′′max at a given frequency of the elec-
trical field decrease linearly by about 20 K below a critical film thickness dc.
Above dc, almost no change is found with respect to the bulk values. It is ex-
pected that the thickness dependence of Tg is qualitatively the same like the
thickness dependence of Tα. The surprising decrease of Tβ is attributed to a
strong correlation between the α- and the β-relaxation despite the fact that both
processes are well separated in the activation plot. The same value of the critical
thickness dc holds for both relaxation processes and compares well to the radius
of gyration Rg of the bulk polymer (dc ≈ Rg = 18.6 nm). The change of the thick-
ness dependence of Tα at dc is explained by assuming that the “sliding motion’’
of the polymer chains along their own contour as proposed by de Gennes [23,
24] becomes important for thicknesses below dc. This motion can be prevented
in the bulk due to blocked end monomers whereas it is not impeded in thin films
where monomers close to free surfaces possess a high mobility. However, the de-
pendences of Tα and Tβ on the molecular weight Mw in thin films of a-PMMA
have still to be measured in order to prove this conjecture [34]. The findings for
Tα and Tβ are consistent with the result that in the activation plot both processes
are shifted to higher values of the relaxation rate with decreasing film thickness.
While the β-process is found to be only weakly broadened in both the frequency
and the temperature domain, a considerable broadening is found for the α-
process in the temperature domain in accordance with results for thin films of
atactic polystyrene (a-PS) and poly(vinyl acetate) (PVAc) [14, 34]. For the β-re-
laxation in a-PMMA as the dominating process with respect to the dielectric
strength Δε it is found that Δε decreases with decreasing film thickness. The
same tendency holds for the α-relaxation in thin films of PVAc. However, the α-
process in thin films of a-PMMA has not been analysed in the frequency domain
in terms of fits according to the empirical fit function of Havriliak and Negami
(Eq. 11.10) since it is weak compared to the β-relaxation.

Therefore, i-PMMA has been chosen to study its dynamics in thin films since
the α-process is dominating with respect to the dielectric strength. Although it
is known that i-PMMA tends to crystallize for low molecular weights [35], no
hint of crystallisation was found by DSC measurements on bulk samples of the
molecular weights used in this study.

Figure 11.2 displays the dielectric loss ε′′ vs frequency for a film of 20 nm
thickness of i-PMMA with a molecular weight of Mw = 164,700 g mol–1. Di-
electric data were analysed only up to 105 Hz since for higher frequencies an ad-
ditional loss peak dominates the spectra which is due to the non-negligible re-
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sistance of the evaporated aluminium electrodes [30]. However, this artefact
process turns out to have only a weak influence on the molecular relaxation
processes. For elevated temperatures (T ≥ 340 K) a conductivity contribution at
low frequencies has to be considered.At low temperatures (T < 330 K, Fig. 11.2a)
the spectra are characterised by a weak and broad β-relaxation. Above Tg, the 
β-relaxation appears as a shoulder of the comparatively stronger α-relaxation.
At around 350 K both processes have merged to one process whose amplitude
increases while its width tends to decrease with increasing temperature
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Fig. 11.2. Dielectric loss ε′′ vs frequency for i-PMMA (sample thickness d = 20 nm, Mw =
164,700 g mol–1) at temperatures as indicated: a only the β-relaxation is present. For T = 322 K
the high frequency wing of the α-relaxation appears; b spectra at temperatures within and
above the merging region. Solid lines represent fits according to the Havriliak-Negami equa-
tion (Eq. 11.10). The inset illustrates the superposition (solid lines) of the α- and the β-relax-
ation (dotted lines) and a conductivity contribution (dashed line) for T = 338 K. Note the dif-
ferent scales for ε′′ in Fig. 2a,b



(Fig. 11.2b). Solid lines in Fig. 11.2 are fits according to the empirical fit function
of Havriliak and Negami (HN-equation) [36]:

(11.10)

Here, Δε denotes the dielectric strength, τHN is an apparent relaxation time, αHN
and γHN are shape parameters describing the symmetric and the asymmetric
broadening of the loss peak. σ0 is the d.c. conductivity, ε0 is the permittivity of
the vacuum and ω = 2πν is the angular frequency of the applied electrical field.
The exponent s equals one for ohmic behaviour; deviations (s < 1) are caused by
electrode polarization and a is a factor having the dimension (Hz)–1(rad Hz)5.
A superposition of two peaks according to Eq. (11.10) as proposed in [37, 38] is
used to fit the data in the merging region of the α- and the β-relaxation, whereas
one process is sufficient for spectra above and below this region.

To extend the analysis of the α-relaxation towards Tg one has to obtain spec-
tra which do not show the conductivity contribution. This is achieved by apply-
ing a data transformation proposed in [39]:

(11.11)

Figure 11.3a demonstrates the application of Eq. (11.11) for films of various film
thickness at a constant temperature. The low frequency wing of the α-relaxation
can now be analysed. Solid lines represent HN-fits according to Eq. (11.10); for 
d = 20 nm the decomposition into the α- and the β-relaxation is demonstrated.
A weak shoulder at around 100 Hz in some curves in Fig. 11.3a is caused by the
differentiation of noisy data of ε′(ω) and has no physical meaning. The solid
vertical line indicates the maximum position of the α-relaxation for the bulk
sample. The corresponding value for thin films of i-PMMA is shifted to higher
frequencies when the film thickness decreases. Furthermore, it is found that 
the dielectric strength Δε of the α-relaxation is reduced in thin films whereas
that of the β-relaxation remains almost constant. In Fig. 11.3b, relaxation time
distributions g(log(τ)) are given for the spectra of Fig. 11.3a. They are related 
to the dielectric loss ε′′ by

(11.12)

and can be either calculated from a set of HN-fit parameters [40] or can be ex-
tracted directly from the data using the Tikhonov regularization algorithm [41].
The inset in Fig. 11.3b shows the relaxation time distribution obtained by both
techniques as a check of consistence. In Fig. 11.3b, the distributions reveal two
peaks corresponding to the α- and β-relaxation. The latter is not influenced by
the decrease of the film thickness whereas the maximum position of the former
is shifted to shorter times and its strength Δε is decreased when the film thick-
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ness is reduced. It turns out that the decrease of Δε affects mainly the long term
wing (i.e. τ ≥ τα

max where τα
max is the maximum of the α-relaxation in the bulk)

whereas the short term wings (τ ≥ τα
max) of all distributions nearly coincide.

Thus, the shift of the maximum corresponding to the α-relaxation is related to a
weakening of the relaxation time distribution at long times τ. This behaviour is
different from findings for low molar mass glass forming liquids where an anal-
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Fig. 11.3. a Derivative –∂ε′(ω)/∂ log ω vs frequency according to Eq. (11.11) for i-PMMA (Mw =
164,700 g mol–1) at 339 K for thicknesses as indicated. The solid lines are HN-fits according to
Eq. (11.10); for d = 20 nm the decomposition into the α- and the β-relaxation is shown.
b Relaxation time distributions obtained by the Tikhonov regularization for the spectra shown
in (a). The inset compares for d = 20 nm the Tikhonov distribution (symbols) to that calculated
by use of the HN fit parameters. The dotted lines correspond to the individual relaxation
processes, their sum is given by the solid line. Vertical dotted lines are used to indicate the
maximum values for the bulk



ogous analysis yields a dynamics being on an absolute scale faster in the con-
finement than in the bulk (see [42] and references therein).

Figure 11.4 displays spectra for various values of the film thickness which are
normalized with respect to their maximum position at three different tempera-
tures which are representative for the β-relaxation (Fig. 11.4a), the merging re-
gion (Fig. 11.4b) and the α-relaxation above the merging region (Fig. 11.4c). In
Fig. 11.4b a broadening of the α-relaxation is observed which has been found in
other studies as a typical feature of the dynamics in confinement for both low
molar mass substances [42] and polymers [12–14, 34].

Figure 11.5 shows the activation plot for films of various thickness of two
molecular weights. The β-relaxation obeys the Arrhenius law and no depen-
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Fig. 11.4. Dielectric spectra of i-PMMA, normalized with respect to the maximum frequency
νmax and the maximum of the dielectric loss, ε ′′max: a 323 K, β-relaxation; b 339 K, α- and β-re-
laxation; c 354 K, α-relaxation (Mw = 164,700 g mol–1). The increase of ε′′/ε′′max at high fre-
quencies is an artefact due to the non-negligible resistance of electrodes



dence on the film thickness was found confirming the local character of this re-
laxation process. The traces of the α-relaxation can be well fitted to the Vogel-
Fulcher-Tammann (VFT) equation [43–45]

(11.13)  maxlog ( / ) log ( / )1 1 0
0

τ τ= −
−
U

T T
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Fig. 11.5. Activation plot: logarithm of the relaxation rate 1/τmax vs 1000/T for i-PMMA in thin
films of thicknesses as indicated: a Mw = 44,900 g mol–1; b Mw = 164,700 g mol–1.The solid lines
represent fits according to the VFT equation (Eq. 11.13). In the insets the α-relaxation around
Tg is enlarged in order to demonstrate the shift of the relaxation time τmax to shorter times
with decreasing film thickness. Tg is determined as the temperature at which the VFT fits yield
τmax = 100 s



where U denotes a constant which is related to the fragility, T0 is the Vogel-
Fulcher temperature and τ0 is the relaxation time in the limit of high tempera-
tures. Only data below the merging region were considered for the VFT-fits. For
each film of a thickness d, the glass transition temperature Tg is defined as the
temperature where the relaxation time τmax is equal to 100 s. This way to deter-
mine Tg of thin polymer films has already been applied in previous studies [14,
18]. It should be noted that the determination of Tg by use of capacitive scanning
dilatometry [11] or thermal expansion spectroscopy [14] fails in case of i-
PMMA due to the presence of the dielectrically active β-relaxation.

From Fig. 11.5 it can be seen that in the vicinity of the bulk glass transition
temperature the time τmax of the α-relaxation is shifted to shorter times, while at
high temperatures the traces for all films and for bulk coincide. This decrease of
τmax whose origin has been discussed with respect to Fig. 11.3, leads to a shift of
Tg to lower temperatures with decreasing film thickness. For the higher molec-
ular weight this shift is more pronounced and it already sets in at higher tem-
peratures.

Figure 11.6 summarizes the thickness dependences of Tg obtained for two
molecular weights by dielectric spectroscopy and ellipsometry, respectively. For
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Fig. 11.6. Thickness dependence of the glass transition temperature Tg as obtained by ellip-
sometry (open circles, open triangles) and dielectric spectroscopy (open squares) for i-PMMA
(Mw = 44,900 g mol–1). (Open triangles) represent our own ellipsometric measurements
whereas (open circles) are taken from [32]. Additionally, the dielectric results for the higher
molecular weight of Mw = 164,700 g mol–1 are shown (filled squares). The inset magnifies the
dielectric data for both molecular weights in order to show more details. The solid and dotted
lines are fits according to Eq. (11.15), values for the fit parameters are shown in Table 11.2. The
dashed horizontal lines indicate the glass transition temperature of the bulk samples as mea-
sured by DSC (upper line: Mw = 164,700 g mol–1, lower line: Mw = 44,900 g mol–1)



details of the latter see [27, 31, 32]. Against the background of the apparently
contradicting thickness dependences in Fig. 11.6, the differences concerning the
polymer-substrate interfaces have to be pointed out: while the polymer is em-
bedded by aluminium for dielectric measurements, it forms interfaces with a
SiOx layer and with air in case of the ellipsometric measurements. For i-PMMA
on SiOx an increase of Tg of about 70 K for a film thickness of about 20 nm is
found by means of ellipsometry. In this case, our ellipsometric measurements
confirm analogous studies of Grohens et al. [31, 32]. In contrast, the dielectric
studies for supported capped films of i-PMMA on aluminium lead to a decrease
of Tg of about 10 K for the thinnest films. At the moment we can only attribute
this different behaviour to a pronounced change of the interaction between 
i-PMMA and the substrate when the latter is changed from SiOx to aluminium.
In case of both PS and PMMA it has been shown that chemically different sub-
strates [6], surface modification [9] or variation of tacticity [31, 32] strongly in-
fluence the value of the Tg shift and its sign. Moreover, AFM measurements on
both substrates reveal a higher mean roughness for the evaporated aluminium
(2.6 nm) than for the Si wafer (1 nm). This difference can weaken the strong ad-
sorption which was observed for i-PMMA on SiOx.

Here, we will focus on the results of dielectric measurements which raise the
question for the molecular origin of the decrease of Tg in thin films with respect
to the bulk value. This question is discussed in conjunction with a model re-
cently developed by Herminghaus et al. [18]. The authors explain the shift of Tg
found for thin films of amorphous a-PS of low molecular weight (Mw ~ 103 g
mol–1), i.e. the radius of gyration is small compared to the film thickness even
for the thinnest films. Furthermore, the polymer has to be amorphous and
should not show any tendency to crystallize. Since both requirements are ful-
filled for i-PMMA of the molecular weights used in this study, the model of
Herminghaus should be applicable to describe the dependence of Tg as revealed
by dielectric spectroscopy. In previous studies [13, 16] no significant difference
in the thickness dependence of Tg for supported films which are covered by an
evaporated layer of the substrate material (supported capped films [16]) and
films with a free surface (supported uncapped films [16]) was found. Thus, the
adoption of this model is not affected by the presence of an upper electrode
evaporated onto the films.

The model is described in detail in [18]. It relates the thickness dependence of
the glass transition temperature Tg to Young’s elastic modulus E and to the sur-
face tension σ of the polymeric material in the thin film:

(11.14)

where Tg
bulk is the bulk glass transition temperature and σ was set to 40 mN m–1

[26]. In several previous studies [13, 32, 46] the dependence of Tg on the thick-
ness d was described phenomenologically by
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For the fitting parameter ξ it was assumed up to now that it is related to the seg-
ment length of the polymer. Within the framework of the model given by
Herminghaus et al. [18], ξ is now given by the ratio σ /E with E being the only fit
parameter in Eq. (11.14). For PS of several molecular weights, ξ was obtained in
the range between 0.33 nm and 0.82 nm [13, 18, 46], but no significant depen-
dence of ξ on the molecular weight was found.

The solid lines in Fig. 11.6 are obtained by fitting Eq. (11.14) respectively
Eq. (11.15) to the data. By changing the sign of the term ξ /d in Eq. (11.15), an in-
crease of Tg can be described as well. For the fitting procedure, Tg

bulk was fixed ei-
ther to the value obtained from dielectric measurements on bulk samples or, for
the ellipsometric data sets, to the value obtained by DSC measurements. Results
of fits to both the dielectric and the ellipsometric data sets are listed in
Table 11.2. The fit parameters obtained for the ellipsometric measurements are
in agreement with those given in [32]. Thus, we can state that the values obtained
for ξ in the case of the dielectric measurements are well comparable to those
given in the literature for PS of comparable molecular weight.

Further on, the values obtained for the modulus E are in the same order of
magnitude (some ten MPa) like those obtained by Herminghaus et al. [18] for a-
PS. It should be noted here that this model predicts, if any, a weak dependence of
ξ ~ σ /E on the molecular weight Mw, since E depends weakly on Mw. This fore-
cast is confirmed by experiments [13, 18]. Since the values for ξ in case of thin
films of i-PMMA are comparable to those of a-PS (with similar errors), we fol-
low the conclusion given in [13] that ξ is independent on the molecular weight
within experimental uncertainty. It turns out to be difficult to investigate further
molecular weights since for smaller values of Mw crystallization becomes im-
portant while higher molecular weights of isotactic PMMA are not available to
our best knowledge.

Recently, Long and Lequeux proposed a thermodynamic model which de-
scribes the glass transition by percolation of small domains of slow dynamics
[19]. Thus, the heterogeneous dynamics in the bulk and increases or decreases of
Tg in films which interact strongly or weakly with an underlying substrate are ex-
plained. This model requires two independent fit parameters: the volume of
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Table 11.2. The values for the parameters Tg
bulk, ξ and E resulting from the best fit to Eq. (11.14)

and Eq. (11.15), respectively for the thickness dependence of the glass transition temperature
Tg(d) as found for thin films of i-PMMA by dielectric spectroscopy and ellipsometry

Dielectric data, σ = 40 mN m–1

Mw [g mol–1] Tg
bulk [K] ξ [nm] E [MPa]

44,900 330.6 0.56 ± 0.10 71.2 ± 4.5
164,700 331.2 0.86 ± 0.15 46.6 ± 5.8

Ellipsometric data, Mw = 44,900 g mol–1 (Tg
bulk = 326.9)

Source ξ [nm]

[32] 2.9 ± 0.2
Present data 2.7 ± 0.1



small viscous domains and the number of monomers which is necessary to en-
sure that a domain is in the viscous state. It is possible to reproduce the thickness
dependence of Tg as measured by dielectric relaxation spectroscopy resulting in
fit parameters comparable to those given in [19]. However, this model fails to de-
scribe the increase of Tg by a single set of fit parameters for all thicknesses in case
of the ellipsometric measurements performed on thin i-PMMA films on SiOx.

In Fig. 11.7 the thickness dependence of the dielectric strength, Δε(d), as ob-
tained from HN fits (Eq. 11.10) is displayed for both the α- and the β-relaxation.
In consistence with the spectra shown in Fig. 11.3, the β-relaxation turns out to
be uninfluenced by geometric confinement: Δε (β) is independent of the film
thickness. Above the merging region, the values of Δε (α) for the α-relaxation de-
crease with decreasing film thickness. For all values of the film thickness d, the
dielectric strength Δε (β) is proportional to the inverse temperature according to
the Onsager equation with the approximation of Δε ≈ ε∞:

(11.16)

Here, n is the number density of dipoles, μ is the molecular dipole moment, kB is
the Boltzmann constant, gKF is the Kirkwood-Fröhlich correlation factor, ε∞ is
the high frequency limit of the permittivity, ε0 is the vacuum permittivity and T
is the temperature. The results for Δε (α) and Δε (β) may be interpreted in the pic-
ture of cooperative motion for the α-relaxation in an analogous manner to that
given in [34]. It is assumed for the α-relaxation that N neighbouring dipoles re-
lax cooperatively. The number N is expected to be proportional to the dimension
of regions in which this cooperative motion takes place. Replacing n and μ in
Eq. (11.16) by n/N and Nμ, respectively yields Δε (α)

coop = NΔε (α) for the relaxation
strength in case of cooperative motions. These cooperative motions are re-
stricted in the regions close to the electrodes. Therefore, the intrinsic length
scale of the α-relaxation and the number N may be decreased in the interfaces.
Thus, the dielectric strength Δε (α) in these regions is expected to be smaller than
in the bulk. This picture can be considered by describing the thin film as a se-
quence of three layers. A layer of totally immobilized chains forms each inter-
face.The total (temperature-independent) thickness of both layers is di and their
permittivity is equal to ε∞. Between these immobilized layers there is a layer of a
thickness d–di possessing a permittivity of ε∞ + Δεbulk. The calculation of the to-
tal dielectric strength Δε(d) of the α-relaxation yields

(11.17)

In Eq. (11.17) it is assumed that diΔε /dε∞ � 1. In Fig. 11.7, the temperature de-
pendences of the dielectric strength of the bulk are fitted to a linear function as
justified by Eq. (11.16). The solid lines to describe the dielectric strength of the
thin films are reproduced by combining Eq. (11.17) with the temperature de-
pendences of Δεbulk. Results for the thickness of the immobilized layers are given
in Table 11.3. The fact that Δε(β) does not depend on the film thickness is con-
sistent with the local character of this relaxation process.
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Fig. 11.7. Dielectric strength Δε of i-PMMA as obtained from HN fits to the isothermal di-
electric loss data: a Mw = 44,900 g mol–1; b Mw = 164,700 g mol–1. The data for the β-relaxation
coincide within the experimental uncertainty for all values of the film thickness d, whereas the
α-relaxation displays a pronounced thickness dependence. This allows for the calculation of a
total thickness di of immobilized layers according to Eq. (11.17). The solid lines describing the
temperature dependence of Δε of thin films are obtained by combining Eq. (11.17) and linear
fits to Δε of the bulk.Within the merging region of the α- and β-relaxation only ambiguous fit
results for Δε were obtained which are omitted in this figure



In the activation plot it is found that the traces of the α-relaxation split for the
different film thicknesses. It is therefore expected that also the fragility m as a
measure of the non-Arrhenius character [47] is dependent on the film thickness
d. The fragility m is defined as

(11.18)

Here, the inverse of the relaxation rate 1/τmax is chosen as τα (T) and Tg is the
temperature at which τα (T) = 100 s is satisfied.

Figure 11.8 displays the Angell plot for the α-relaxation in thin films of i-
PMMA of various film thickness. In this representation the fragility m is ob-
tained as the slope of the curves in the point (T = Tg; τα(T) = 100 s). A further
analysis yields that m decreases with decreasing film thickness. Values for the
fragility index m are given in Table 11.4.A similar result is obtained for the α-re-
laxation in thin films of atactic polystyrene (Fig. 11.13). The findings concern-
ing the thickness dependence of the fragility index m are interpreted below as
tendency of the thermal activation towards an Arrhenius dependence.

Compared to a recent dielectric study on thin films of a-PMMA [34] one has
to state that there are some pronounced differences between both studies with
respect to their results. The thickness dependence of Tg is a continuous decrease
for thin films of i-PMMA which can be described by Eq. (11.15). In contrast, the
temperature Tα in [34] which should behave qualitatively similar to Tg is almost
constant above a critical film thickness dc whereas Tα decreases linearly for be-
low dc. It is found for the β-relaxation that both the relaxation time and the di-
electric strength depend on the film thickness whereas these quantities remain
uninfluenced in thin films of i-PMMA.

Studies on freely standing films [17] of atactic polystyrene reveal that the de-
pendence of Tg on the film thickness strongly depends on the molecular weight.
A consistent result concerning the dynamics of the α-relaxation in thin films is
obtained by means of dielectric spectroscopy [12–14, 34] for supported films of
atactic polystyrene and poly(vinyl acetate) as described below. It is therefore 
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Table 11.3. Values for the thickness di of layers of immobilized chains and corresponding
thicknesses of films of i-PMMA (Mw = 164,700 g mol–1 and Mw = 44,900 g mol–1). The values
for di were obtained from fitting the temperature and thickness dependence of the dielectric
strength Δε to Eq. (11.17)

Mw = 164,700 g mol–1 Mw = 44,900 g mol–1

D [nm] di [nm] d [nm] di [nm]

137 9.5 ± 1.2 –
68 9.5 ± 1.2 52 5.3 ± 0.5
36 8.7 ± 0.9 26 4.5 ± 0.4
20 6.9 ± 0.8 18 4.5 ± 0.4
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Fig. 11.8. The dependence of logτα on the inverse of the reduced temperature Tg/T for thin
films of i-PMMA: a Mw = 44,900 g mol–1; b Mw = 164,700 g mol–1. The values of Tg are obtained
by the relation τα (Tg) = 100 s. The fragility index m can be determined from this plot as the 

derivative Dashed-dotted lines represent the values τα = 100 s and T = Tg,

respectively
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assumed that the different experimental results are due to the differences in 
the molecular weight (Table 11.1), due to the different tacticity of the investi-
gated PMMA and due to the fact that in case of a-PMMA film thicknesses above
and below the radius of gyration Rg were obtained whereas for i-PMMA only
films with a thickness greater than Rg could be investigated.

11.3.2
Atactic Polystyrene (a-PS)

Atactic polystyrene (a-PS) is the best explored polymer concerning its static and
dynamic properties in thin freely standing or supported films [1–4]. In these
studies, typically the temperature dependence of the film thickness, d(T), and
thus the glass transition temperature Tg was determined as described above.
This was accomplished by experimental techniques such as ellipsometry [5, 6],
X-ray and neutron reflectivity measurements [7] or, in case of freely standing
films, by Brillouin light scattering [15, 16]. For a-PS it was found consistently by
these different methods that Tg decreases when the film thickness is reduced.
However, these studies yield macroscopic quantities only and do not lead to an
understanding of the microscopic mechanism. This shortcoming is partially re-
moved by the combination of TES and DRS which allows one to determine the
glass transition temperature of thin a-PS films as well. At the same time, these
techniques grant access to the dynamics of the α-relaxation over a wide fre-
quency range on the identical sample [12–14].

Figure 11.9 displays spectra of the dielectric loss ε′′ vs frequency ν for the α-
relaxation of a-PS at various temperatures for three different values of the film
thickness d. To study the relaxation behaviour of the α-relaxation in thin films
in more detail, spectra are normalized with respect to both the maximum posi-
tion νmax and the peak height ε′′max (Fig. 11.10). Thus, for each film thickness the
spectra of various temperatures above Tg can be reduced to a single master
curve.

In Fig. 11.10 the arrows indicate the value ε′′/ε ′′max = 0.5 for each thickness 
and thus the full width at half maximum (FWHM) of the corresponding loss
peak. To investigate the thickness dependence of the width quantitatively, each
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Table 11.4. Values for the fragility index m in dependence on the film thickness for thin films
of i-PMMA (Mw = 164,700 g mol–1 and Mw = 44,900 g mol–1). The quantity m is determined
from data represented in Fig. 11.8 according to Eq. (11.18)

Mw = 164,700 g mol–1 Mw = 44,900 g mol–1

d [nm] m d [nm] m

20 96 – –
36 105 18 93
68 114 26 88
137 128 52 109
Bulk 138 Bulk 139



master curve in Fig.11.10 has been fitted to the HN-equation (Eq.11.10).Further
on, the data ε′′(ω) can be converted from the frequency domain into the time 
domain by

(11.19)

For each thickness d it is found that the respective relaxation function φ(t) can
be well fitted to the Kohlrausch-William-Watts (KWW) equation
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Fig. 11.9. Dielectric loss ε′′ vs frequency for thin films of a-PS (Mw = 1.8 × 106 g mol–1) of
various film thickness at temperatures as indicated: a d = 194 μm (bulk sample); b d = 91 nm;
c d = 14 nm



454 11 Molecular Dynamics in Thin Polymer Films

Fig. 11.10. Normalized dielectric loss (ε′′/ε′′max) vs normalized frequency log(ν /νmax) for thin
films of a-PS (Mw = 1.8 × 106 g mol–1) at thicknesses as indicated. The solid lines are HN-fits.
Arrows indicate the full width of the peaks at  ε′′/ε′′max = 0.5 (FWHM). The vertical dashed line
describes the maximum position of the normalized loss curves. For d = 194 μm, the symbol
(open circles) corresponds to 396.0 K, (open squares) to 400.3 K, ( filled circles) to 404.8 K,
( filled squares) to 409.1 K and (inverted filled triangles) to 413.9 K. For d = 408 nm, the sym-
bol (open circles) corresponds to 393.5 K, (open triangles) to 397.5 K, (open squares) to 401.3 K,
and (open diamonds) to 404.3 K. For d = 187 nm, the symbol (open circles) corresponds to
388.5 K, (open triangles) to 392.4 K, (open squares) to 396.3 K, (open diamonds) to 400.4 K,
( filled circles) to 404.3 K, ( filled triangles) to 407.6 K, and (filled squares) to 408.1 K. For d =
91 nm, the symbol (open circles) corresponds to 391.8 K, (open triangles) to 395.3 K, (open
squares) to 399.2 K, (open diamonds) to 403.1 K and ( filled circles) to 405.6 K. For d = 33 nm,
the symbol (open circles) corresponds to 380.5 K, (open triangles) to 384.5 K, (open squares) to
388.4 K, (open diamonds) to 392.4 K, ( filled circles) to 396.4 K, ( filled triangles) to 399.9 K, and
( filled squares) to 400.6 K. For d = 14 nm, the symbol (open circles) corresponds to 382.3 K,
(open triangles) to 386.0 K, (open squares) to 390.0 K, (open diamonds) to 393.9 K, ( filled cir-
cles) to 397.9 K and ( filled triangles) to 401.1 K



The broadening parameter βKWW obtained for films of various thickness turns
out to be proportional to the inverse film thickness d [13]. The values for the
parameters αHN, βHN and βKWW of the best fits are given in Table 11.5. They con-
firm that the width remains constant down to a thickness of 91 nm whereas it in-
creases considerably for the two thinnest films of d = 14 nm and d = 33 nm.

In the temperature representation of the dielectric loss (i.e. the plot of the di-
electric loss ε′′ vs temperature for a fixed frequency) an increased broadening of
the loss peak is found as well when the film thickness decreases [13]. From eval-
uation of the thickness dependences of Tα (i.e. the temperature at which ε′′ re-
alizes its maximum in the temperature representation), of ΔTα being related to
the width of the loss peak in the temperature representation and of the broad-
ening parameter βKWW length scales of the dynamics in thin films of a-PS can be
extracted. Their values are related to the heterogeneous film structure within a
three layer model including a layer of immobilized molecules, a layer of bulk-
like dynamics and a layer near the film surface showing a higher mobility of the
polymer chains than in the bulk [13].

Since a-PS is a weakly polar material, it is difficult to obtain significant di-
electric loss signals at low frequencies by DRS. It is therefore demonstrated how
information on the dynamics of the α-relaxation in this frequency range can be
completed by TES. Figure 11.11 displays the temperature dependence as ob-
tained by TES of the real (α′n) and the imaginary part (α′′n) of the thermal ex-
pansion coefficient normal to the film surface for thin films of a-PS of two val-
ues of the film thickness d and at two frequencies νT of temperature modulation.
The solid curves in Fig. 11.11 are obtained by combining the HN-equation
(Eq. 11.10) modified for α*

n(ω) [14] with the Vogel-Fulcher-Tammann (VFT) de-
pendence (Eq. 11.13). It is assumed here that τHN = τα and that all parameters
apart from the relaxation time are independent of temperature. The fit param-
eters resulting from this procedure are given in Table 11.6.

From Fig. 11.11b it can be seen that for constant frequency νT of temperature
modulation the peak temperature Tα at which α′′n realizes its maximum is shifted
to lower temperatures when the film thickness is reduced from 247 nm to 18 nm.
Also in the temperature domain the width of the transition region between the
glassy and the liquid state increases as the thickness decreases. This corresponds
to an increase of the width of the relaxation time distribution with decreasing
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Table 11.5. The values of the broadening parameters αHN and βHN as well as of the stretching
parameter βKWW resulting from the best fits of Eq. (11.10) and Eq. (11.20), respectively to the
loss spectra measured on thin films of a-PS with Mw = 1.8 × 106 g mol–1

d [nm] αHN γHN βKWW

194 × 103 0.78 ± 0.01 0.46 ± 0.01 0.419 ± 0.012
408 0.78 ± 0.01 0.48 ± 0.02 0.435 ± 0.017
187 0.75 ± 0.01 0.46 ± 0.03 0.399 ± 0.021

91 0.75 ± 0.01 0.47 ± 0.01 0.406 ± 0.014
33 0.62 ± 0.01 0.51 ± 0.02 0.344 ± 0.017
14 0.60 ± 0.02 0.37 ± 0.03 0.271 ± 0.019



film thickness and is in agreement with the results of dielectric measurements
as discussed above.

Figure 11.12 displays the activation plot, i.e. the dependence of the relaxation
rate νmax of the α-process (νmax = 1/2πτα; τα is the relaxation time) on temperature
for thin films of a-PS of various thickness and of two different molecular weights.
The temperature Tα, where the peak in either α ′′n or ε′′ realizes its maximum, was
measured at a fixed frequency νmax (equal to νE for DRS or to νT for TES). Thus the
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Fig. 11.11. Temperature dependence of complex linear thermal expansion coefficient α*
n for a-

PS films (Mw = 6.7 × 106 g mol–1) with a thickness of 18 nm (open symbols) and 247 nm (full
symbols). The temperature dependence for two values of the frequency νT of temperature
modulation are given: νT = 16.7 mHz (circles); νT = 2.1 mHz (squares). The upper figure shows
the real part of α *

n and the lower one the imaginary part. Solid lines are calculated by combin-
ing the HN equation and the VFT equation. Corresponding fit parameters are displayed in
Table 11.6



11.3 Thin Films of Glass Forming Polymers 457

Fig. 11.12. Activation plot: logarithm of the relaxation rate νmax vs 1000/T for a-PS films of
thicknesses as indicated. Full and open symbols describe TES and DRS measurements, respec-
tively. The solid lines are VFT-fits: a Mw = 1.8 × 106 gmol–1; b Mw = 6.7 × 106 gmol–1

Table 11.6. Values for the broadening parameters αHN and γHN, the constant U of the VFT-equa-
tion (Eq. (11.13)) and the Vogel-Fulcher temperature T0 resulting from best fits for the results of
TES measurements in Fig. 11.11. Additionally, the stretching parameter βKWW is calculated

D [nm] fT [Hz] αHN γHN βKWW U [K] T0 [K]

18 1.67 × 10–2 0.40 ± 0.05 0.22 ± 0.03 0.19 1887 312.7
18 2.1 × 10–3 0.38 ± 0.07 0.23 ± 0.04 0.20 1887 312.7
247 1.67 × 10–2 0.20 ± 0.05 0.29 ± 0.03 0.30 1733 324.0
247 2.1 × 10–3 0.23 ± 0.06 0.27 ± 0.04 0.27 1733 324.0



relaxation rate νmax is obtained in a wider frequency range from 10–3 Hz to 104 Hz.
It can be seen from Fig. 11.12 that the relaxation rate νmax increases with decreas-
ing film thickness for both molecular weights Mw = 6.7 × 106 g mol–1 and Mw =
1.8 × 106 g mol–1. The shift of νmax to higher values of the relaxation rate for the
same decrease of the film thickness d is more pronounced at temperatures near Tg
than at higher temperatures.Hence, the thickness at which finite size effects on the
dynamics of the α-relaxation appear increases when the glass transition temper-
ature Tg is approached. This finding is in qualitative agreement with the model of
CRRs by Adam and Gibbs [49]. The size ξCRR of CRRs is predicted to increase as
the temperature nears Tg from high temperatures. According to this picture, the
dynamics of a glass-forming liquid being geometrically confined should deviate
significantly from that of the bulk for the smallest possible size of confinement.
This deviation is expected to be more pronounced when Tg is approached as it is
found in case of thin films of a-PS. Investigations on low molecular substances
confined to nanoporous host systems by dielectric relaxation spectroscopy ([42]
and references therein) and inelastic neutron scattering [48] have led to similar
findings like those presented in Fig. 11.12. This indicates that the size- and tem-
perature-dependence of νmax as described above are not restricted to thin polymer
films but hold for the molecular dynamics in confinement of quite different glass-
formers.

A further evaluation of the results displayed in Fig. 11.12 allows for the inves-
tigation of the thickness dependence of the Vogel-Fulcher temperature T0 and of
the fit parameter U [14]. T0 depends in a similar manner on the film thickness d
like the glass transition temperature Tg as discussed below. The quantity 1/U
turns out to be proportional to the inverse film thickness 1/d. Both parameters
can be related to the thermal expansion coefficient of the free volume within the
theory of Cohen and Turnbull [50]. It is found that this quantity decreases with
decreasing film thickness in accordance with the results of PALS measurements
[8] on thin films of a-PS.

From the fact that the parameter U depends on the film thickness one has to
expect that the fragility m as defined in Eq. (11.18) shows a thickness depen-
dence as well. The relaxation time τα in Eq. (11.18) is obtained via the relation
2πνmaxτα = 1 from the observed relaxation rate νmax. Tg is redefined as the tem-
perature at which the relation τα(Tg) = 102 s is fulfilled.

Figure 11.13 shows the Angell plot [47] for the α-relaxation in thin films of a-
PS of various values of film thickness d. It can be seen that with decreasing film
thickness the fragility m decreases as well, i.e. the films become less fragile when
the film thickness is reduced. If the origin of the VFT law is attributed to the co-
operativity in the dynamics of the α-relaxation, the observed approach to an
Arrhenius dependence leads to the conjecture that the dynamics of the α-process
in thin films of a-PS tends from the cooperative dynamics of the bulk liquid to a
dynamics which is typical for a single molecule [14]. This conjecture is in accord
with findings for low molar liquids confined to porous host systems [42, 51].

The glass transition temperature Tg for thin a-PS films of three different mol-
ecular weights has been determined by TES measurements as the temperature
Tα which is obtained for a frequency of temperature modulation of νT =
8.3 mHz. For this frequency the corresponding relaxation time is on a macro-
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scopic time scale. This definition of Tg is justified by a variety of experimental
results, e.g. [11, 52].

Figure 11.14 displays the thickness dependence of Tg for three different mol-
ecular weights. Down to a critical film thickness dc there is only a slight decrease
of Tg with decreasing film thickness. Below dc a much stronger decrease of Tg
with decreasing film thickness is found for all molecular weights which can be
well fitted by a linear function. The values for dc show a distinct dependence on
the molecular weight Mw: they change with Mw in accordance with the radius of
gyration, Rg [14]. The thickness dependence of Tg presented in Fig. 11.14 is sim-
ilar to that obtained for freely standing films of a-PS in the regime of high mol-
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Fig. 11.13. Dependence of log τα on the inverse of reduced temperature Tg/T for thin films of
a-PS: a Mw = 1.8 × 106 g mol–1; b Mw = 6.7 × 106 g mol–1. The values of Tg are obtained by the
relation τα (T) = 100 s. Otherwise as Fig. 12. Dashed-dotted lines represent the values τα = 100 s
and T = Tg, respectively



ecular weights (Mw ≥ 5 × 105 g mol–1) [15, 53]. Furthermore, it compares well to
the thickness dependence of Tα in supported films of a-PS as obtained by di-
electric relaxation spectroscopy [12, 13]. Based on these experimental results,
the Mw and d dependence of Tg in Fig. 11.14 is ascribed to the confinement of
polymer chains in the thin film geometry. This effect is characteristic for the dy-
namics of the α-process in thin films of a-PS whereas no counterpart has been
found for small molecules in confinement. Despite these similarities between
supported and freely standing films there are also considerable differences
which are not yet understood: the Tg reduction is much smaller for supported
films than for freely standing films of a-PS. This finding can presumably be ex-
plained by the presence of free surfaces instead of any substrate. The absence of
a substrate might also be the reason for the different slopes in the thickness de-
pendences of Tg in the linear region below dc: in case of freely standing films the
slope increases with increasing Mw [54]. The reverse tendency is found for sup-
ported films by TES [14].

On the other hand, measurements of Tg by capacitive scanning dilatometry
(CSD) [12, 13] and ellipsometric measurements of Tg on thin films of a-PS [5, 6]
yield a qualitatively different dependence of Tg on the film thickness d: Tg de-
creases gradually with decreasing film thickness d and no critical thickness dc
could be found at which the thickness dependence changes qualitatively.
Moreover, a qualitatively similar thickness dependence was reported for Tg of
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Fig. 11.14. Glass transition temperature Tg vs logarithm of the film thickness d for thin films
of a-PS of molecular weights as indicated. The value of Tg is measured as the temperature Tα
at which the imaginary part of thermal expansion coefficients has its peak value for the mod-
ulation frequency 8.3 mHz in TES measurements. The arrows show the crossover thickness dc,
below which Tg decreases abruptly with decreasing film thickness. The lines are linear fits to
Tg(d) above and below dc



freely standing films of a-PS in the regime of low molecular weights [17] as well
as for Tα of thin films of PVAc. In all these cases, no molecular weight depen-
dence was found for Tg (d) and for Tα (d), respectively. The gradual decrease of
Tg can be described by an empirical fit formula:

(11.21)

For δ = 1 and a � d one obtains Eq. (11.15). Tg
bulk is the glass transition tem-

perature of the bulk polymer and a is a length which shows no dependence on
the molecular weight and is in the same order like the statistical segment length
of a-PS [13]. For the exponent δ different values are reported in literature:
Keddie et al. found δ = 1.28 ± 0.20 [55] in case of ellipsometric studies, where-
as δ = 1 is obtained by CSD [13] for supported films of a-PS. In case of thin 
films of PVAc δ = 0.77 ± 0.04 is found by dielectric relaxation spectroscopy for
Tα (d) [34].

Based on the results for thin films of a-PS, it is assumed [4, 13, 17] that there
are two regimes of the molecular weight Mw in which different dependences of
Tg (or Tα) on the film thickness d are found. For low values of Mw (Mw < 5 × 105 g
mol–1), the effect of chain confinement is not important for the reduction of Tg
whereas finite size effects due to an intrinsic length scale of the glass transition
are dominant. Therefore, no dependence of Tg(d) on the molecular weight is
found. The effect of chain confinement determines the thickness dependence of
Tg in the regime of high molecular weights. In this regime Tg(d) is characterized
by the presence of a critical thickness dc which scales with the molecular weight
and consequently with the radius of gyration.

The difference in the findings for Tg(d) on thin films of a-PS of the same mol-
ecular weight as obtained by means of CSD [12, 13] and TES [14] are not yet fully
understood in the moment [56]. The value for Tg depends on the unambiguous
determination of a peak maximum in case of TES, whereas it is determined as
“kink temperature’’ in case of CSD. The latter depends on the contrast of the
glass transition, i.e. the difference between the thermal expansion coefficients of
the liquid and the glassy state. This contrast becomes weaker when the film
thickness is reduced. Therefore, any dependence of Tg(d) on the molecular
weight might be covered by experimental errors in case of dilatometric experi-
ments but can still be revealed by TES measurements. However, in analogy to
calorimetry which can also be performed in the ramping mode or in the mode
of temperature modulation, the values for Tg obtained by CSD are expected to
coincide with those obtained by TES [10, 57, 58].

Similar results as for a-PS were obtained for thin films of PVAc [34]. In both
the frequency and the temperature representation of the data of the dielectric
loss ε′′ a pronounced broadening of the loss peaks is obtained. For the relaxation
time distribution, a shift of the maximum to shorter times with respect to the
bulk was found for thin films besides the broadening. This leads to an activation
plot which is quite similar to that of a-PS (Fig. 11.12), i.e. the relaxation rate νmax
increases with decreasing film thickness. The thickness dependence of Tα, which

T d T a
dg g( ) = − ⎛
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is assumed to be similar to that of Tg, is well comparable to that obtained from
thin films of a-PS. They were found to be consistent under the assumption that
the investigated molecular weights of PVAc are too small to observe chain con-
finement effects.

11.4
Thin Films of Grafted Polymers: Poly(	-benzyl-L-glutamate) (PBLG)

While the structure of grafted polymers is well explored by a variety of experi-
mental techniques (ellipsometry [59], neutron-reflectivity [60] and X-ray-re-
flectivity measurements [61]), little is known about the molecular dynamics in
these systems. Recently, dielectric relaxation spectroscopy has been applied to
tackle the question to which extent the molecular dynamics is changed with re-
spect to that of the bulk when polymers are prepared as thin grafted films [29,
62, 63]. In case of poly(γ-benzyl-L-glutamate) (PBLG) a new experimental ap-
proach to form electrical contacts to the thin films besides the conventional
evaporation of metal electrodes has been developed [29, 62]. Results obtained by
this new preparation technique are compared to those obtained by evaporating
the upper electrode directly on the polymer film as well as to measurements on
the bulk material. Furthermore, the molecular dynamics after swelling the
grafted polymer film is studied.

The rigid rodlike polymer PBLG (Fig. 11.15a) carries a large dipole moment
parallel to its helical axis. By grafting one end of the helix to a surface one has to
expect a considerable net dipole moment perpendicular to the surface. Thus, the
possibility is given to control the structure, orientation and dynamic properties
by an external electrical field. This could lead to possible applications in the ar-
eas of non-linear optics, liquid crystal displays, separation membranes or
biosensors. Grafted films of PBLG have already been studied with regard to the
molecular orientation [64], the electromechanical properties [65] and the for-
mation of microstructured layers [28]. In particular, the molecular dynamics of
polyglutamates in the bulk is well understood. It is known that PBLG has two di-
electrically active relaxation processes which are assigned to the (restricted)
fluctuation of the helical main chain as a whole (chop stick motion) and to the
fluctuation of the side groups [66, 67].

Details about the preparation of grafted films of PBLG may be found else-
where [28, 62]. In order to circumvent artefacts which may appear in case of di-
rect evaporation of metal electrodes of about 50 nm thickness onto an organic
film of comparable thickness, a new preparation technique was applied. To pre-
pare the grafted polymer in a capacitor arrangement, the grafted film is covered
with a freshly cleaved lamella of mica which was previously evaporated with alu-
minium stripes. Thus, a sample capacitor with an area of 2 mm2 is formed
(Fig. 11.15b). Mica offers the advantage that it shows atomically flat surfaces af-
ter cleaving. Further details can be found in [62].

Figure 11.16 displays spectra for both the side chain relaxation and the 
chop stick motion as obtained for the bulk and for the grafted film. For the 
latter, results of both techniques to contact the film are presented. Since in the
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case of the mica electrode a contact to the film is not given over the whole area
of the electrode, the data for ε″ have to be rescaled with the ratio ε∞

bulk/ε ∞
grafted,

where ε∞
bulk and ε ∞

grafted are the high frequency limits of ε ′ of the bulk and of
the grafted polymer, respectively. This data treatment is based on the assump-
tion that ε ∞ is only specific for the polymer and does not depend on film thick-
ness or on inner film structure. In Fig. 11.16, the side chain motion in the
grafted films is found to be broadened and to be slightly slowed down with
respect to the bulk spectrum. These findings are presumably caused by the
influence of the underlying substrate on the dipole fluctuations. The chop 
stick motion is found to be faster in the grafted layer depending on its thick-
ness with respect to the bulk reference (Fig. 11.17). This faster relaxation in 
the grafted layer cannot be explained by a difference in the molecular weight
since Mw was found to be almost the same for the bulk sample and for the
grafted films. However, the behaviour of the chop stick motion can be quali-

11.4 Thin Films of Grafted Polymers: Poly(γ-benzyl-L-glutamte) (PBGL) 463

Fig. 11.15. A Primary and secondary structure of poly(γ-benzyl-L-glutamate) (PBLG).
B Sketch of contacting the sample by use of a solid mica-electrode.An aluminium stripe (a) is
evaporated onto a sheet of freshly cleaved mica (b), thus forming the upper electrode. For the
baseplate, aluminium stripes (d) are evaporated onto cleaned glass plates (e). PBLG-films (c)
are grafted subsequently on the aluminium stripes and are contacted by applying the evapo-
rated side of the mica sheet, thus composing one sample capacitor. Wires are electrically con-
nected to contact pads by use of silver paint (f)

(A)

(B)
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Fig. 11.16. Dielectric loss ε′′ vs frequency for a bulk sample cast from solution and for a
grafted layer of PBLG at 411 K and 318 K with fits according to the HN-equation (Eq. 11.10).
The relaxation process at 411 K corresponds to the restricted motion of the helical main
chains (“chop stick motion”) in the bulk (filled triangles) and in layers of grafted PBLG of two
different thicknesses: (open squares) 57 nm, (open circles) 22 nm. The spectra at 318 K corre-
spond to the motion of the side chains: (inverted filled triangles) bulk, (inverted open trian-
gles), (open squares) grafted PBLG layer contacted by a solid top electrode and by evaporation
of aluminium, respectively. Solid lines indicate the superposition of a conductivity contribu-
tion (dashed lines) and a relaxation process (dotted lines) according to the HN-equation
(Eq. 11.10). Two typical sets of fit parameters are given for the bulk sample: 318 K: Δε = 0.66,
τ = 1.4 × 10–5 s, α = 0.65, γ = 0.496; 411 K: Δε = 2.496, τ = 0.0245 s, α = 1, γ = 1, σ0 = 3.93 ×
10–10 S m–1, s = 0.82
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Fig. 11.17. Activation plot for the two relaxation processes of PBLG in the dried and in the
swollen state of thin grafted layers and of the (unswollen) bulk (filled triangles). The mea-
surements on the grafted layer are denoted by open symbols: (open squares) and (open circles)
are used to mark the fluctuation of the helical main chains within a grafted layer of 57 nm and
22 nm thickness, respectively (evaporated electrodes). (circled plus signs) and (open dia-
monds) indicate the data of the side chain motion obtained by use of evaporated electrodes
and of the “mica method’’, respectively. (asterisks) is used to denote the side chain fluctuation
after the swelling procedure. In this case,S denotes the starting point and E the end of the mea-
surement on the swollen sample. Fits according to the VFT-law are shown by solid lines for the
bulk and for the grafted layer before the swelling procedure. The following fit parameters were
obtained for the bulk: log (1/τ0) = 10.3, U = 670.8 K, T0 = 264.5 K and for the grafted layer:
log(1/τ0) = 11.9, U = 1270.2 K, T0 = 240.3 K. Arrows indicate the glass transition temperature
Tg, i.e. the temperature which corresponds to a relaxation time of τmax = 100 s: Tg

bulk = (280 ±
2) K, Tg

layer = (287 ± 2) K



tatively understood within the scope of the model of Wang and Pecora [68] as
discussed below. Since the differences between the bulk and the grafted 
layer were obtained independently from the preparation of the bulk sample and
from the way of contacting the thin films, they have to be attributed either to
the different structure of both films or to the decreased thickness of the 
grafted layer. To decide this question, further investigations on grafted 
films with different thicknesses and on spin coated films of PBLG have to be
done.

In Fig. 11.17 the activation plot is shown as obtained for PBLG in the bulk
and as grafted layer for both techniques to contact the grafted film. The ther-
mal activation of the side chain relaxation process would be expected to show
an Arrhenius-like temperature dependence. This was indeed found for gluta-
mates with short methyl side chains [69]. However, for PBLG or similar sub-
stances with longer side chains the thermal activation of the corresponding re-
laxation can be well described by the VFT law (Eq. 11.13) indicating that the
side chains undergo a glass transition [30, 66]. The slower side chain relaxation
in the thin grafted films of PBLG leads to a higher glass transition temperature
with respect to the bulk as indicated in Fig. 11.17. To improve the contact be-
tween the grafted film and the upper (mica-) electrode, the grafted PBLG has
been swollen in a chloroform atmosphere for several hours. As result of this
procedure, a higher capacitance being in better agreement with calculated val-
ues is achieved. Furthermore, the side chain fluctuation becomes faster in the
swollen sample. Since the content of chloroform decreases with increasing tem-
perature, the relaxation rate tends to the values of the unswollen sample.
Dielectric measurements while cooling the sample yield the same thermal ac-
tivation as for the unswollen sample, thus indicating that the swelling process
is fully reversible. The chop stick motion is not affected by the swelling proce-
dure.

Figure 11.18 displays the dielectric strength Δε of the side chain fluctuation
which can be well described by Eq. (11.16) for both the bulk and the grafted film
being contacted by the mica-electrode. For the calculation of Δε according to
Eq. (11.16) it is assumed that μ = 1.1 D [65], gKF = 1 and n = 5 × 1021 cm–3. The
latter value is based on an estimation taking into account approximate values for
the chain length (≈ 60 nm) and the grafting density (≈ 0.005 Å–2). While there is
a good agreement of the calculation and the measurements on the bulk and the
grafted layer prepared according to the mica technique, Δε is higher when the
electrodes are evaporated. This difference is attributed to changes within the
grafted layer during the evaporation of aluminium.

In Fig. 11.19 the dielectric strength of the chop stick motion for the bulk and
for the grafted layer with evaporated electrodes is shown. Concerning the chop
stick motion it has to be considered that this motion is restricted by interactions
between neighbouring chains and by fixing one end of the chains to the elec-
trode surface. This situation corresponds to the model of Wang and Pecora [68],
which describes the restricted rotational diffusion of rodlike molecules. In this
model the fluctuation of the molecule length axis is constrained to a cone with
an apex angle θ0 (inset in Fig. 11.19). In the scope of this model it is possible to
deduce a relation connecting Δεrod for the free fluctuation of the helical main
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chains as expected from Eq. (11.16) and the values Δεcsm obtained for the chop
stick motion from the (corrected) HN-fits [66]:

(11.22)

Application of Eq. (11.22) to the data delivers an angle θ0 of approximately 2° in
good agreement with previous results [66]. There, similar glutamic acid con-
taining polymers have been investigated by means of dielectric spectroscopy;
for the evaluation of the bulk data the model of Wang and Pecora has been ap-
plied as well. Both the increase of the relaxation time of the chop stick motion
and the decrease of its dielectric strength in the grafted films with respect to val-
ues of the bulk can be explained consistently by the assumption that the angle θ0
is smaller in the grafted film than in the bulk [70–72].

Δ Δε ε θcsm rod= − +⎛
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⎞
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Fig. 11.18. Relaxation strength Δε of the side chain fluctuation for the grafted layer of PBLG
(corrected values: (inverted open triangles) evaporated electrodes, (open triangles) mica tech-
nique) and for the bulk (filled squares). Calculated values according to Eq. (11.16) are given by
the dashed line



In summary, a novel method is introduced which enables to our best knowl-
edge for the first time to study the molecular dynamics in (ultra-) thin layers of
grafted PBLG. The results are compared to measurements on the bulk sample
and on grafted PBLG layers contacted by evaporating metal electrodes. Two re-
laxation processes are observed which are assigned to (restricted) fluctuations
of the helical main chains as a whole (chop stick motion) and to the dynamic
glass transition of the side chains. The latter shows a VFT-temperature depen-
dence which scales well with calorimetric measurements [67]. For grafted layers
this process is broadened with respect to the bulk and its relaxation rate τmax is
slightly shifted to longer times. The dielectric strength of the side chain relax-
ation can be described by Eq. (11.16). With decreasing film thickness, the chop
stick motion is shifted to shorter relaxation times. The changes of the relaxation
rate of the chop stick motion can be qualitatively explained by the model of
Wang and Pecora [68] and the results obtained for its dielectric strength Δε are
in good agreement with calculations based on this model. Swelling the polymer
with chloroform leads to a faster motion of the side chains. This effect is re-
versible.
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Fig. 11.19. Relaxation strength Δε of the fluctuation of the helical main chains of PBLG: (open
triangles) denotes the corrected values of Δε for the grafted layer contacted by the “mica
method’’. (Filled squares) are used to denote values of the bulk sample. The inset illustrates the
restricted “chop-stick-motion’’ according to the model of Wang and Pecora [68]: n indicates
the length axis of the rod-like molecule and θmax the apex angle of the cone which restricts the
fluctuation of the rodlike molecule having a tilt angle θ



11.5
Conclusions

Dielectric spectroscopy is an ideal tool to study the molecular dynamics in thin
polymer films. It has the extraordinary advantage that its sensitivity increases with
decreasing thickness and decreasing amount of sample material, respectively.

The molecular dynamics in thin polymer films is determined by an interplay
of different, in part counteracting effects:

1. Confinement effects make the dynamic glass transition faster compared to
the bulk. This is the more pronounced the smaller the confining length scale
is. As a result a strong decrease in the glass transition temperature Tg is ob-
served.

2. Surface effects cause a decrease of the relaxation rate of the dynamic glass
transition provided that an attractive interaction of the polymers with the
solid boundaries is present. This is accompanied by an increase of Tg with de-
creasing thickness of the polymer layer.

3. If the length scale of the confinement becomes comparable to the radius of
gyration of the polymer chain, additional effects on its structure, architecture
and mode spectrum have to be expected.

The above-mentioned counterbalance is exemplified for three different poly-
meric systems:

1. In isotactic poly(methyl methacrylate) (i-PMMA) two dielectric relaxation
processes are observed, the dynamic glass transition and a secondary β-re-
laxation. The former shows a confinement effect, i.e. the relaxation rate is in-
creased with decreasing film thickness, which depends weakly only on the
molecular weight. The secondary β-relaxation is for thin films of i-PMMA not
influenced by the confinement whereas this is the case for a-PMMA. From the
dielectric strength of the α-relaxation in thin films of i-PMMA a three-layer
model can be deduced which enables to determine the amount of immobi-
lized chain segments at the boundary with the electrodes. In contrast to the
confinement effect found in dielectric studies, ellipsometric measurements
on i-PMMA films on silica wafers reveal an increase of Tg with decreasing film
thickness. This is attributed to an altered interaction of polymer chains with
the substrate surface compared to the dielectric experiment.

2. In thin films of atactic polystyrene (a-PS) the dynamic glass transition shows
a pronounced confinement effect, i.e. the relaxation rate increases strongly
with decreasing thickness of the polymer film. This finding is supported by
thermal expansion spectroscopy (TES) which enables to determine directly
the glass transition temperature Tg from the dilatometric dynamics at low fre-
quencies. The observed decrease of Tg with decreasing film thickness of the
polymer film shows a dependence on the molecular weight which resembles
to that found in ellipsometric and light scattering studies on freely standing
films of a-PS. The combination of dielectric measurements and capacitive
scanning dilatometry (CSD) allows one to deduce quantitatively a three-layer
model for the heterogeneous dynamics in thin films of a-PS.
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3. In order to study the molecular dynamics in grafted layers of poly(γ-benzyl-
L-glutamate) (PBLG) a novel method to contact thin polymer films has been
employed besides the conventional evaporation of electrodes. Two relaxation
processes are observed which originate from fluctuations of the helical main
chains as a whole (chop stick motion) and from dynamic glass transition of
the side groups. The latter shows a VFT dependence which scales well with
calorimetric measurements. Its relaxation time distribution is broadened in
case of the grafted layer with respect to the bulk and its relaxation rate is
slightly shifted to longer times. In contrast, the chop stick motion shows an
increase in the relaxation rate for the grafted system which is presumably
caused by the different molecular architecture compared to that of the bulk.
Its dielectric strength can be well comprehended by a model for restricted ro-
tational diffusion as developed by Wang and Pecora.

List of Abbreviations and Symbols

a Fit parameter
A Area of a capacitor
C* = C ′ – iC ′′ Complex capacitance
C0 Capacitance of the empty sample capacitor
〈C ′〉 Time averaged sample capacitance
ΔC ′ωT Amplitude of the sample capacitance
d Film thickness
dc Critical film thickness
E Young’s elastic modulus
g(log(τ)) Relaxation time distribution
m Fragility index
n Preferred orientation of rod-like molecules
Mw Mass averaged molecular weight
Mn Number averaged molecular weight
Nj Number density of j-th atom
Rg Radius of gyration
s Exponent
t Time
T Absolute temperature
ΔT Temperature difference
〈T〉 Time averaged temperature
T0 Vogel-Fulcher temperature
Tα Temperature position of the maximum of the α-process at

constant frequency
Tβ Temperature position of the maximum of the β-process at

constant frequency
Tg Glass transition temperature
Tg

bulk Bulk glass transition temperature
TS Standard temperature
ΔTωT Amplitude of temperature modulation
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U Fit parameter in the VFT-equation
α*

n = α′n – iα ″n Complex thermal expansion coefficient normal to the film
surface

αt Thermal expansion coefficient parallel to the film surface
αbulk Bulk thermal expansion coefficient
αHN, γHN HN shape parameters
–––αj Polarizability of j-th atom
βKWW KWW exponent
δ Fit parameter
Δε Dielectric strength
ε* = ε′ – iε″ Complex dielectric function
ε′′max Maximum of the dielectric loss peak
ε0 Dielectric permittivity of the vacuum
ε∞ High frequency limit of ε′
η0, ξ0, ζ Auxiliary variables
θ Phase lag
θ, θmax (Maximal) tilt angle
μ Poisson ratio
ν Frequency
νmax Frequency corresponding to the maximal dielectric loss or

relaxation rate
ξ Fit parameter
ξCRR Size of CRR
σ Surface tension
σ0 Direct current (d.c.) conductivity
τ0 Relaxation time at high temperatures
τα Relaxation time of the α-relaxation
τα

max Maximum of g (log(τ)) corresponding to the α-relaxation
τHN Relaxation time (HN-fit)
τKWW Relaxation time (KWW-fit)
φ(t) Relaxation function
ωT = 2πvT (Angular) frequency of temperature modulation
ωE = 2πvE, ω = 2πv (Angular) frequency of the electrical field in TES or DRS

measurements

CRR Cooperatively rearranging region
CSD Capacitive scanning dilatometry
DRS Dielectric relaxation spectroscopy
DSC Differential scanning calorimetry
HN Havriliak Negami
KWW Kohlrausch Williams Watts
PALS Positron annihilation life time spectroscopy
PBLG Poly(γ-benzyl-L-glutamate)
a-, i-, s- PMMA a-, iso- and syndiotactic poly(methyl methacrylate)
a-PS Atactic polystyrene
PVAc Poly(vinyl acetate)
TES Thermal expansion spectroscopy
VFT Vogel-Fulcher-Tammann
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12 The Dielectric Properties of Semiconducting 
Disordered Materials

F. Kremer · S.A. Różański

12.1
Introduction

In Maxwell’s equations the current density J and the time derivative of the elec-

tric displacement are additive quantities.Hence for sinusoidal electric fields

the complex conductivity σ * and the complex dielectric function ε * are related
by σ * = iωε0ε * (ε0 being the permittivity of the free space). Both quantities σ *

and ε* are key features of (semi)-conducting (disordered) materials. Measured
over a wide enough frequency – and temperature – range it enables one to analyse
the underlying mechanisms of charge transport. Thereby it reflects a continuous
process. At high frequencies (≥ 1010 Hz) the charge carriers are driven by the ex-
ternal electric field over distances corresponding to atomic length scales, while in
the direct current (d.c.) limit of ω → 0 they propagate on some percolation path
from one side of the sample to the other. Thus with decreasing frequency a length
scale is involved going from microscopic to macroscopic dimensions.

In disordered systems the charge transport takes place due to hopping con-
duction of which many different versions are known. To name a few: variable
range hopping, phonon-assisted hopping, trigger induced hopping, nearest
neighbour hopping etc. [1–17]. The motion of a charge in disordered systems is
accompanied by an electrical relaxation. An ionic or electronic (in case of a po-
laron) charge is surrounded by negative or positive counter charges. A hop to a
new site can lead to a successful charge transport only if the polarisation cloud
follows, otherwise the charge carrier will – with high probability – jump back.
This mutual electric relaxation requires a relaxation time τσ . If the external elec-
tric field has a frequency which is much higher than 1/τσ its effect on the charge
transport averages out. In contrast for ω � 1/τσ it supports the charge transport
and causes a contribution to the electrical relaxation which increases with de-
creasing frequency. This is the essence of the Debye-Hückel-Falkenhagen theory
[18–20] of the dispersion of the dielectric function of electrolyte systems.

It is remarkable that the complex conductivity σ * is similar in its frequency –
and temperature (resp. charge carrier concentration) – dependence for a variety
of quite different materials, e.g. ionic glasses [21–31] (Fig. 12.1a), ion conducting
polymers [7, 32–46] (Fig. 12.1b), electron-conducting conjugated polymers
[47–52] (Fig. 12.1c) or electron conducting carbon black composites [53–56]
(Fig. 12.1d). In all cases the real part of the conductivity σ′ has a plateau on the

∂
∂
D
t
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Fig. 12.1. A.c. conductivity of typical ion or electron conducting disordered materials. Each
figure shows in log-log representation the frequency dependence of the real part of the com-
plex conductivity σ*(ω, T) = iωε0ε*(ω, T) at different temperatures or concentrations as indi-
cated. a Mixed alkali glass 50LiF-30KF-20Al(PO3)3 glass [76]. b Zwitterionic polymer P3 at
200 mol% NaI (see Sect. 12.3). c Poly(methyl-thiophene) [77]. d Composite of highly struc-
tured carbon black (CB) within an amorphous polymer, poly(ethylene terephthalate). The
numbers indicate the various concentrations of CB in volume content [55]

low frequency side which bends off at a certain critical frequency ωc and results
for ω � ωc in a power law dependence of the type σ′ ~ ω s (s ≤ 1). ωc is deter-
mined by calculating the maximum in the second derivative of σ′ with respect
to ω 1. In good approximation a “master function” can be constructed for the
normalised conductivityσ′(ω)/σ′(0) with respect to ω/ωc (Fig. 12.2a–d).

1 To determine ωc by calculating the second derivative of σ′(ω) with respect to ω requires av-
eraging of the data.



The plateau value and the critical frequency ωc decrease with decreasing tem-
perature (resp. charge carrier concentration). This finding (Fig. 12.3) is know as
the experimentally observed Barton-Nakajima-Namikawa (BNN)-relationship
[57–59]

(12.1)

It indicates that the d.c. – and a.c. – conductivity are closely related to each other
and based on the same mechanism of charge transport. Hence any separation
into d.c.- and a.c.-like charge carriers is artificial and without physical meaning.

σ ω( ) ~0 c
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Fig. 12.2. A.c. conductivity master plots for the data shown in Fig. 12.1: a 50LiF-30KF-
20Al(PO3)3 glass in the temperature range 407–401 K [76]; b Zwitterionic polymer P3 at
100 mol% NaI (see Sect. 12.3)



12.1 Introduction 479

Fig. 12.2 (continued). c poly(methyl-thiophene) [77]; d composite of highly structured 
carbon black (CB) within amorphous poly(ethylene terephthalate) [55]

This chapter is organised in the following sections. In Sect. 12.2 the similari-
ties of the frequency and temperature (resp. charge carrier concentration)-de-
pendence of the complex conductivity will be discussed in detail. In Sect. 12.3 –
as an example for an ion conducting polymers – relaxation and charge transport
in mixtures of zwitterionic polymers and inorganic salts will be discussed. In
Sect. 12.4 conclusions will be drawn and it will be discussed from which physi-
cal quantities which information can be deduced best concerning the charge
transport in semiconducting disordered systems.



12.2
Similarities 2 in the a.c. Conductivity of Semiconducting Disordered 
Materials

The observed frequency – and temperature (charge carrier concentration) – de-
pendence of the real part of the conductivity σ′ is characterised by the follow-
ing features [16, 60]:

1. For elevated temperatures (resp. charge carrier concentration3) σ′ has a
plateau for frequencies ω smaller than a certain critical frequency ωc.

2. For frequencies ω > ωc a gradual dispersion sets in resulting in a power law
dependence

(12.2)

with 0.5 ≤ s ≤ 1.
3. s increases with decreasing temperature and increasing frequency.
4. For frequencies ω < ωc the temperature dependence of σ′ is much more pro-

nounced than for ω > ωc.
5. In good approximation it is possible to assume time-temperature superposi-

tion and to scale the normalised conductivity σ′(ω)/σ′(0) with respect to the
normalised frequency ω/ωc.

  σ ω ω( ) ~ s
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Fig. 12.3. BNN-plot for the
data shown in Fig. 12.1a–d
and Polymer P3 at 0 and
100 mol% NaI

2 Sometimes instead of similarities the term “universalities” is used. In view of the fact that
the observed scaling of the conductivity is a good approximation only and by no means
strict we prefer the term “similarities”.

3 The number density of the charge carriers is in disordered systems a thermally activated
usually Arrhenius-like process. In this sense temperature and charge carrier concentration
are equivalent. In the following the later will be omitted.



6. The frequency ωc satisfies the Barton-Nakajima-Namikawa (BNN)-relation
[57–59]

(12.3)

On the basis of what models can these features be described? The fluctuation-
dissipation theorem expresses the frequency-dependent conductivity σ *(ω) in
terms of the equilibrium (i.e. zero-field) current autocorrelation function [61]

(12.4)

where q is the charge of a single charge carrier, v(t) its velocity projected onto a
fixed direction in space and N the number density. For the frequency dependent
diffusion constant D*(ω) with

(12.5)

from Eq. (12.4) follows

(12.6)

which reduces to the well-known “Nernst-Einstein” equation for ω → 0

(12.7)

For the mean-squared displacement 〈[r(t) – r(0)]2〉 of the charge carriers it follows

(12.8)

Possible correlations between successive hops of mobile charge carriers or
cross-correlations between adjacent charges are not taken into account here.
They can be introduced on the right hand side of Eq. (12.6) by the Haven ratio
fH. Thus in order to describe the dispersion of the complex conductivity resp. the
diffusion constant D* the time dependence of the mean squared displacement of
the charge carriers has to be modelled. In the low-frequency regime this is re-
alised by macroscopic approaches. For frequencies above ωc microscopic mod-
els are required4.

The simplest macroscopic model for electrical conduction is based on perco-
lation [62–64]. The “percolation threshold” pc, where an infinite “percolation
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4 The reader is referred to the review article by Dyre JC and Schrøder TB (2000) Rev Mod
Physics 72:873.



cluster” appears has in two dimensions a value of pc = 0.5 and in three dimen-
sions of pc = 0.2488 [63]. The temperature dependence of the d.c.-conductivity
σ(0) = exp(–Ec/kBT) is Arrhenius-like with an activation energy Ec.As shown by
[65–68] pc and Ec are related according to

(12.9)

where p(E) is the activation energy probability distribution. Ec determines the
bottlenecks in the charge transport and hence – in case of hopping conduction
– it describes the largest barrier [16].

Another macroscopic ansatz treats the sample with its local inhomogeneities
in conductivity as an “effective medium” [69, 70]. By that the sample is consid-
ered as a mixture of components having different dielectric properties. The av-
eraged effective conductivity is calculated in a self consistent manner [71].

It is also possible to model the sample by equivalent electrical circuits of ran-
dom resistors and capacitors [72, 73].All capacitors are equal, proportional to ε′
while each resistor is proportional to 1/σ′ at a certain position in the network.
When a potential difference is applied to two opposing boundaries the electro-
static potentials at the nodes are obtained by solving Kirchoff ’s equations. The
resistor currents are related to the motion of free charges while the capacitor
currents correspond to Maxwell’s displacement [73].Applying a periodic poten-
tial enables one to determine the conductivity σ *(ω).

The effective medium approximation and the percolation approach are op-
posite approaches. The former views conduction as spatially homogeneous, the
later treats it as strictly one-dimensional. In order to take into consideration the
fractal structure of the diffusion cluster Dyre and Schrøder proposed a “diffu-
sion cluster approximation” [16].

As a microscopic approach hopping conduction has to be considered. A vari-
ety of different models exist. The simplest is the random free-energy barrier
model as developed by Dyre. This model assumes that conduction takes place by
hopping of charge carriers which are subject to spatially randomly varying en-
ergy barriers. It is solved within the Continuous-Time-Random Walk (CTRW)
approximation [74] with the result [9]

(12.10)

where τe is the attempt frequency to overcome the largest barrier determining
the d.c.-conductivity. Splitting Eq. (12.10) into real and imaginary parts delivers

(12.11)
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For the exponent s one obtains [9]

(12.12)

Furthermore it is shown that the BNN relationship is fulfilled by the model.
In a recent review Dyre and Schrøder compared the above-mentioned macro-

scopic and microscopic models of the conduction with the result that all repro-
duce the above discussed characteristic features [16]. The frequency and tem-
perature dependence of the conductivity proves to be determined by the weak-
est link (“the bottleneck”) in the conductive path – irrespective of the nature of
the charge carriers.

12.3
Relaxation and Charge Transport in Mixtures of Zwitterionic Polymers
and Inorganic Salts

In zwitterionic polymers [45] each macromolecule bears the same number of
cationic and anionic groups, hence the individual chains are uncharged in spite
of the high concentration of ionic groups present. The high density in dipolar
units results in a number of specific features of polyzwitterions: (i) very high
glass transition temperatures, (ii) strong polarity and (iii) hygroscopy.
Furthermore these polymers are strongly interacting with low-molecular weight
cations and anions, both in solution and in the bulk. In selected cases these in-
teractions enable the preparation of homogeneous mixtures of polyzwitterions
with inorganic salts containing up to stoichiometric amounts of the salt.This be-
haviour was recently demonstrated for a number of zwitterionic poly(sulfobe-
taines) blended with LiClO4, NaBr or NaI. Phase segregation is only observed in
mixtures containing more than 125 mol% of salt. The chemical structure of the
zwitterionic polymethacrylate poly{3-[N-(ω-methacryloyloxyalkyl)-N,N-di-
methylammonio] propanesulfonate} where m = 2(P1), m = 6(P2), and m =
11(P3) is shown in Fig. 12.4.

In polymers P2 and P3, the ionic groups are separated from the polymer back-
bone by long alkyl spacers (m = 6 and 11). In contrast, in polymer P1 the ionic
groups are attached closely to the backbone (m = 2). The dielectric properties of
the ion-conducting system are characterised by a superposition of a dielectric re-
laxation process and a strong conductivity contribution. For elevated tempera-
tures furthermore an electrode polarisation effect gives rise to a strong increase of

  s e= −1 2 / ln ( )ωτ
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Fig. 12.4. Scheme of chemical structure of the zwitterionic polymethacrylate poly{3-[N-(ω-
oxyalkyl)-N,N-dimethylammonio]propanesulfonate}



ε′(ω) and σ′′(ω) at low frequencies. The different contributions can be (to a cer-
tain extent) separated by choosing an appropriate temperature range. At temper-
atures <243 K one relaxation process occurs. It can be quantitatively analysed us-
ing a generalised relaxation function according to Havriliak-Negami and by a su-
perposition of a conductivity contribution as suggested by Dyre (Eq. 12.10)

(12.13)

Δε = εs – ε∞ is the dielectric strength where εs is the value of ε′ in the limit of
ω � 1/τ where τ is the relaxation time of the underlying process. The term ε∞ de-
scribes the value of the real part ε′ in the limit of high frequencies. The constant
α and γ describe symmetric and asymmetric broadening of the relaxation time
distribution.

Figure 12.5a,b shows the two contributions as separated according to Eq.
(12.13).The fit parameters (Table 12.1) α and γ are nearly independent of the salt
concentration. The relaxation process depends sensitively on the length of the
spacer between the betaine groups and the polymer backbone. The process is
shifted to higher temperatures with decreasing length of the alkyl spacer.

In contrast the amount of the NaI has a negligible influence on the relaxation
process only (Fig. 12.6). The observed Arrhenius-type temperature dependence
has an activation energy of EA = 47 kJ mol–1. With this value but also in its ab-
solute frequency and temperature dependence it is comparable to the γ-relax-
ation in ionene glasses as observed by mechanical [32–34] and dielectric spec-
troscopy [37]. The γ-relaxation is assigned to fluctuations of the methylene
groups which are transmitted to some extent to the polar ammonium moiety,
which makes this relaxation dielectrically active. The strong dependence on the
length of the spacer fits well to this interpretation.

The conductivity contribution can be best analysed in terms of σ *(ω)5. The
data can be well described by the conductivity as suggested by Dyre (Eq. 12.10).
On the low-frequency side deviations occur which are caused by electrode po-
larisation effects (Tables 12.2 and 12.3). The latter has its physical origin in the
formation of a layer of counterions at the external electrodes. By that electric
field energy is stored in the sample giving rise to a strong increase in ε′(ω) and
a weak decline in ε′′(ω). The electrode polarisation effect can be described by
the empirical formula

(12.14)

where A and z are strongly temperature dependent fit parameters (see Chap. 3).
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5 This sounds trivial, but there is an ongoing debate in what terms conductivity spectra
should be analysed in ε*, σ * or M* = 1/ε*? (see for instance a panel discussion at the 4th
International Meeting on Relaxation in Disordered Systems, Heraklion, June 2001 or Roling
B, Happe A, Funke K, Ingram MD (1997) Phys Rev Lett 78:2160, Sidebottom DL, Roling B,
Funke K (2000) Phys Rev B 63:024,301, Sidebottom DL (1999) Phys Rev Lett 82:3653).



In Fig. 12.7 it is shown how well Eq. (12.10) describes the complex conductiv-
ity of the system.At elevated temperatures (≥ 382 K) electrode polarisation must
be considered. The data of Fig. 12.7 are presented in terms of ε *(ω) in Fig. 12.8.
An electrode polarisation effect shows up as a steep increase in ε′(ω) with de-
creasing frequency for temperatures ≥ 382 K. The fits work equally well as in the
σ *(ω) representation.

Displaying the data in the complex modulus delivers nearly perfect

fits in M ′ while in M ′′ certain deviations occur (Fig. 12.9). The relaxation rates
ωM, ωc and 1/τe show very similar absolute values and a nearly identical temper-

M*
*

= 1
ε
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Fig. 12.5. Separation of the
conductivity contribution
and the relaxation process
according to (Eq. 12.13):
a sample P3. The relaxation
process and the conductiv-
ity contribution add up to
ε′′total; b influence of the
spacer length m on the
spectral position of the re-
laxation process. Otherwise
as a for 224 K
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Table 12.1. Fit parameters for the γ-relaxation according to the Harviliak-Nagami equation
(Eq. 12.13). For ε∞ values of 3.7 ± 0.3 (100 mol%) and 9.5 ± 0.3 (200 mol%) are obtained

Concentra- Temperature Δε α γ τ [s]
tion [mol%] [K]

0 214 1.904 0.420 0.524 9.2 × 10–5

224 1.692 0.475 0.524 1.8 × 10–5

233 1.762 0.465 0.524 6.7 × 10–6

243 1.684 0.506 0.524 2.6 × 10–6

253 1.684 0.530 0.524 1.1 × 10–6

262 1.783 0.502 0.524 5.7 × 10–7

100 202 0.599 0.475 0.444 8.4 × 10–5

212 0.617 0.488 0.444 3.0 × 10–5

221 0.644 0.489 0.444 1.2 × 10–5

231 0.610 0.539 0.444 4.8 × 10–6

241 0.562 0.604 0.444 1.8 × 10–6

250 0.529 0.656 0.444 8.5 × 10–7

260 0.549 0.643 0.444 5.6 × 10–7

200 193 1.245 0.454 0.529 7.0 × 10–5

203 1.299 0.458 0.529 2.5 × 10–5

212 1.266 0.491 0.529 8.8 × 10–6

222 1.239 0.521 0.529 3.5 × 10–6

232 1.196 0.555 0.529 1.5 × 10–6

241 1.215 0.558 0.529 7.7 × 10–7

251 1.270 0.542 0.529 4.3 × 10–7

261 1.318 0.529 0.529 2.4 × 10–7

Table 12.2. Fit parameters σ0 and τe as deduced from fits according to the Dyre conductivity
(Eq. 12.10)

Tempera- σ0 [Scm–1] τe [s] σ0 [Scm–1] τe [s] σ0 [Scm–1] τe [s]
ture [K] 0 mol% 100 mol% 200 mol%

396 1.8 × 10–9 7.5 × 10–4 1.9 × 10–8 3.6 × 10–6 1.5 × 10–6 1.7 × 10–6

391 7.9 × 1010 1.6 × 10–3 5.6 × 10–8 1 × 10–5 5.0 × 10–7 3.6 × 10–6

382 1.5 × 10–10 7.6 × 10–3 1.3 × 10–8 4 × 10–5 1.1 × 10–7 1 × 10–5

373 1.0 × 10–11 1.4 × 10–1 2.5 × 10–9 1.8 × 10–4 2.2 × 10–8 5 × 10–5

364 2.9 × 10–12 4.2 × 10–1 3.5 × 10–10 1.3 × 10–3 4.5 × 10–9 2.3 × 10–4

355 2.7 × 10–13 5 2.5 × 10–11 2.3 × 10–2 1.0 × 10–9 9.8 × 10–4

346 1.4 × 10–13 10 2.8 × 10–13 4 2.4 × 10–10 4.4 × 10–3

Table 12.3. Fit parameters A and z describing the electrode polarisation according to
Eq. (12.14)

Temperature A [(Hz)z] z [/] A [(Hz)z] z [/]
[K] 100 mol% 200 mol%

396 24 × 105 1.32 32 × 106 1.33
391 7 × 104 1.03 47 × 105 1.27
382 6 × 102 0.55 18 × 104 1.05



12.3 Relaxation and Charge Transport in Mixtures of Zwitterionic Polymers 487

Fig. 12.6. Activation plot –
logτ vs 1000/T for different
ion concentrations

Fig. 12.7. Real and imagi-
nary part of the conductiv-
ity σ * vs frequency at tem-
peratures as indicated.
Sample P3 at 200 mol% NaI.
The solid line is a fit accord-
ing to Eqs. (12.10), (12.13)
and (12.14). The conduc-
tivity (—) and electrode po-
larisation effects (---) add
up, while the relaxation
process is negligible on this
scale. The inset shows the
quality of the fit. The fit 
parameters are contained 
in Tables 12.2 and 12.3
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ature dependence (Fig. 12.10). The macroscopic electrical modulus relaxation
time 2π/ωM is related to the microscopic electrical relaxation time by a factor 

proportional to .This was proven experimentally and theoretically by [75].

Master plots with respect to temperature and ion concentration (Fig. 12.11)
can be constructed for both dependencies,but systematic deviations occur at the
high frequency side (especially in the temperature dependence). This proves
that the assumed time-temperature superposition is a good approximation of
the data but by no means a fundamental law.

The temperature dependence of the fit parameters σ0 and τe as obtained from
fits using Eq. (12.10) is Arrhenius like with activation energies between
44 kcal mol–1 and 62 kcal mol–1 (Table 12.4). Displaying σ(ω = 0) vs τ –1

e proves
how well the BNN relationship is fulfilled by the data irrespective of the ion con-
centration (Fig. 12.12). The temperature dependence of the exponent parameter
s shows (Fig. 12.13) that also this quantity is well described by the formula de-
veloped by Dyre.

ε
ω∞
2π

M

Fig. 12.8. Real and imagi-
nary part of the complex di-
electric function ε* vs fre-
quency for the data shown
in Fig. 12.7
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Fig. 12.9. Real and imagi-
nary part of the dielectric
modulus M* vs frequency
for the data shown in
Fig. 12.7

Fig. 12.10. Activation plot
for different electrical relax-
ation rates ωc (as obtained
from σ *) ωM (as obtained
from the maximum in
M ′′(ω) and 1/τe as taken
from the fit using
Eq. (12.10)
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Fig. 12.11. Masterplots of
the normalised conductivity
σ ′/σ0 vs ωτe. σ0 and τe are
obtained from a fit using
Eq. (12.10). The solid lines
indicate the scaling of the
conductivity predicted by
Dyre: a for different temper-
atures as indicated, sample:
P3; b for different ion con-
centrations at a fixed tem-
perature of T = 396 K
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Fig. 12.12. BNN-plot: logσ0
vs log (1/τe) for the ion con-
centrations as indicated. σ0
and τe were obtained from
fits using Eq. (12.10)

Fig. 12.13. Exponent param-
eter s vs T at different ion
concentrations as indicated.
The corresponding open
symbols describe the pre-
dictions according the
Eq. (12.12)

Table 12.4. Activation energies EA of the d.c. conductivity σ0 and τe for different salt concen-
trations

Concentration [mol%] EA for σ0 [kcal mol–1] EA for 1/τe [kcal mol–1]

0 55 56
100 61 62
200 48 44



In summary one has to state that in the system under study (zwitterionic
polymers with inorganic salts) the dielectric data can be well described by a su-
perposition of a generalised relaxation function a conductivity contribution as
developed by Dyre and a term describing electrode polarisation.

12.4
Conclusions

The dielectric properties of semiconducting disordered materials have charac-
teristic features in the real and imaginary part of the conductivity σ *, the di-
electric function ε * or the electrical modulus M*. All these representations are
completely equivalent but they emphasize of course different aspects of the un-
derlying mechanisms of charge transport. Based on hopping conduction with
increasing frequency the entire range from macroscopic to microscopic length
scales is covered. As an example fits of the complex quantities are presented for
zwitterionic polymers using a conductivity formula as derived by Dyre in the
framework of a random free energy barrier model.

Electrode polarization effects occur for ionic charge carriers and result in a
huge effective increase of ε′ or σ′′ with decreasing frequency. Furthermore pos-
sible contributions due to underlying relaxation processes or infrared absorp-
tion bands have to be taken into consideration.
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List of Abbreviations and Symbols

A, z Fit parameters
D Dielectric displacement
D*(ω) Frequency dependent diffusion constant 
EA Activation energy
kB Boltzmann constant 
M* = M ′ + iM ′′ Complex electric modulus, real and imaginary part
N Number density
q Charge of a single charge carrier
s Exponent characterising the frequency dependence of the a.c.

conductivity
v(t) Velocity projected onto a fixed direction in space
t Time
T Temperature measured in Kelvin [K]
α, γ Shape parameters of Havriliak-Negami function
Δε = εs – ε∞ Dielectric strength
ε * = ε′– iε′′ Complex dielectric function or permittivity, real and imagi-

nary part
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εs, ε∞ Static permittivity εs = lim ε′(ω) if ω � 1/τ ; high frequency
permittivity ε∞ = lim ε′(ω) if ω � 1/τ

ε0 Permittivity of the free space
σ0 Direct current (d.c.)-conductivity
σ * = σ′ + iσ′′ Complex conductivity, real and imaginary part
τ Relaxation time
τe Attempt time to overcome the largest barrier determining the

d.c.-conductivity
τσ Conductivity relaxation time
ω Radial frequency
ωc Critical radial frequency

BNN Barton-Nakajima-Namikawa
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13 Dielectric Properties of Inhomogeneous Media

P.A.M. Steeman · J. van Turnhout

13.1
Introduction

Inhomogeneous media present an interesting class of materials for dielectric re-
search. Differences in conductivity of the phases of an inhomogeneous medium
give rise to interfacial polarization, the build-up of space charges near the inter-
faces between the various phases. Such a polarization usually occurs at frequen-
cies lower than the time scales typical of dipolar polarizations. Moreover, the
contribution of interfacial polarization to the dielectric properties of a material
is often much larger than the dipolar contributions.

Numerous authors have studied the dielectric behaviour of heteroge-
neous materials. Several excellent reviews on the subject can be found in the lit-
erature [1–9]. It was soon recognized that the observed polarization and loss ef-
fects in inhomogeneous media could not be derived from dipolar polarization
phenomena, especially since often strong effects are observed. Extremely large
contributions to the real part of the dielectric function or permittivity along
with anomalous dispersions are detected in biological materials [6], porous
media [10, 11], emulsions and related colloidal systems [12]. It was understood
that the strong polarization effects are of macroscopic nature and caused by
charge build-up at the boundaries between the various components in the ma-
terial.

Theories about the dielectric properties of inhomogeneous media have been
developed to a high level; much work was done already in the first half of the
twentieth century. Van Beek [1] presented an early detailed review of the classi-
cal theories and validated them against examples of experimental data.With the
advent of fully automated broadband dielectric spectrometers, which in most
cases are also capable of performing dynamic dielectric measurements at low to
very low (mHz range) frequencies, a detailed study of interfacial polarization
mechanisms has become possible.



13.2
Theory

13.2.1
Two-Phase Heterogeneous Materials

The simplest case of an inhomogeneous medium in which interfacial polariza-
tion shows up is a layered structure of two materials (Fig. 13.1) with frequency-
independent dielectric constants ε1 and ε2, in which only one medium is electri-
cally conductive with a conductivity σ.

The dielectric function ε *(ω) of such a laminate becomes complex and fre-
quency dependent and is given by the well-known Debye relaxation equation,
which is also the basic equation for dipolar relaxation processes:

(13.1)

in which

(13.2)

is the high frequency limit of the real part of ε *(ω) (see footnote 4)

(13.3)

is the low frequency limit or static dielectric constant 

and

(13.4)

is the relaxation time of the interfacial polarization.
The relaxation time of the process is inversely proportional to the conductiv-

ity of the conducting layer, while the low frequency dielectric constant is a func-
tion of the volume fraction and the dielectric constant of the insulating layer.
Because of the latter dependence very strong interfacial polarization mecha-
nisms may arise if the fraction of the non-conductive component is small. This
example illustrates how a frequency-dependent polarization may emerge in an
inhomogeneous medium, even if the components of that medium do not show
any dipolar polarization mechanism. The more complicated case in which both
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Fig. 13.1. Layered heterogeneous dielectric consisting of an insulating and a conducting layer
with different dielectric constants



media are electrically conductive has been described in detail in many text-
books [1, 13] and results in similar equations, with the major difference that the
composite medium also becomes electrically conducting. This d.c.-conductivity
contributes with σ/ε0ω to the measured total loss ε′′ and may thus obscure the
energy loss caused by the interfacial polarization, as will often be the case in
practice. However, in the dielectric constant ε′ the contribution of the interfacial
polarization will remain visible. Using the Kramers-Kronig transform [14] the
conductivity and frequency-dependent polarization effects can be separated.
The polarization losses ε′′p calculated from ε′ are also called ε′′KK-losses [58] 1.

Maxwell [15] was the first to derive a mean-field theory for materials con-
taining dispersed dielectric spheres in a dielectric medium, whereby a volume
fraction ϕf of filler particles with a frequency-independent dielectric constant εf
is dispersed in a (matrix) medium with a dielectric constant εm c.f. Fig. 13.2. His
approach was later generalized by Wagner [16], who included the effects of con-
ducting phases.Finally,Sillars [17] extended the theory to filler particles of a more
general, ellipsoidal shape. The resulting theory is known as the Maxwell-Wagner-
Sillars (MWS) theory. Similar to layered structures, it predicts a polarization
process due to differences in conductivity and permittivity of the constituents.
Therefore, interfacial polarization is commonly called MWS-polarization.

More general, if filler particles with a complex, frequency-dependent permit-
tivity εf

*(ω) and volume fraction ϕf are dispersed in a matrix material with a
complex permittivity ε*

m(ω), then according to the MWS-theory the complex di-
electric function εc

*(ω) of the heterogeneous mixture (Fig. 13.2) can be calcu-
lated from

(13.5)

in which n, with 0 ≤ n ≤ 1, is the shape factor of the dispersed particles in the di-
rection of the electrical field lines. For ellipsoidal particles with axes a,b,c the
shape factor na in the direction of the a-axis is given by

(13.6)

with:

(13.7)

For spherical particles na = nb = nc = 1/3. For prolate spheroids (rod-like) 0 ≤ n
≤ 1/3, with the limiting case of a needle na = 0 and nb = nc = 1/2. For oblate
spheroids (disc-like) 1/3 ≤ n ≤ 1, with the limiting case of a plate-like particle 
na = 1 and nb = nc = 0. For more details see, e.g. [1].
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1 Another option to eliminate the conduction losses is the use of dε′/d ln ω. This quantity too
is a measure of ε′′p .



If the filler particles simply have a real, frequency-independent, dielectric
constant εf and conductivity σf and the matrix also has a real, frequency-inde-
pendent,dielectric constant εm and conductivity σm, then the MWS-response too
reduces to a Debye-type of relaxation process. The following equation applies
for ε′c(ω) of the composite:

(13.8)

with

(13.9)

(13.10)

(13.11)

where ε∞ is the high frequency limit of the dielectric constant,Δε = εs – ε∞ the re-
laxation strength of the interfacial polarization and τ its retardation time. ε0 is
the permittivity of vacuum, which is equal to 8.854 pF/m. Once again, the retar-
dation time of the interfacial polarization is inversely proportional to the con-
ductivity of the phases. At higher conductivities the loss maximum will shift to
higher frequencies. For instance interfacial losses due to occluded (electrically
conductive) water droplets in an insulating matrix are usually detected in the
MHz region [1].

The Maxwell approach is applicable to low filler volume fractions (below
20%)2.Bruggeman [18] introduced an asymmetrical integration technique in or-
der to derive a relation that can be used up to high filler volume fractions. He 
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Fig. 13.2. Heterogeneous
material of the matrix-in-
clusion type, wherein filler
and matrix both have com-
plex permittivities. This
configuration is used in the
MWS-theory, in which the
filler particles may have 
an ellipsoidal instead of a
spherical shape

2 Note that the role of the components in a mixture might be interchanged. After this ex-
change, Eq. (13.5) holds from 100 down to say 80 vol.% of filler.



assumed that the Maxwell equation could be used to calculate the infinitesimal
increment of the mixture’s dielectric constant after adding an infinitesimal
amount of filler particles to the material at a random position. These increments
of the filler volume fraction are integrated to obtain a relation for the dielectric
constant of the heterogeneous material. Hanai [19] extended Bruggeman’s dif-
ferential approach to dynamic fields and conducting components. Later the ap-
proach was further extended to ellipsoidally shaped filler particles [2]. The fol-
lowing relation was obtained for the complex dielectric function of a two-com-
ponent matrix-inclusion type of heterogeneous mixture:

(13.12)

in which ε i
*(ω) with i = m, f, c stands for the complex dielectric function at an an-

gular frequency ω of the matrix, the filler and the composite respectively, ϕf
is the volume fraction of the filler particles and n the shape factor of the filler
particle as discussed before (Eq. 13.6). A further extension of this equation to
randomly oriented ellipsoidal filler particles was given by Boned and Peyrelasse
[2, 20].

Like before, in the simple case of a filler with a frequency-independent di-
electric constant εf and conductivity σf, and a matrix material with dielectric
constant εm and conductivity σm, again a relaxation process is found in the com-
plex dielectric function εc

*(ω) of this matrix-inclusion kind of heterogeneous
material. However, the relaxation process is no longer of the Debye type but
somewhat broadened [4]. The following relations can be derived for the low and
high frequency limits of the dielectric constant, εs and ε∞:

(13.13)

and

(13.14)

in which the conductivity σs follows from

(13.15)

where σs is the static or d.c.-electrical conductivity of the heterogeneous mate-
rial and n = 1/3 for spherical filler particles. No explicit analytical description of
the interfacial polarization process as a function of the angular frequency can be
given, as it was possible for the MWS theory [4].
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The MWS and Bruggeman/Hanai theory are applicable to matrix-inclusion
type heterogeneous materials. These theories belong to the group of asymmet-
rical mixture equations.

A whole family of solutions based on another pioneering development of
Bruggeman the effective medium approach [7, 21] is known from the literature.
Two calculation schemes are applied, depending on the microstructure or mor-
phology of the mixture. In the first scheme, being a symmetrical method, which
is applicable to mixtures in which no clear assignment of a matrix component
and a filler component can be made, both components (1 and 2) of the mix-
ture are embedded in an effective medium with properties of the mixture.
Figure 13.3 illustrates this symmetrical approach.

It is assumed that the average dipolar field due to the inclusions vanishes.
With this assumption the Bruggeman/Böttcher [22] equation for the complex
dielectric function εc

*(ω) of the mixture is obtained

(3.16)

in which n is the shape factor of the (ellipsoidal) inclusions in the direction of
the field lines. Later this approach was extended to randomly oriented ellip-
soids [2].

If one component (e.g. component 1) is electrically conducting and the other
component is not, this model predicts a percolation threshold for conduction
near ϕ1 ≈ n1. By contrast, the MWS-theory predicts no electrical conduction of
the composite material at any filler volume fraction, for conductive filler parti-
cles in an insulating matrix. The filler particles are always completely enclosed
by non-conductive matrix material. Hanai’s theory forms an intermediate be-
tween these two theories and predicts electrical conduction of the heteroge-
neous material albeit at higher filler volume fractions [2].

Looyenga [23] introduced a symmetrical integration technique, similar to the
asymmetrical integration technique developed by Bruggeman. Starting from
Böttcher’s equation and generalizing it to ellipsoidal shapes, the following asym-
metrical mixture formula for oriented ellipsoids can be derived:
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Fig. 13.3. Bruggeman’s sym-
metrical effective-medium
approach for a mixture of
two components with com-
plex permittivities



If one component is electrically conductive, the Looyenga model predicts for 
n < 0.5 a non-zero electrical conductivity of the heterogeneous material, even at
the smallest volume fractions of the conductive component. However, for n > 0.5
no electrical conductivity is predicted at any volume fraction of the conducting
component.

For spherical inclusions and for randomly oriented ellipsoids, independent of
their shape, the following equation was found:

(13.18)

Both Looyenga [23] and Landau and Lifshitz [24] derived this equation inde-
pendently. In fact, a whole set of solutions with different powers is known from
the literature, of which the Davies equation [25] with exponent 1/5 is often used
for mechanical calculations on composites.

The second effective-medium scheme, the asymmetrical approach, is applic-
able to mixtures in which one component can be assigned as the matrix and the
second component as being the filler, a two-phase element consisting of a filler
particle surrounded by a layer of matrix material is embedded in an effective
medium with properties of the mixture. Figure 13.4 illustrates this asymmetri-
cal approach.

Again, it is assumed that the average dipolar field due to the inclusion van-
ishes. For spherical particles this approach leads to results identical to the
Maxwell-Wagner solution [26]. For ellipsoidal filler particles, however, a modi-
fication of Sillars’s relation is found [27], which also takes the shape factor of the
matrix material into account. Just as the MWS and Hanai solutions, these asym-
metrical solutions are applicable to matrix inclusion type mixtures only.

13.2.2
Heterogeneous Materials Containing More than Two Phases

The effective medium approach can easily be extended to mixtures of more than
two components. Assume a symmetrical mixture containing i components with
volume fraction ϕi, complex dielectric function εi

*(ω) and shape factor ni, re-
spectively. In the symmetrical approach inclusions of all i components are em-
bedded in an effective medium having the dielectric function of the mixture
εc

*(ω). The imposed condition that the average dipolar field vanishes results in
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Fig. 13.4. Asymmetrical ef-
fective-medium approach in
which the filler particles are
surrounded by matrix mate-
rial. Both filler and matrix
have a complex permittivity.
The radii of the spheres are
determined by the volume
fractions



the following equation, from which the complex dielectric function of the mix-
ture can be calculated:

(13.19)

In the case of a multi-component asymmetrical mixture of the matrix-inclusion
type, two-phase inclusions consisting of the different filler types surrounded by a
layer of matrix material are embedded in the effective medium.Again the induced
dipolar field of all inclusions, averaged with weight factors according to the vol-
ume fractions of the phases, is assumed to vanish.The effective complex dielectric
function of the two-phase elements, which should be inserted in Eq. (13.19) as
ε i
*(ω), can be calculated using the equation derived by Bilboul [27]:

(13.20)

in which ϕfi is the volume fraction, εfi
*(ω) the complex dielectric constant and nfi

the shape factor of filler type i and nmi the shape factor of the matrix surround-
ing the filler i. A detailed description of this two-step procedure can be obtained
from Lamb et al. [28].

The same approach can be used for randomly oriented ellipsoidal filler par-
ticles. In that case it can be shown that the averaged squared cosines of the an-
gles between the main axes of the ellipsoid and the electrical field are equal to
1/3 (〈cos2αi〉 = 1/3, with i = x,y,z), i.e. all directions are equally important [2].
Randomly oriented filler particles can therefore be treated as three different
filler types, one for each main direction. The mixture dielectric properties can
be calculated using the same procedure as discussed above for multi-component
heterogeneous materials.

13.2.3
Heterogeneous Materials with an Interfacial Layer

Heterogeneous materials of the matrix-inclusion type, wherein between the
filler particles and the matrix material an interfacial layer is present, present a
special case.Analogous to a method used by Fröhlich and Sack [29], van der Poel
[30] and Maurer [31] for the analysis of the viscosity and the shear modulus of
particulate composites with and without interlayer, the asymmetric effective
medium approach can also be used for this case.Figure 13.5 shows schematically
the asymmetric effective-medium model used.

The solution for a heterogeneous material with an interfacial layer between
filler particles and matrix, also known as the interlayer model [32], is in the gen-
eralized case of ellipsoidal filler particles given by

(13.21)
   
ε ω

ε ω ϕ ε ω ϕ ε ω ϕ
ϕ ϕ ϕC

f f m m

f m

R S

R S
*

* * * * *

* *
( )

( ) ( ) ( )
=

+ +
+ +
l l

l

ε ω ε ω
ε ω ε ω ϕ ϕ ε ω

ε ω ε ω ϕ ε ωc m
fi m fi fi mi fi m

fi m fi fi mi m

n n

n n
* *

* * *

* * *
( ) ( )

[ ( ) ( )][ ] ( )

[ ( ) ( )][ ] ( )
=

− − + +
− − +

[ ( ) ( )]
( ) [ ( ) ( )]

ε ω ε ω ϕ
ε ω ε ω ε ω

i c i

c i c ii n

* *

* * *

−
+ −

=∑ 0

502 13 Dielectric Properties of Inhomogeneous Media



13.3 Experimental Results 503

with

(13.22)

(13.23)

(13.24)

where n is the depolarization factor of the filler particle in the field direction.
The equation can be used for calculating the dielectric properties of the com-
posite in the direction of any of the principle axes, by inserting the depolariza-
tion factor for that direction. As could be expected Eq. (13.21) reduces to
Eq. (13.5) for ϕl → 0 and εl → εm.

13.3
Experimental Results

13.3.1
Polymeric Blends

In the past decades much attention has been paid to the development of poly-
meric blends. Blends offer the possibility of combining the unique properties of
the components and thus of producing materials with tailor-made properties.
This often has advantages over the synthesis of completely new polymers. In the
recycling of polymeric materials, blends of several polymers are usually ob-
tained as well.

Two types of blends can be distinguished, depending on whether the compo-
nents are miscible or immiscible on a molecular scale. Materials from the second
class of blends are inhomogeneous, thus interfacial or MWS-polarization might
be expected. Besides commonly used blend characterization techniques such as
(electron) microscopy, thermal analysis and dynamic mechanical analysis, di-
electric spectroscopy potentially provides additional information about the mi-
crostructure of the material from specific interfacial polarization phenomena.
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Fig. 13.5. Asymmetrical ef-
fective-medium approach
for a material with an inter-
facial layer between filler
and matrix. A layered ellip-
soidal structure instead of a
spherical one is also possible



Many dielectric studies have been performed on miscible blends. In most
cases, blend miscibility is investigated by comparing the dipolar losses at the
glass transition with those of the components. It was shown how both the glass
transition temperatures and the width of the loss peaks are affected by the mis-
cibility of the components [33–36].

For immiscible blends on the other hand strong conduction and low fre-
quency polarization effects have been found. These polarization effects have of-
ten been attributed to Maxwell-Wagner polarization (MWS) [37–41]. Some au-
thors have managed to describe them quantitatively with the MWS theory [42,
43]. Maistros et al. [44] have shown how dielectric spectroscopy can be used to
detect the demixing of non-reactive rubber (impact modifier) into domains
during the cure of the epoxy matrix. The occurrence of interfacial polarization
at low frequencies coincides with a change in turbidity of the material, as was si-
multaneously detected optically. Similarly, the appearance of phase separation
during the cure of thermoplastic modified epoxy resins was demonstrated by
MacKinnon et al. [45], whereas Dionisio et al. [46] used MWS-polarization to
prove the existence of phase separation in polymer blends.

Recently, Boersma and van Turnhout studied blends of a thermotropic liquid
crystalline polymer (LCP) dispersed in polypropylene during extrusion. They
demonstrated that interfacial polarization effects, detected with dielectric mea-
surements, could be used to monitor the change in shape, as well as the co-con-
tinuity of the LCP phase with increasing extrusion speed [47].Additionally, they
were able to follow the fibre break-up mechanism [48] and could interpret their
results in terms of interfacial tension [49] and particle size effects [50]. The lat-
ter was made possible by incorporating diffusion in the theory, so that the for-
mation of double layers near the interfaces could be accounted for.

Much work has been performed on the morphology and mechanical properties
of the immiscible blend of the ductile BisPhenol-A PolyCarbonate (BPA-PC) and
the brittle Styrene-AcryloNitrile copolymer (SAN) [51–54]. Dielectric experi-
ments on this blend showed that the information obtained is complementary to
the results obtained from dynamic mechanical measurements [55, 56]. Whereas
mechanical measurements are most sensitive to the high Tg component (i.e. PC)
and are used to determine the extent of continuity of this phase in the blend, the
dielectric properties are mainly governed by the low Tg component (SAN) [57].

Figure 13.6a,b shows the real part ε′ and the imaginary part ε′′ of the com-
plex dielectric function of a blend of 60 wt% PC with 40 wt% ABS (acrylonitrile-
butadiene-styrene; a SAN matrix with poly-butadiene (PB) rubber inclusions),
as a function of temperature at a series of frequencies between 0.5 and 8.2 kHz
[57]. The frequencies were chosen in a geometric series such that the polariza-
tion losses, i.e. the dielectric losses without the contribution from ohmic con-
duction, could be easily calculated from the real part of the dielectric function
data using a fast numerical Kramers-Kronig transform [58] 3. In Fig. 13.6b the
solid lines depict the polarization loss calculated, while the dashed lines depict
the total loss measured (including the conductive loss).

3 Alternatively, the ohmic conduction could – even more simply – have been eliminated by
differentiating the e ′-data, cf. footnote 1.
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Between 100 and 130 °C the curves show the glass transition of the polar SAN
component like it is also found in pure ABS. Above 150°C the glass transition of
the less polar BPA-PC can be seen at the highest frequencies, both from a small
additional increase in the dielectric constant and from weak loss peaks, again in
agreement with the results for the pure PC component. However, after passing
the glass transition of the SAN a strong additional polarization process is found
from a sharp increase in the dielectric losses and in the real part of the permit-
tivity at the lowest frequencies, which cannot be attributed to a dipolar polar-
ization process in one of the components. Up to about 140°C the polarization
loss and the measured loss are nearly equal. Thus, despite the fact that the SAN
component becomes electrically conductive above its Tg, the 60/40-blend does
not. This suggests that the ABS phase is completely included in a non-conduc-
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Fig. 13.6. Dielectric per-
mittivity ε′, total loss ε′′
(dashed lines) and polar-
ization loss ε′′p (solid lines)
of a 60/40 PC/ABS blend at
various frequencies (from
left to right 0.5 Hz, 2 Hz,
8 Hz, 32 Hz, 128 Hz,
512 Hz, 2048 Hz and
8196 Hz) as a function of
temperature. The ε ′ and
ε′′-data were measured,
the ε′′p-data calculated

a)

b)
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tive PC matrix. Therefore, the strong low frequency polarization process found
is expected to be of interfacial origin.

The dielectric properties of the blend were modelled with the asymmetrical
Hanai-model, assuming the ABS phase as ellipsoidal inclusions in a PC matrix
and with the symmetrical Looyenga-equation, which does not presume one
component to form the matrix phase. The shape factor of the ABS domains was
used as fit factor to obtain the best possible description of the dipolar losses in
the glass transition regions of both components.

Figure 13.7a,b shows the results of calculations with the Hanai-model, using
a shape factor n = 0.60. A good description of the glass transition regions of
both components is obtained. The model predicts a strong interfacial polariza-
tion in the frequency and temperature interval where it is experimentally ob-
served. However, ε′ reaches a plateau which is experimentally not observed.

Fig. 13.7. Dielectric per-
mittivity ε′, total loss ε′′ and
polarization loss of a 60/40
PC/ABS blend predicted
with the Hanai-model.
(in b: dashed lines = ε′′,
solid lines = polarization
loss calculated from ε′)

a)

b)



Similarly, Fig. 13.8a,b shows the results of the calculations according to the
Looyenga model, using n = 0.65. Again, a good description of the glass transi-
tion regions is found, while the model now also correctly predicts the magnitude
of the interfacial polarization.

From these figures it is concluded that the symmetrical approach of Looyenga
applies better to the morphology of the 60/40 PC/ABS blend. However, both
models predict that the blend is not electrically conductive, while experimen-
tally a small contribution from conduction to the loss is found above 140°C,
slightly below the Tg of the PC component. This indicates that probably a perco-
lating conductive network of the ABS component is present in the blend.
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Fig. 13.8. ε′, ε′′ and polar-
ization loss of a 60/40
PC/ABS blend predicted
with the Looyenga-model
(in b: dashed lines = ε′′,
solid lines = calculated 
polarization loss)

a)

b)



Microscopic analysis showed that the morphology of this blend consists of
disc-like ABS structures embedded in PC with lateral dimensions of about
10 μm and a thickness of 2–3 μm [57]. The (ellipsoidal) shape factor of such
structures amounts to n = 0.65–0.70, in agreement with the optimal shape fac-
tor for the Looyenga-model. These results confirm the validity of the model cal-
culations and show that dielectric spectroscopy can indeed be used as a sensi-
tive tool for studying blend morphology, even during processing as was demon-
strated by Boersma and van Turnhout [47].

13.3.2
Filled Polymers

Often polymers are filled with rigid particles to enhance the mechanical proper-
ties of the materials, e.g. to increase the modulus or the failure stress. Typical in-
organic fillers include minerals like chalk,mica,clay,etc.or carbon black and glass.
Many filler types such as spherical or ellipsoidal particles or fibres may be used.

The use of filler particles frequently introduces a water sensitive component
into the polymer. For example, glass fillers are well known to adsorb water on
their surface. Since water has a high dielectric constant and a high electrical con-
ductivity, strong dielectric effects are to be expected. Several authors have re-
ported an increase in the dielectric constant and the loss of composites after the
absorption of water [59–65]. The composites considered are made up of a matrix
material with filler particles or fibres dispersed in it. The dielectric loss effects
due to absorbed water seem to be dominant at low frequencies and are often re-
lated to the absorption of water into the interfacial regions of filler/fibre and ma-
trix. Plueddemann [66] states that even if a glass-based composite is prepared
with perfectly dry glass, water will be able to reach the interface by diffusion
through the polymer. Moreover, imperfections or micro-cracks in the composites
formed through stresses generated by differential shrinkage allow water to get to
the interface even more rapidly.

The composite can be considered as a three-component system in which the
adsorbed water forms an interlayer between the filler particles and the matrix
material. This conductive interlayer between the glass filler and the matrix mate-
rial gives rise to an interfacial dielectric loss process, which can be detected by
low frequency dielectric measurements. Bánhegyi and Karasz [59, 60] observed a
low frequency, low temperature loss process in CaCO3 filled polyethylene due to
absorbed water. The high frequency dielectric constant could be well described
by the models proposed for heterogeneous mixtures as discussed before, but the
frequency dependent dielectric losses could not be interpreted on the basis of a
sole interfacial loss mechanism. However, the authors were able to describe their
results with the ‘universal response theory’. Because of its universality this model
was unable to describe the effects in terms of structural characteristics.

Woo and Piggott [64] stated that the absorbed water in glass-epoxy compo-
sites is concentrated in the interfacial regions, which are interconnected by disc-
shaped water clusters providing conducting paths. Paquin et al. [65] studied the
dielectric properties of polymer composites containing plasma treated mica.
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The detected low frequency dispersion was ascribed to the intrinsic dispersive
properties of the mica filler.Additionally, a broad audio frequency loss peak was
observed probably due to Maxwell-Wagner-Sillars losses from water absorbed at
the filler surface.

In most cases the structure of the composites is rather complex and the ab-
sorbed water is not only present at the filler-matrix interface.Therefore, low con-
centrated glass-filled high-density polyethylene composites were prepared [67,
68]. Glass beads with an average diameter of 10–13 μm were added to a melt of
high-density polyethylene on a two-roll open mill to obtain a 20 vol.% filled
HDPE composite [67].Samples of these materials were exposed to environments
with varying relative humidity (RH 14–100%) to allow different equilibrium wa-
ter uptakes ranging from 0.09 to 0.27 wt%. The high-density polyethylene does
not absorb a measurable amount of water; thus all the water absorbed can be as-
sumed to be present at the surface of the filler particles. Moreover, the HDPE
matrix shows a nearly frequency-independent dielectric constant of about 2.4
and no dielectric losses.

Figure 13.9a,b shows ε′ and ε″ of the samples measured after equilibrium wa-
ter uptake as a function of the frequency, at room temperature. The sample with
the lowest water content exhibits only at the lowest frequencies some signs of a
very low frequency polarization process. However, all the other samples clearly
reveal a polarization process in the frequency interval studied. In view of the fact
that the matrix and the bulk of the filler absorb no water, the observed polariza-
tion effects are expected to be of interfacial origin.

If a water layer is present on the surface of the filler particles it will become
electrically conductive. Since the matrix material is not electrically conducting,
this will give rise to interfacial polarization. This was theoretically investigated
by using Eq. (13.21) for non-conductive spherical filler particles covered with a
thin electrically conductive interfacial layer, embedded in a non-conductive ma-
trix. In that case it could be derived [32] that the complex dielectric function of
the composite εc

*(ω) shows a Debye-type relaxation process with
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where εs is the low-frequency limit of the composite dielectric function, ε∞ the
high-frequency limit of the composite dielectric constant and τ the retardation
time of the interfacial polarization process.

The low-frequency limit of the dielectric function of the composite is solely
determined by the dielectric permittivity of the matrix material and the volume
fraction of the filler, similar to what was found for the simple two-layer com-
posite. The conducting interfacial layer shields the filler particles from the elec-
trical field. In fact, the composite is similar to a material with highly conductive
spheres dispersed in it. The high-frequency limit of the dielectric function
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Fig. 13.9. ε′ and ε′′ of a
20 vol.% glass-beads filled
HDPE composite, measured
at various humidities, as a
function of frequency



equals that of a composite of non-conductive filler particles in a non-conductive
matrix. The conductive interfacial layer does not enter in the equations since it
does not affect the properties at high frequencies.Finally,Eq. (13.28) implies that
the frequency of maximum dielectric loss of the interfacial polarization mecha-
nism is proportional to both the volume fraction and the conductivity of the in-
terfacial layer. In the case of an interfacial water layer it is therefore expected that
the frequency of the maximum dielectric loss will shift to higher values with in-
creasing water content.

The influence of a conductive (water) interlayer on the dielectric properties
of a 20 vol.% glass-beads filled high density polyethylene composite was simu-
lated with Eqs. (13.25)–(13.28). The dielectric constant of the HDPE matrix is
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Fig. 13.10. ε′ and ε′′ of a
20 vol.% glass-beads filled
HDPE composite predicted
with the interlayer model
for various volume fractions
of a conducting interfacial
water layer



about 2.4 and of the glass filler particles about 5.5, both independent of the fre-
quency and thus with negligible dielectric loss. The only remaining variables in
Eq. (13.28) are the conductivity σl and the volume fraction ϕl of the layer. For the
simulations σl was set to an arbitrary value of 10–2 Sm–1, while the volume frac-
tion ϕl was varied between 10–9 and 10–3. The results of these calculations given
in Fig. 13.10a,b show for 10–8 < ϕl < 10–3 an interfacial polarization process with
accompanying loss peaks in the frequency domain from 100 mHz to 100 kHz.
The calculated relaxation curves are similar to the experimental results. The fre-
quency of maximum dielectric loss is proportional to the volume fraction of the
interfacial layer, or more general (according to Eq. 13.28) to the product of layer
volume fraction and conductivity. The shape of the relaxation curves is the same
for all layer volume fractions, which to some extent is also experimentally ob-
served. However, the theoretical relaxation process is Debye-like and much
sharper along the frequency axis than the experimental results. Such an experi-
mental broadening is quite often observed and attributed to a distribution of re-
laxation times instead of a single relaxation time as predicted theoretically. In
this case it may for instance be attributed to a distribution of layer volume frac-
tions caused by various filler particle sizes.

The volume fraction of the interfacial (water) layer can be found from the
amount of water absorbed by the composite. Thus, the conductivity of the wa-
ter layer can be calculated. For the various water contents studied the conduc-
tivity ranges from 3 × 10–9 to 8 × 10–4 Sm–1 [67]. The lowest values are lower
than the conductivity of pure water, which due to the H3O+/OH– dissociation
equilibrium is about 5 ¥ 10–6 Sm–1 at room temperature. Probably, the thinnest
water layers are tightly bound to the glass surface and therefore show a reduced
ionic mobility.

Similar dielectric effects were found in glass fibre and glass fabric filled
HDPE composites after water absorption [32]. The magnitude of the polariza-
tion process was found to depend on the shape of the filler. For glass fabrics
(shape factor n > 1/3) the dielectric effects are smaller than for glass beads,
while for glass fibres (shape factor n < 1/3) a much stronger interfacial polar-
ization is found. Moreover, glass fibres have the tendency to form an electrically
continuous phase already at low volume fraction. Continuity of the conductive
filler surface causes additional strong conduction effects, which do not occur
for fabrics and for beads, and may be even stronger than the interfacial polar-
ization.

13.3.3
Semi-Crystalline Polymers

Semi-crystalline polymers can be expected to show strong interfacial polariza-
tion effects at temperatures above the glass transition of the amorphous do-
mains. While the crystallites are not electrically conducting, the conductivity of
the amorphous domains increases with increasing temperature, especially after
passing Tg. In the literature strong polarization processes above the glass transi-
tion are well documented [69–74] for polyamides, polyesters and polyurethanes.
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For polyamides it has for instance been shown that in the range 40–70°C, de-
pending on the type of polyamide, a strong polarization process is found which
corresponds to the glass-rubber transition of the amorphous phase. At higher
temperatures the materials become electrically conductive and show a sharp in-
crease in the dielectric function [75, 76]. This is thought to be due to an interfa-
cial or MWS-type of polarization process caused by trapping of free charge car-
riers at the boundaries between crystalline and amorphous regions. The electri-
cal conductivity of the crystalline phase is much lower than the conductivity of
the amorphous phase. Free charge carriers (ions) moving through the amor-
phous phase of the sample, are hindered in their motion by the crystalline do-
mains and pile up near the interfaces between the amorphous and the crys-
talline phases. Space-charge effects as detected by the thermally stimulated dis-
charge (TSD) technique [77] are probably related to this MWS-polarization
mechanism.

A three-phase morphology with amorphous material included in crystallites
which are embedded in amorphous material seems to be a good approach for
modelling the interfacial polarizations in semi-crystalline materials. However,
as several authors have discussed [76, 78, 79], the morphology of semi-crys-
talline polymers is too complicated to allow a description based on simple mod-
els and so one is limited to qualitative results.

Figure 13.11a,b show the real and the loss part of the complex dielectric
function of a dry polyamide-4,6 measured as a function of temperature, at var-
ious frequencies between 0.5 Hz and 8.2 kHz [80]. Again, the frequencies were
chosen such that the fast numerical Kramers-Kronig transform [58] could be
used to calculate the polarization losses from the frequency dependence of the
real part of the dielectric function. The calculated polarization losses ε ′′p are de-
picted in Fig. 13.11b with full lines, while the measured dielectric loss ε ′′, which
includes apart from ε ′′p the contribution from ohmic conduction, is plotted with
dashed lines. Between 75 and 100°C the glass transition of the amorphous
phase is found, which results in an increase of the dielectric constant from
about 3.5 to 12. At higher temperatures a strong polarization process appears
due to which the dielectric constant increases further to 80 or more. This strong
relaxation process cannot be related to a molecular mobility of the polyamide
chains, while its relaxation time is inversely proportional to the conductivity of
the material. These observations clearly hint at an interfacial origin of the re-
laxation process.

While the actual morphology of semi-crystalline materials is too complex to be
described with mixture theories, two limiting cases of the morphology may be
considered above the glass transition temperature of the amorphous phase. One
consists of non-conductive crystalline domains embedded in an electrically con-
ductive amorphous matrix, and the second of conductive amorphous domains
embedded in a non-conductive crystalline matrix. The actual morphology is
probably a mix of these two phase-inverted structures.Because of the high volume
fractions of the components, the Hanai theory was used to model the dielectric
properties of these sample morphologies. The dielectric permittivity of the amor-
phous polyamide-4,6 was taken from [76] and assumed to be about 20. Its high
conductivity was taken into account by setting the low frequency loss to an arbi-
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trary high value of 106 and the high frequency loss to zero. At very low tempera-
tures the dielectric constant of the glassy polyamide-4,6 is about 3.3, which value
was taken as a first estimate for the dielectric constant of the crystalline phase.

Figure 13.12 shows the dielectric increment, the increase of the low-frequency
dielectric constant due to interfacial polarization, as calculated with the Hanai
theory for a conductive amorphous matrix with non-conductive crystalline in-
clusions. The calculations were performed for different shape factors of the (el-
lipsoidal) inclusions, ranging for n = 0 (needle-like) to n = 1 (plate-like). It is
found that only for inclusion structures with shape factor close to plate-like and
at high volume fractions (ϕm) of the amorphous phase are dielectric effects of
the experimentally observed magnitude of about 70 to be expected. This seems
unlikely because of the high crystallinity of polyamide-4,6 [80].
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Fig. 13.11. ε′, ε′′ and polar-
ization loss of dry
polyamide-46 at various fre-
quencies, as a function of
temperature (in b: dashed
lines = measured ε′′, solid
lines = calculated polariza-
tion loss)



Figure 13.13 shows the results of similar calculations with the Hanai theory,
but now rather for a non-conductive crystalline matrix with conductive amor-
phous inclusions. Again, the calculations were performed for various shape
factors of the (ellipsoidal) inclusions. In this case it turns out that the ex-
perimentally observed dielectric increment of 70–100 is predicted for inclu-
sions with shape factor 0.2–0.4 over a broad composition (ϕf) range. A shape
factor of 0.2–0.4 agrees with well-known semi-crystalline morphologies con-
sisting of spherulites and axialites. It is therefore concluded that in particular
the morphology of conductive amorphous inclusions in non-conductive crys-
talline domains is able to describe the dielectric behaviour observed experi-
mentally.
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Fig. 13.12. Dielectric incre-
ment Δε due to interfacial
polarization predicted with
Hanai’s theory for a mor-
phology of insulating crys-
tallites in a conductive
amorphous matrix. Volume
fraction of amorphous
phase as indicated

Fig. 13.13. Dielectric incre-
ment due to interfacial po-
larization predicted with
Hanai’s theory for a mor-
phology of conductive
amorphous inclusions in an
insulating crystalline ma-
trix. Volume fraction of the
amorphous phase as indi-
cated
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13.3.4
Effect of Processing on Material Homogeneity

A final example to be discussed relates to the effect of processing on sample ho-
mogeneity and how this affects the dielectric properties of emulsion-polymer-
ized poly(vinylchloride). PVC is a strongly polar polymer due to the presence of
the polar C-Cl bonds exhibiting very pronounced dipolar polarization
processes. These mechanisms have been the subject of studies by many authors
[81–86]. A detailed description of the dipolar polarization mechanisms in PVC
can be obtained from McCrum et al. [69]. The most important dipolar transi-
tions are the secondary β-transition found in the glassy state and the main 
α-transition, the glass rubber transition of the material.

Figure 13.14a,b shows ε′ and ε′′ of a compression moulded sample of sus-
pension polymerized poly(vinylchloride) with a weight average molar mass of
about 65 kg mol–1 (K-value 80), measured as a function of the frequency, at var-
ious temperatures in the glass transition range and higher [87].

Fig. 13.14. ε′ and ε′′ of
poly(vinylchloride) with 
K-value 80, measured at 
various temperatures, as a
function of frequency



At the lowest temperatures, the loss peaks of the β-transition are visible around
100 kHz–1 MHz. At higher temperatures the loss peaks and the sharp increase of
the dielectric constant (to about 12),due to the glass-rubber (α) transition become
apparent. At the lowest frequencies the dielectric loss increases according to a
power law, which is attributed to the contribution of ohmic conduction losses to
the measured loss. Finally, at the highest temperatures (in the rubbery state) and
the lowest frequencies an unexpected, additional relaxation process appears, due
to which the dielectric permittivity increases further to about 22.However,the loss
peaks of this process cannot be seen in the measured ε′′-data,since these are dom-
inated by conduction losses. Figure 13.15 shows the polarization losses calculated
with the numerical Kramers-Kronig transform [58] from the frequency depen-
dence of the dielectric constant. In this figure the loss peaks from the additional
polarization process appear well resolved. The unexpected dispersion cannot be
attributed to permanent dipoles in the polymer molecules. Moreover, it was
shown that the frequency of maximum dielectric loss is proportional to the elec-
trical conductivity of the material [87].Both results point in the direction of an in-
terfacial or macroscopic polarization process, which should be related to some in-
terface of unknown origin in the material.

Dielectric measurements on bulk polymerized poly(vinylchloride) do not
show this interfacial polarization process. Besides, a study of suspension poly-
merized poly(vinylchloride) samples with varying molar masses revealed that
the mechanism is only found in samples of high molecular weight [87]. The lat-
ter observation leads to the conclusion that the interfacial polarization might be
related to the processing conditions, in view of the fact that the high Mw samples
are more highly viscous. Compression moulding is known to be a rather mild
processing technique. Therefore, the PVC sample was subjected to 6 min of
kneading before compression moulding. Figure 13.16 shows the dielectric prop-
erties of the material after kneading. Clearly, the interfacial polarization process
has disappeared.
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Fig. 13.15. Polarization loss
of poly(vinylchloride) with
K-value 80, calculated from
measured ε′-data at various
temperatures, as a function
of frequency



According to Allsopp [88], the 100–200 micron sized suspension PVC grain
particles contain 10 μm sized agglomerates of 1–2 microns measuring primary
particles. These primary particles are the original growth sites during the poly-
merization reaction. The outer surface of the grain particles is covered by a
1–2 μm thick shell of polymeric material, which was formed at the surface of the
original suspended vinylchloride (MVC) droplets. This shell is formed by the
precipitation of PVC molecules on the poly(vinylacetate)-poly(vinylalcohol)
emulsifier interface [89]. During compression moulding this particle shell may
remain intact and cause a grain boundary structure to be present in the sample.
At these boundaries the material is discontinuous, which may block transport of
charge carriers, thus causing interfacial polarization. Such boundaries were in-
deed observed with phase contrast microscopy in the not-kneaded sample,
while they are absent in the kneaded one.

In order to determine whether such boundaries can cause the experimentally
found dielectric effects, Wagner’s theory was used to model the dielectric
strength of an interfacial polarization process due to air inclusions in the mate-
rial.As a result of the compression moulding, these boundaries and the included
air are expected to be flat voids with a depolarization factor close to 1. The cal-
culations with the Wagner-model, with low volume fraction of the inclusions
and flat geometries indicate that for a shape factor n > 0.98, it is possible to have
a dielectric increment of 10 or more, as found experimentally. Figure 13.17
shows a typical result of the calculations with the Wagner-model, in which the
dielectric data of the kneaded sample were used as matrix, with 1 vol.% air pre-
sent with a shape factor of 0.98.

The calculated curves of the dielectric permittivity are similar to the curves
found experimentally for the not-kneaded material. This demonstrates that it is
indeed likely that a residual grain boundary structure is present in the latter
material, which causes interfacial polarization due to charge build-up at the
discontinuities in the material. Though these defects are hard to detect opti-
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Fig. 13.16. ε ′ of poly(vinyl-
chloride) with K-value 80
after kneading for 6 min at
170°C, measured at several
temperatures, as a function
of frequency



cally, the dielectric properties show large effects from interfacial polarization
that occurs at the boundaries. Since the ultimate mechanical properties of the
material may be highly dependent on the presence of defects, this again points
to the usefulness of dielectric spectroscopy as a tool to study the homogeneity
of materials.

13.4
Conclusions

In this chapter the basic theories for the dielectric properties of heterogen-
eous materials were reviewed. It was made clear that many polymer sys-
tems such as blends, filled polymers, semi-crystalline polymers, but also im-
perfectly processed amorphous polymers show interfacial polarization
processes. Dielectric mixture theory may be used to investigate the morpho-
logical cause of the observed processes. Dielectric spectroscopy was shown to
be a valuable tool in molecular and morphological characterization of poly-
meric materials.

List of Abbreviations and Symbols

ni Depolarization or shape factor in direction i
T Temperature
Tg Glass transition temperature
ε0 Permittivity of vacuum, ε0 = 8.854 pF/m
εs Static dielectric permittivity
ε∞ High-frequency limit of dielectric permittivity
Δε Dielectric relaxation strength, Δε = εs – ε∞
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Fig. 13.17. Dielectric per-
mittivity ε′ of kneaded 
poly(vinylchloride) 
estimated with the Wagner 
theory assuming 1 vol.% air 
inclusions with shape factor 0.98



εi
*(ω) Complex dielectric function of component i 4

ε′ Real part of complex dielectric function
ε′′ Imaginary part of complex dielectric function
σ *

i Complex conductivity of component i
σs Static or d.c. conductivity
τ Retardation or relaxation time
ϕi Volume fraction of component i
ω Angular frequency
ν Frequency

ABS Acrylonitrile-butadiene-styrene
HDPE High density polyethylene
LCP Liquid crystalline polymer
MWS Maxwell-Wagner-Sillars
PA Poly(amide)
PB Poly(butadiene)
PC Poly(carbonate)
PVC Poly(vinylchloride)
SAN Styrene-acrylonitrile
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14 Principles and Applications of Pulsed Dielectric
Spectroscopy and Nonresonant Dielectric Hole Burning

R. Böhmer · G. Diezemann

14.1
Introduction

Nowadays dielectric relaxation measurements can be carried out almost routinely
in broad frequency ranges continuously covering ten to fifteen decades and more
[1]. This allows one to track the time scale on which dipolar motions occur in a
wide temperature interval and to investigate in detail the shape of permittivity
and dielectric loss spectra. Early on it has become clear that at a given tempera-
ture and pressure the molecular motion in most dielectric materials cannot be
characterized by a unique time constant. In order to describe the experimentally
observed relaxations intrinsic non-exponential as well as distributed processes
have been considered. For a long time the distribution concept was quite popular
in the description of dielectric phenomena [2–4]. It was often based on the as-
sumption that environments differing from site to site lead to locally varying time
constants. However, the alternative option which starts from the consideration of
nonexponential responses [5] has also gained considerable attention [6–9].To jus-
tify these approaches theoretically it has been pointed out that the interactions
which exist between dipolar molecules should render a description in terms of a
simple distribution of relaxation times at least questionable.

Experimental methods which allow one to test the assumptions underlying
each of these theoretical approaches directly were missing for a long time.
However, during the past decade several measuring techniques were devised
that allow one to resolve this issue not only using computer simulations (for re-
views, see [10, 11]), but also via laboratory experiments. Among these are multi-
dimensional NMR [12, 13], dedicated optical techniques [14, 15] as well as di-
electric approaches [16–18]. The main idea on which most of these methods rest
is as follows. If a distribution of relaxation times exists then it should be possi-
ble to select (or selectively address) a subensemble which exhibits properties
that are different from those of the overall ensemble. Such a selection can pro-
ceed either in the spectral (i.e., frequency or time) domain or in real space. Using
dielectric techniques the latter option was implemented using atomic force
noise microscopy. This method was shown to be sensitive to polarization fluctu-
ations in a mesoscopic region [about (50 nm)3] and was applied to amorphous
polymers [17]. Frequency domain selectivity (which does not necessarily imply
spatial heterogeneity) was demonstrated using nonresonant spectral hole burn-
ing (NHB). Principles and some applications of this technique constitute the



main subject of the present chapter [16]. Procedures for successfully measuring
nonresonant spectral hole burning, based on the notion of a local fictive tem-
perature, were first proposed by Chamberlin who already reviewed several as-
pects of this technique [19, 20].

At first glance, NHB may appear as a variant of the well known magnetic res-
onance or optical hole burning techniques. By employing monochromatic 
irradiation the latter methods can be used to decide whether a magnetic or op-
tical resonance absorption line is predominantly homogeneously broadened
(e.g., due to lifetime broadening) or predominantly inhomogeneously broad-
ened. The latter type of broadening can arise if the transition (or resonance) fre-
quencies which reflect (static) molecular orientations or local configurations or
deformations exhibit a strong spatial variation.Although resonant hole burning
was first demonstrated using magnetic resonance [21], its optical counterpart is
more often employed to study a host of properties, particularly in amorphous
systems at low temperatures [22] and in single molecule spectroscopy [23]. It has
yielded information not only on the dominant type of broadening but also, e.g.,
on homogeneous line widths and on the dynamical processes responsible for
hole refilling.

Nonresonant dielectric hole burning is related to conventional spectral hole
burning in the sense that both methods are designed to reveal why spectra are
broadened. In many respects, however, NHB is distinctively different from the
resonance techniques. This is primarily because in the regime of orientational
polarization, which is of interest here, we deal with relaxation rather than with
resonance phenomena. Consequently, the theoretical framework available for
the treatment of the mechanisms responsible for various features such as spec-
tral selectivity and hole refilling needs to be carefully reconsidered for NHB.

The limiting cases for the broadening of dielectric loss spectra are usually
termed the homogeneous (intrinsic nonexponential relaxation) vs the heteroge-
neous (distribution of relaxation times) scenario, cf. Fig. 14.1. In the linear re-
sponse regime the two cases cannot be distinguished. Nevertheless it is worth-
while to review briefly some aspects of linear response in dipolar systems
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Fig. 14.1. Homogeneous a
vs heterogeneous b
broadening of dielectric
loss spectra represented as
solid lines. The dotted lines
are a meant to reflect the
line shapes of elementary
processes



(Sect. 14.2.1) which are important in view of the extension of these experiments
into the weakly non-linear domain. The principles of this weakly non-linear
technique, NHB, are dealt with in Sect. 14.2. In Sect. 14.3 experimental aspects
are discussed. In Sect. 14.4 NHB is demonstrated to provide compelling evidence
that the slow response of most disordered materials studied so far is dynami-
cally heterogeneous, according to the criterion formulated in [24].

14.2
Theoretical Concepts

14.2.1
Macroscopic Linear Response

Following the treatment of Böttcher and others [4, 25] we will formulate the gen-
eral framework for the computation of dynamic variables such as the macro-
scopic dipole moment which is closely related to the experimentally accessible
electric polarization. In a classical description of (charged) particles any dy-
namic variable S(p,q) may be specified by the phase space coordinates q and the
conjugated momenta p via

(14.1)

Here ρ (p,q,t) dpdq is the probability to find the particles in a volume element
dpdq around the point (p,q). The phase space density ρ(p,q,t) obeys the Liouville
equation ∂ρ(p,q,t)/∂t = iLρ(p,q,t) and using Eq. (14.1) allows one to compute any
dynamic variable. The Liouville operator L is related to the Hamiltonian H via the
Poisson bracket, {S,H} = – iLS, known from classical mechanics [26]. This gives
Ṡ(t) = – iLS(t) and hence S(t) = e–iLt S(0) for the time evolution of the dynamic
variable. Under the influence of a time-dependent electric field E(t) the
Hamiltonian is H(p,q) = H0(p,q) – M(p,q)E(t) with M(p,q) being the electric di-
pole moment. Note that in the present chapter a scalar formulation is given, i.e.,
fields, dipole moments, etc. will be described in terms of their projection onto
the axis of the external electrical field.

The perturbation induced by the electric field leads to deviations from the
equilibrium phase space density ρ0 (corresponding to the non-perturbed
Hamiltonian H0) which can be written as the series

(14.2)

The phase space density increments ρi depend on the electrical field in i-th or-
der. For sufficiently small external fields the terms with i >1 can be neglected.
This gives the linear contribution
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where kB is the Boltzmann constant and T denotes temperature. Exploiting that
iL0M(p,q,t) = – Ṁ(p,q,t) and performing the phase space integration prescribed
by Eq. (14.1), the time evolution of the dynamic variable can be expressed
as . When the thermal ex-
pectation value of M(p,q,t), i.e., the orientational polarization P(t) is chosen as dy-
namic variable, then this relation can be written via the convolution integral as

(14.4)

Here Φ(t) ≡ 〈M(p,q,t) M(p,q,0)〉/〈M(p,q,0) M(p,q,0)〉 is the dipolar correlation
function. Furthermore, χs denotes the static dipolar susceptibility and ε0 is the
permittivity of free space. Equation (14.4) is sometimes designated Boltzmann’s
superposition principle. It allows one to calculate the polarization provided a
sufficiently small field E(t) (with an arbitrary time dependence) is given.

Non-exponential step response functions may be expressed as Φ(t) = exp[–t
W(t)] using a time dependent rate, W(t) = 1/τ(t), sometimes referred to, e.g., in
the treatment of generalized master equations [27]. This approach and the
memory function approach [28] were occasionally associated with intrinsic
non-exponential response functions, since in these cases a recourse to a super-
position of exponentials is not required.

Alternatively, Φ(t) can explicitly be represented by a continuous distribution
of relaxation times g(τ) or equivalently, in a discrete description, by appropri-
ately chosen weighting factors gi

(14.5)

Numerous types of distributions of relaxation times are available to describe re-
laxation data [3, 4, 29]. In the linear regime the polarization response to field se-
quences with an arbitrary time dependence can explicitly be written in terms of
g(τ) as [30]

(14.6)

Here A(τ) has been termed amplitude function. If E(t) is proportional to the
Heaviside function then A(τ) is constant. Other cases with stepwise constant
fields have been dealt with in [30].One interesting application is based on pulsed
electric fields (Sect.14.3).For continuous field variations the amplitude function
is given by [31]

(14.7)

The advantage of this approach is that effective distributions geff(τ) ≡ A(τ)g(τ)
exhibiting specified properties can easily be generated. In particular, it is possi-

A E t t
t

t( ) ( ) '/τ τ τ= ′ ′−

−∞
∫1 e d

P t g As
t( ) ( ) ( ) /=

∞
−∫ε χ τ τ ττ

0
0

e d

Φ( ) ( ) ./ /t g gt
i

t

i

i= =−
∞

−∫ ∑τ ττ τe d e
0

P t E t t t t
t

t( ) ( ) ( )= ′ ∂ − ′ ′
−∞
∫ε χ0 s dΦ

〈 〉 〈 〉 〈 〉S t S t k T E t S t M p q t tB
t( ) ( ) ( ) ( ) ( ) ˙ ( , , )= = + ′ ′ ′−
−∞∫0 1 d

526 14 Pulsed Dielectric Spectroscopy and Nonresonant Dielectric Hole Burning



ble to suppress or emphasize specific parts of the dielectric response by choos-
ing appropriately. It should be kept in mind,however, that
the ability to modify the strength of (seemingly) slow or fast parts of the re-
sponse does not necessarily imply the (physical) existence of a distribution of re-
laxation times. This is because the description in terms of Eq. (14.4) is com-
pletely equivalent to that using Eq. (14.6). In other terms, in the linear response
regime homogeneous and heterogeneous relaxation processes cannot be distin-
guished. Therefore, an extension into the non-linear response regime is required
if we want to address the question regarding the nature of the broadening of di-
electric loss spectra.

Also in the following the treatment will be kept in the time domain since only
in the linear response regime can the Fourier transformation
be identified with a complex, frequency dependent susceptibility χ(ω).

14.2.2
Microscopic Reorientation Models

When proceeding to a more microscopic formulation we have to recognize the
following (i) The internal electric fields in condensed systems generally are dif-
ferent from the ones applied externally – this is often accounted for by Lorentz
field corrections or more elaborate approaches; (ii) Then, before we have dis-
cussed the macroscopic step response function Φ(t) ~ 〈M(t)M(0)〉. However,
for the description of the behavior of microscopic dipole moments the appro-
priate step response function involves not only self-terms but also cross-terms.
In the following treatment we will neglect the latter to keep the discussion as
simple as possible. Thus the microscopic response is given by the autocorrela-
tion function 〈μ(t)μ(0)〉/〈μ2(0)〉 and after carrying out the ensemble average we
need not distinguish the latter function from Φ(t). This, however, holds only if
with respect to point (i) we take Cole’s optimistic view that the local or internal
field problem is primarily reflected in magnitude rather than in time depen-
dences [32, 33].

With internal field and correlation effects thus neglected, in a statistical de-
scription the microscopic motion can be specified by the conditional probabil-
ity G(w2,t2|w1,t1) to find a permanent dipole moment pointing along direction
w2 at t2 under the condition that it pointed along w1 at t1. Here the orientation 
w = {φ,θ} is specified by the polar angle, θ, which the dipole moment axis en-
closes with the direction of the external electric field and the azimuthal angle, φ.

In order to make the connection to the previous section we note that the ex-
pectation value of the dipole moment is obtained from

(14.8)

Here μ(w) = μ cosθ and p(w,t) is the probability to find the orientation w at time
t. The polarization is related to Eq. (14.8) via P(t) = N〈μ(t)〉 with N denoting the
number or, more properly, the number density of dipoles. p(w,t) corresponds to
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the phase space density ρ(p,q,t) in the general formalism and is related to
G(w2,t2 |w1,t1) by

(14.9)

In equilibrium one has p(w,0) ≡ p0(w) and therefore p(w,t) = p0(w). Equa-
tion (14.4) then follows from an expansion of p(w,t) in linear order in the field
and the dipole correlation function is given by

(14.10)

This relation clearly reveals the importance of the conditional probability.
In most cases of relevance the reorientational motion is non-Markovian [12],

but for simplicity here we focus only on Markovian models. Then G(w2,t2|w1,t1)
obeys a so-called master equation [34, 35] which can be assumed to be

(14.11)

Here defines the rate for a transition between

two orientations w1 and w2. Equation (14.11) has then to be solved with the ini-
tial condition G(w2,t1|w1,t1) = δ(w2 – w1).

Two classes of models for reorientational motions may be distinguished. One
assumes that the molecules reorient via rotational diffusion (infinitesimally small
angular displacements), while the other starts from finite angular displacements.
Both approaches yield single exponential responses in the time domain, corre-
sponding to the so called Debye relaxation in the frequency domain [36].
Therefore in this respect these models cannot be discerned by carrying out mea-
surements in the linear response regime. It should be emphasized from the outset
that,when dealing with amorphous materials,all these and other models which we
will mention in the following are to be considered as simplifications. To illustrate
this situation a sketch of a more realistic scenario is depicted in Fig. 14.2. It sum-
marizes results from experimental magnetic resonance studies [37].

Let us first consider rotational diffusion. The corresponding differential
equation for isotropic liquids reads [36]

(14.12)

with denoting the angular part of the Laplace

operator, and Dr the rotational diffusion coefficient. Equation (14.12) is obtained
from the master equation by the replacement and
is solved by

(14.13)
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where Ylm(w) denotes a spherical harmonic. From this equation the auto-
correlation functions of the various Legendre polynomials of rank l,

can be computed as

(14.14)

In conventional dielectric spectroscopy one measures Φ(t) ~ 〈P1[cosθ(t)]
P1[cosθ(0)]〉, cf. Eq. (14.10) with μ(w) = μcosθ = μP1(cosθ). For the model of
isotropic rotational diffusion this function decays as Φ(t) ~ exp(– t/τ1) with τl =
[l(l + 1)Dr]–1. Therefore, using dielectric spectroscopy the characteristic time for
the loss of dipolar (i.e., vectorial) autocorrelation is given by τ1 = 1/(2Dr). Based
on this simple approach one may expect a faster decay, τ2 = 1/(6Dr), for tech-
niques sensitive to the decorrelation of tensorial properties corresponding to 
l = 2 (e.g., transient Kerr effect [38], magnetic resonance, depolarized light scat-
tering and photobleaching [39]).

The other approach which involves finite angular jumps in random directions
can be implemented in a number of ways. One scenario is that a dipole can jump
from one orientation to any other with equal probability. Then Π(w2|w1) is in-
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Fig. 14.2. Fragment of a trajectory where each dot on the sphere surface marks a molecular
orientation. This is a pictorial representation of the distribution of large and small jump an-
gles that characterize the molecular reorientation in supercooled liquids and the segmental
motion in amorphous polymers. This scenario was inferred from magnetic resonance exper-
iments carried out slightly above Tg [37]



dependent of w2 as well as of w1 and is given by Π(w2|w1) = τJ
–1[(4π)–1 – δ(w2 –

w1)] with τJ denoting the average time between consecutive jumps. τJ is called
jump correlation time. The conditional probability is then found to be given by
G(w2,t2|w1,t1) = (4π)–1 + exp[– (t2 – t1)/τJ] [δ(w2 – w1) – (4π)–1]. This random
jump model was explicitly applied to dielectric spectroscopy quite some time
ago [40]. This model, like the approach of rotational diffusion, yields single ex-
ponential response functions.

Yet another option is that finite jump angles are involved which leads to the de-
finition of the Anderson model [41]. For this approach G(w2,t2|w1,t1) is given by
the same expression as in the model of rotational diffusion, Eq. (14.13), but with
the replacement l(l + 1) Dr → τ –1[1 – Pl(cosϕ)] where ϕ denotes the jump angle.
Note that in the limit of small jump angles one recovers the results for rotational
diffusion with Dr = (ϕ/2)2τ –1 [because then Pl (cosϕ) → 1 – l (l + 1)(ϕ/2)2].

When comparing the dipole correlation times from the Anderson model with
those from the random jump model one finds τ1/τJ = 1 – cosϕ. This relation ex-
presses the fact that in the random jump model each rotational jump leads to a
complete decorrelation of the orientations. In the Anderson model, on the other
hand, a number of jumps (depending on the magnitude of ϕ) have to take place
before decorrelation is complete.

Finally, also models which only allow transitions between a set of K orienta-
tions were considered. These models are most appropriate for the description 
of crystalline solids. When the symmetry of the jump process is fully exploited
it is found that in general Φ(t) does not decay to zero but to some constant,
Φ(t → ∞) [25]. Of course, in the usual treatment one subtracts out this constant,
i.e., one considers only the time dependent response and this assumption was
implicitly also made in Sect. 14.2.1. Nevertheless Φ(t → ∞) can easily be under-
stood by noting that (also for t → ∞) the probability of finding a particle in a
specific orientation w is just K–1. This scenario is most appropriately formulated
in terms of a set of coupled rate equations. These are obtained directly from 
the general master equation, Eq. (14.11) by the following substitutions: now the
orientations are specified by i = 1, 2, … K. Then the conditional probabilities are
written as Gik(t) = G(wi,ti|wk,tk) and the rates for the transition from state “1” to
state “2” as Π(w2|w1) = Π21. Using the “sum rule” Πii = – ΣkΠki, which expresses
the conservation of probability, one finds

(14.15)

By relating the conditional probability Gij(t) to the populations 
this equation can be cast into an even more transparent form as

(14.16)

This equation has a simple interpretation. The first term on the right hand side
represents the loss in probability to find the dipole moment in orientation wi.
This loss is due to jumps which lead away from wi. The second term describes
the gain in probability due to jumps into orientation wi. Thus Eq. (14.16) is a typ-

˙ ( ) ( ) ( )p t p t p ti k ki i k ik k= − +∑ ∑Π Π

G t pk ik k( ) ( )∑ 0
p ti ( ) =

˙ ( ) ( ) ( )G t G t G tij k ki ij k ik kj= − +∑ ∑Π Π

530 14 Pulsed Dielectric Spectroscopy and Nonresonant Dielectric Hole Burning



ical gain-loss master equation as it appears in many fields of condensed matter
physics and physical chemistry.

The most simple case for this discrete master equation approach which we
will treat here is that of an asymmetric double well potential (ADWP) [42, 43].A
schematic representation of an ADWP is given in Fig. 14.3. By definition, in this
model there are only two orientations θ1 and θ2 = θ1 + π. If we assume thermally
activated jumps over the barrier V, the transition rates in the presence of an ar-
bitrary electrical field are given by

(14.17a)

(14.17b)

It should be noted that for a double well there is some ambiguity in the defi-
nition of the dipole moment: One can either locate each of the charges in one
well or, alternatively, fix one charge in the center of the double well and put 
the other into one of the wells. In accord with [42] we employ the latter option,
but keep μ to denote the dipole moment. In Eq. (14.17) the expression 
W = ν0 exp[–V/(kBT)] denotes the hopping rate for vanishing asymmetry Δ. The
attempt frequency ν0 is on the order of a typical vibrational frequency of
about 1013 s–1. Since now there are only two orientations the summation in the
rate equations (Eq. 14.16) is restricted to a single term and reads as

(14.18a)

(14.18b)

Thus here one has ṗ2(t) = – ṗ1(t). The polarization can then be written as
suggesting to define the

difference in the populations as

(14.19)n t N p t p t( ) [ ( ) ( )],≡ −1 2

P t t p t N p t p ti i i( ) ( ) ( ) ( ) cos [ ( ) ( )]= = = −=∑〈 〉μ μ θ μ θ1
2

1 2

˙ ( ) ( ) ( )p t p t p t2 12 2 21 1= − +Π Π

˙ ( ) ( ) ( )p t p t p t1 21 1 12 2= − +Π Π

Π Δ21 2= + +W E k TBexp[ ( cos )/( )]μ θ

Π Δ12 2= − +W E k TBexp[ ( cos )/( )]μ θ
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Fig. 14.3. Schematic repre-
sentation of an asymmetric
double well potential
(ADWP). The barrier height
V, the overall asymmetry Δ,
and the rates Πij connecting
the two states “1” and “2”
are indicated. For compari-
son, the dotted line depicts a
symmetric DWP



so that P(t) = μ cosθ n(t). With additional abbreviations for the relaxation time
τ, the reduced asymmetry δ, and the reduced electric field e(t) given by

(14.20a)

(14.20b)

(14.20c)

from a combination of Eqs. (14.17)–(14.19) one finds the “equation of motion”

(14.21)

Via Eq. (14.19) the solution of this equation, cf.Appendix 14.1, directly yields the
polarization. For arbitrary fields it may be solved numerically [44]. If we restrict
ourselves to the case of weak external fields, |e(t)|�1, then from Eq. (14.21) in
linear order in e(t) we have

(14.22)

As we are dealing mainly with overall isotropic systems we always perform pow-
der averages, i.e., integrations over the entire solid angle. For a variable x the

powder average is defined as When performing

the average over the orientations of the dipoles with respect to the external field
we have 〈coskθ〉 = (k + 1)–1 for even k and 〈cos2k+1θ〉 = 0.

It is instructive to discuss some implications of Eq. (14.22). Let us start with
the simplest case of a symmetric double well potential (DWP), Δ = 0. Then this
equation yields the one commonly associated with the Debye model [36]

(14.23)

which yields a single exponential response function. In Eq. (14.23) the suscepti-
bility of DWPs characterized by the polar angle θ is given by Nμ2cos2θ/(2kBT)
and after performing the powder average becomes .

For finite Δ it is seen from Eq. (14.22) that via the term e(t)n(t)δ higher orders
in the field enter [since n(t) itself depends linearly on e(t)]. Furthermore, in the
absence of an external electrical field one finds a finite equilibrium value for the
population difference of a single ADWP: neq ≡ n(t → ∞) = Nδ. This can be ratio-
nalized by noting that in equilibrium the lower minimum in the ADWP is ener-
getically favored. In an isotropic system the equilibrium polarization neverthe-
less vanishes because 〈cosθ〉 = 0. In simple terms this means that for each ADWP
with positive Δ, there is another one with negative Δ.

For later use we give the expression for the time dependent solution of
Eq. (14.22) starting from an arbitrary population difference n(0). For the case of
a static field ES, if one retains only terms linear in eS ≡ μEScosθ/(2kBT), from
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6
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Eq. (14.22) one has the following result:

(14.24)

From this equation the step response with the initial condition n(0)=Nδ follows as

(14.25)

Also the solution of Eq. (14.22) in the absence of an external electrical field will
be used later. With ES = 0 from Eq. (14.24) one has

(14.26)

It is clear that if the system was in equilibrium initially [n(0) = Nδ], then Eq.(14.26)
yields a population difference which is independent of time [i.e., n(t) equals Nδ as
well]. However if the initial population difference n(0) deviated from the equilib-
rium value this is no longer true and Eq. (14.26) has to be employed explicitly.

It should be pointed out that by taking the ADWP approach it is a simple mat-
ter to model a heterogeneous dielectric response. Analogous to Eq. (14.5) this
can be achieved by defining distributions of barrier heights and asymmetries.
We mention that in the context of disordered crystals this is quite similar to the
concept of so-called random fields. The latter lead to a distribution of asymme-
tries Δ ~ μERF cosϑ with ϑ denoting the angle enclosed by directions of μ and
ERF. Here the direction and the amplitude of ERF are chosen according to some
distribution function.

An aspect that we have not mentioned so far is the possibility that with the
presence of a heterogeneous distribution of relaxation rates temporal fluctua-
tions of the latter can occur. These “fluctuations of rates” may be described in
terms of environmental fluctuation models [45].This type of model was recently
applied to the dipolar dynamics of systems in which the molecules can exchange
from the surface to the inner regions of mesoscopic pores [46].

14.2.3
Stochastic Dynamics in Moderately Large Electric Fields

As outlined in Sect. 14.2.1 it is not possible to distinguish between the homoge-
neous and the heterogeneous scenario in the linear response regime. However,
as the calculations presented in this section confirm, this becomes possible in
the non-linear regime. Non-linear experiments can be performed in many dif-
ferent ways. The most common modes are based on large amplitude continuous
wave excitation and on the superposition of a.c. fields with large d.c. bias fields.
For a description of the more conventional non-linear response theory the
reader is referred to the literature [47–50]. The approach implemented in NHB
is different in that it employs a pump, wait, and probe scheme. Consequently this
three-step procedure will also be reflected by the computations that we present
further below in this section.
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One of the key ingredients of NHB, which has to be considered as a difference
spectroscopy, is the phase cycle schematically depicted in Fig. 14.4. With each
pump, wait, and probe scan (e.g., traces i or ii in Fig. 14.4) a non-linear signal will
be generated, i.e., one which can be expanded in general powers of the external
field. Usually the perturbation is kept so small that only terms up to quadratic
order need to be taken into account. Although this restriction is not necessarily
required, it simplifies the development of the theory and the interpretation of
the experimental results considerably. Then, the decisive trick of NHB is to sub-
tract the linear contribution that can be probed, e.g., by a simple step response
(cf. traces iii or iv in Fig. 14.4).

14.2.3.1
The Model of Asymmetric Double Well Potentials

Analogous to the phase space description summarized in Sect.14.2.1 the NHB sig-
nal can be given in terms of the appropriate (higher-order) Liouville operators
[51]. Based on these very general considerations reorientational models can be
formulated along the lines presented in the previous section [52]. The treatment
of these nonlinear models is, however, somewhat more involved as compared to
what we have seen above. Therefore, in the following we will restrict discussion to
the relatively simple case of an ADWP. Nevertheless, we will present the deriva-
tions in a way from which the general principles should become clear. It is obvious
that an ADWP is not suited as a starting point for the description of, e.g., a super-
cooled liquid. It has to be emphasized that this model is only the simplest out of a
class of more realistic approaches which are discussed elsewhere [51, 52].

The three-step procedure of NHB is taken into account as follows. First,
during the pump process the signal can be calculated for the ADWP from
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Fig. 14.4. Pump, wait, and probe sequence used for NHB experiments. In the preparation pe-
riod (duration 2πNΩ/Ω for NΩ cycles with pump frequency Ω) a pump field EP(t) is applied to
the sample (traces i and ii). The modified polarization can (partially) re-equilibrate during tw
and is then detected as the step response in the linear response regime. For comparison the
equilibrium response is also measured (traces iii and iv). On the right hand side a short hand
notation for each scan is introduced. In the experiment usually another four scans are per-
formed



Eq. (14.22). Below this will be carried out to second order in the pump field
EP(t). Thus, after a pump of duration tp one gets the modified population differ-
ence n(tp). Second, during the waiting time, tw, i.e., in the absence of an external
field, we can use Eq. (14.26) with n(tp) as initial distribution to obtain n(tw).
Finally, in the third step the modified response, P*(t) ~ n(t), is calculated ac-
cording to Eq. (14.24) with the initial population difference now given by n(0) =
n(tw). Thus one needs to compute the sequence of population differences briefly
summarized by neq → n(tp) → n(tw) → n(t) [or formally more correct: neq →
n(tp) → n(tp + tw) → n(tp + tw + t)]. We note that in the present context, accord-
ingly, pi(tp) should be read as a modified population of the orientation wi.
Therefore, speaking in more general terms, the effect of the pump process is to
create a modified orientational distribution.

Since during the wait and the probe steps only small (or no) fields are in-
volved, it is the calculation of n(tp) from Eq. (14.22) which is the crucial step. In
Appendix 14.1 we outline how to solve this equation in quadratic order. The re-
sult for a pump field eP(t) [cf. Eq. (14.20c)] is

(14.27)

with the definitions

(14.28a)

(14.28b)

When deriving these expressions we have restricted ourselves to pump sequenc-
es which are cyclic in the sense that . It is important to realize that
Y(Ω) is linear in the pump field while for X(Ω) it enters quadratically. For rea-
sons that will become obvious shortly X(Ω) is called excitation profile.
Furthermore, Y(Ω) = exp(–tp/τ)Ap(τ) is directly related to the amplitude func-

tion of the pump field, , cf. Eq. (14.7).
By plugging the results from Eq. (14.27) into Eq. (14.26) and in turn using

them as the initial condition for Eq. (14.24) the resulting polarization is

(14.29a)

(14.29b)

(14.29c)

with ζ ≡ Nμ4 〈cos4θ〉/[(2kBT)3] = Nμ4/[40(kBT)3]. The phase cycle can now 
be understood to involve two steps. First, one subtracts the results from 
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scans i and ii (cf. Fig. 14.4) and obtains the modified polarization
. This eliminates contributions

which are linear in the pump field, i.e., the term Y(Ω) which represents the po-
larization after-effect of the pump cycle. Then by subtracting the term P(ES; t)
[cf. Eq. (14.25)] which is linear in the probe field (implemented by scans iii
and/or iv) one arrives at the NHB signal ΔPADWP(t) = P*(ES, EP; t)–P(ES; t). This
central result of our computation can be written as

(14.30)

with CADWP(δ,ES) ≡ ζ ESδ 2(1–δ 2). In the following we will discuss in turn the am-
plitude coefficient CADWP(δ, ES), the excitation profile X(Ω), as well as the t and
tw dependences of ΔPADWP(t). The amplitude coefficient shows that the NHB 
signal is proportional to the probe field ES. Note that for small δ one has 
CADWP ~ Δ2, cf. [53], thus CADWP vanishes for Δ (or δ) → 0.

The meaning of the term excitation profile is best illustrated when applying NΩ
cycles of a sinusoidal pump field, EP(t) = EP,0sin(Ωt). In this case Eq. (14.28b) yields

(14.31)

with ε′′(kΩτ) = kΩτ/[1 + (kΩτ)2] and k = 1,2. Figure 14.5 reveals that XSIN(Ω) is
strongly peaked. This implies that the modification of polarization is maximum
only for Ωτ ≈ 1. Thus if the response is dynamically heterogeneous, then fre-
quency selective changes can be achieved using NHB. In other terms, slower and
faster relaxations are much less affected by the pump and the respective modi-
fication tends to vanish if τ is not close to Ω–1. We should mention that intrinsic
nonexponential responses can also be considered. In the fully homogeneous sce-
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Fig. 14.5. Scaled excitation profiles X(Ω)/E2
P,0 for a single cycle of a sine wave (solid line),

Eq. (14.31), and of a square wave (dashed line), Eq. (14.32), pump field. Less suitable for fre-
quency selective NHB experiments is XSQR(Ω) since square wave excitation addresses the en-
tire frequency range below about Ωτ ≈ 1. On the high frequency side both profiles exhibit a
Ω–2 dependence. For comparison ε′′(ω) = ωτ/(1 + ω2τ2) is also shown (dotted line)



nario no spectral selectivity can be achieved [31]. This was recently demon-
strated explicitly by considering time dependent relaxation rates [51]. In such a
case broadened spectral holes arise which for variable pump frequencies all ex-
hibit the same shape and only differ in their amplitudes.

From Eq. (14.31) it is seen that XSIN(Ω) is determined by the absorbed energy
per cycle [~ ε′′(Ωτ)E2

P,0]. This insight forms an essential input into the approach
discussed in Sect. 14.2.3.2. The term ε′′(2Ωτ){1 – exp[–2π NΩ/(Ωπ)]} can be in-
terpreted to arise from a non-monochromatic excitation [53]. For Ωτ � 1 one
has XSIN(Ω) ~ Ω2 independent of NΩ. Up to Ωτ = 1 the deviations between the
XSIN(Ω) curves for all NΩ are smaller than 0.2%. On the high-frequency side
XSIN(Ω) ~ Ω–3 for NΩ = 1. For NΩ → ∞ one finds XSIN(Ω) ~ ε′′(Ωτ)ε′′(2Ωτ)
which is peaked at (Ωτ)m = 1/√22 with XSIN[(Ωτ)m] = 1/3. The appearance of
higher harmonics of the driving frequency resembles results known from other
non-linear spectroscopies [54, 55], e.g., from second harmonic generation. It
should be noted that, when viewed on a double logarithmic plot, the excitation
profile XSIN is narrowest for NΩ = 1 and slightly broader for NΩ → ∞; however, in
both cases the full width at half maximum is about 0.8 decades.

For a square wave excitation defined by EP(t) = +EP,0 for t ≤ tp/2 and EP(t) =
–EP,0 for tp/2 < t ≤ tp, one finds from Eq. (14.28b)

(14.32)

The associated frequency, Ω = 2π/tp, is used in the latter expression in order to
facilitate comparison with XSIN(Ω), cf. Fig. 14.5. For the square wave excitation
one addresses essentially all relaxation processes that are slower than about
tp/2π. This remotely resembles the low-pass filtering used in multidimensional
NMR [12, 13]. However, since in all experiments to described below sinusoidal
pump fields were employed, we will not discuss square wave and other pump
field sequences further.

The dependence of ΔPADWP(t) on the detection time t is given by (t/τ) exp[–t/τ].
This expression is proportional to d exp(–t/τ)/d ln t ~ exp(–t/τ) – exp(–t/τ*) for 
τ unequal but close τ*. In Appendix 14.2 we define this modified relaxation time
τ* more precise-ly and show that for the situation we discuss here (and tw = 0) it is
given by τ* = τ [1 – ζ δ2X(Ω)/χDWP] < τ. This demonstrates that for the ADWP
model the modified polarization response is P*(t) = χDWPES(1 – δ2)(1 – e–t/τ *).
This corresponds to a simple shift of the polarization along the logarithmic time
axis.

To make the small differences between P*(t) and P(t) clearly visible one can
not only plot the vertical difference, ΔPADWP(t), but also the horizontal one. The
latter can be defined by Δ(t) ≡ (t* – t)/[t ln(10)], where t* has to be evaluated
from the condition P*(t*) = P(t), cf. Appendix 14.2. An example for P(t) and 
P*(t) is depicted in Fig. 14.6a. In Fig. 14.6b,c we show ΔPADWP(t) and Δ(t), re-
spectively. Note that, unlike in the case of a distribution of relaxation times, in
the situation considered here Δ(t) is obviously not explicitly time dependent.
Our notation Δ(t) is thus only intended to avoid confusion with the asymmetry
Δ. The maximum in the vertical difference (Fig. 14.6b) shows up at t = τ ; thus
ΔPADWP(t = τ) = ζESδ 2X(Ω)e–1, cf. Eq. (14.30). In Appendix 14.2 we show that

X E t t tP p p pSQR ( ) { ( / ) exp[ /( )] exp( / )},Ω = − − − −2
0 1 2τ τ τ
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Δ(t) = ζδ2X(Ω)/[χDWPln(10)] which gives Δ(t) = ΔPADWP(t = τ) e/[χDWPES ln (10)].
In view of the non-exponential polarization responses almost ubiquitous-

ly found in experiments it is worthwhile to mention briefly that in the presence
of a distribution of relaxation times Δ(t) becomes explicitly time dependent;
see Appendix 14.2. In the limit of a completely homogeneous response, on the
other hand, the horizontal difference is again time independent. The NHB sig-
nal at a single Ω thus suffices to distinguish the two opposite scenarios using
the Δ(t) representation, while several pump frequencies are required if the
ΔP(t) format is chosen. Then the homogeneous case is recognized from NHB
signals which only shift in amplitude but not in shape and they always display
a maximum at the same time t, if Ω is varied. The heterogeneous scenario re-
veals itself by spectral selectivity, i.e., the maximum in ΔP(t) depends on the
pump frequency.

Returning to the ADWP model, the dependence on the waiting time which
variously has been called hole refilling, re-equilibration, or recovery is simply
described by the factor exp(–tw/τ) appearing in Eq. (14.30). This means that
dipolar reorientation and hole refilling are both governed by the same time con-
stant τ, implying that at least in the framework of the nonlinear ADWP model
presented in this section, the waiting period does not contain information that
is not already available from the detection time dependence, ΔPADWP(t). Thus, if
this model applies (which may not be always the case, cf. Sect. 14.4.3) then NHB
is not able to contribute significantly to the question regarding the heterogene-
ity lifetime. Under these circumstances one merely measures the decay of the
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Fig. 14.6. Schematic repre-
sentation of: a step response
function Φ(t) and modified
response Φ *(t);
b horizontal difference
ΔΦ(t); c vertical difference
Δ(t) with the ordinate scales
in arbitrary units. ΔΦ(t) ex-
hibits a maximum for t = τ
and is 0.94 decades wide



non-equilibrium orientational distribution which has been generated by the
pump process.

The origin of this modified orientational distribution may be understood as
follows. The NHB effect is quadratic in the pump field amplitude and the distri-
bution thus created is proportional to cos2θ [or P2(cosθ)]. It should be noted that
prior to the burn cycle one has p0(w) = 1/(4π) for an isotropic system. The mod-
ified response ΔP*(t) involves terms proportional to cos4θ because (i) another
factor cosθ arises from the (linear order in the) step field and (ii) yet another one
from the fact that the expectation value of μ(w) = μcosθ is calculated. Based on
these consideration it becomes clear that, within the present approach, the re-
covery taking place during tw traces essentially the decay of a cos2θ [or P2(cosθ)]
distribution. The associated time scale hence is τ2. Depending on the motional
model this time constant may or may not be (slightly!) different from τ1 [56].
These calculations in the framework of the ADWP model thus show that NHB
can be understood as a linear response experiment, however, not starting from
an equilibrium orientational distribution, but from one which has been modi-
fied in a frequency selective way.

Aspects related to dynamic exchange [45] obviously cannot be addressed
when dealing with two-site models. These features, which are known to play a
prominent role particularly in glass-forming liquids [57], require a more so-
phisticated treatment [52].

Broadened susceptibility spectra occurring in solids are often ascribed 
to random fields. In the presence of random fields, i.e., with a distribution 
of asymmetries (and barrier heights) f (δ,V) the relaxation times τ = τ (V,δ) 
are also distributed. Thus the shape of the NHB can be written as ∫ dδ
∫ dVf (δ,V)ΔPADWP(t,δ,V). Of course f (δ,V) cannot be chosen at will but has 
to be adjusted such that it reproduces the step response as well. The spectral
selectivity also of this random field scenario implies that only relaxation pro-
cesses for which Ωτ ≈ 1 are affected by the pump process. This means that re-
covery proceeds on the time scale set by Ω–1.

Finally, we would like to discuss briefly how the present approach relates to the
standard treatment of nonlinear phenomena. In the latter case for isotropic sys-
tems an expansion of the (quasi-static) response involves only odd powers of the
external field [47] while a prominent feature of the calculated NHB signal is that it
exhibits an even (i.e., quadratic) dependence on the pump field. This seeming
problem can be resolved by noting that according to Eqs. (14.30) and (14.31) or
(14.32) ΔPADWP(t) is also cubic as in ordinary non-linear response theory, albeit in
a particular fashion, ΔPADWP(t) ~ ESE2

P, 0. Furthermore, it is clear that unlike con-
ventional cubic non-linearities, NHB signals cannot be generated by a static field.
Rather they appear as a consequence of the application of particular sequences of
time-dependent fields. Thus NHB may be considered as a dynamic effect.

Keeping these considerations in mind it is nevertheless instructive to com-
pare the magnitudes of typical static non-linear and of NHB effects. For the 
former one has P = χ1E + χ3E3 + … = P1 + P3 + … This particular dynamic 
non-linearity can show up in a regime in which the Langevin function can be
approximated linearly to any desired level. In this limit these non-linearities will
of course not be observable in a real experiment for purely practical reasons
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with the linear and non-linear susceptibilities given by and
, respectively [47]. Thus the static third-order non-linearity

is and for the DWP a similar expression can be
derived. This result can be compared with the magnitude of the NHB signal sNHB
≡ ΔPADWP(t = τ)/|P(t → 0) – P(t → ∞)| in its maximum which corresponds to

, cf. Eq. (14.31). Using Eqs. (14.25) and (14.30) one can thus
estimate that sNHB = E2δ 2ζ/(3χDWPe) = [δ 2/(20 e)] [μE/(kBT)]2. Thus for δ ≈ 1 one
finds that the magnitudes of both effects, i.e., s and sNHB, are very similar.

In the present section we have considered a simple stationary Markovian
model as the simplest example out of a family of more realistic scenarios [51,
52]. Since it is known that, e.g., in supercooled liquids the reorientational dy-
namics is non-Markovian [12, 57], it may be worthwhile to discuss alternative
descriptions.

14.2.3.2
The Box Model

Previously, a specific model has turned out useful for the analysis of NHB results
of supercooled liquids and other materials. Since this so-called “box model” has
been discussed previously [31, 58] here we will only outline some of its features
and briefly compare the results obtained in this framework with those of the for-
mulation presented above. The box model is based on the notion of spectrally
distinguishable features (these are the “boxes”, cf. Fig. 14.3 of [31]) which may or
may not be associated with nanoscopic spatial regions in disordered materials.
One of the starting points of the model is that, in addition to the thermodynamic
temperature T, each box i is characterized by a non-thermodynamic quantity Ti
which has the dimensions of a temperature. This quantity has variously been
called local “fictive” [59], “internal” [60],“structural” [61], or “effective” temper-
ature [62]. Via a modified Arrhenius or more precisely Tool-Narayanaswamy
[63] relationship τi ~ exp(B/Ti) any change ΔTi leads to a modification of the ef-
fective relaxation time τi of box i via

(14.33)

Here the activation barrier B for simplicity was chosen to be independent of i
and of Ti. It should be realized that the features described so far may be related
to the notions advanced by several authors for a description of supercooled liq-
uids [20, 64–67]. Furthermore, direct evidence for a distribution of time-depen-
dent local temperatures exists for a crystalline model glass, cf. Sect. 14.5 [68].

The following two points are more specific for the present context: (i) energy
input is regarded as spectrally selective, with the time derivative of the amount
of energy absorbed by box i from a sinusoidal field of amplitude EP, 0 assumed to
be given by
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and (ii) flow of energy between box i and the thermal bath proceeds at a rate κi
and that between different boxes with rates κij.With the (constant) bath temper-
ature denoted as TB and the heat capacity of the boxes given by Δcp the pump
process may be described by a rate equation for each box [31]

(14.35)

if the rates κij are set to zero. Effects of incorporating them in various ways have
been discussed [31]. Also several choices for the rates κi were considered [16, 31,
58], among them κi = 0 and κi = 1/τi, corresponding to absence of energy flow out
of the boxes and the existence of a unique time scale for each box, respectively.

If the above view of glass formers is adopted, then Eq. (14.35) may be accepted
as defining a simple model. Following the computations presented in
Sect. 14.2.3.1 [51] the concept of energy selectivity is well justified (see also
Fig. 14.3 in [31]). A detailed analysis shows that the simple form for Q̇(t),
Eq. (14.34), is only recovered for this model if three ad hoc assumptions are
made. The feedback between polarization and dielectric displacement (which
may lead to an unphysical potential decrease of fictive temperature) is ne-
glected. Likewise the slight decrease in lnτi associated with the small increase in
Ti during the pump is disregarded. Finally, since the above expression is usually
derived for the steady state, it becomes clear that transient contributions are
omitted. Taking the latter into account one finds that after one sinusoidal pump
cycle the absorbed energy as compared to Eq. (14.35) is reduced by a factor 
bi ≡ (4 π)–1(2 Ω/κi)3[1 + (2 Ω/κi)2]–1[1 – exp(– 2π κi/Ω)]. This factor is about 0.13
for κi = Ω and approaches unity for κi → 0. The latter implies that in the 
absence of hole refilling and with transient effects neglected the energy absorp-
tion per cycle, Q = πε0ε′′(Ωτi) ΩE2

P, 0, is recovered.
The solution of Eq. (14.35) yields a time dependent τi(t) ~ exp[B/Ti(t)].

Now, in order to calculate the polarization it is assumed to obey 
, cf. Eq. (14.23). Since τi(t) is a function of E(t) [via Q̇

in Eq. (14.35)] this latter equation is not independent of Eq. (14.35). Thus these
two differential equations have to be solved simultaneously in quadratic order
in the pump field amplitude. Such a calculation for an integer number, NΩ, of
pump cycles yields for the modified response function Φi

*(t) = Φi(t) + ΔΦi(t)
with Φi(t) = exp(–t/τi) and

The waiting time dependence implied by this model is easy to understand.
Subsequent to the pumping period Q is zero and the first term on the right hand
side of Eq. (14.35) vanishes so that equilibrium is approached as exp(–κitw). A
comparison of Eq. (14.36) with the corresponding expressions for the ADWP
model, Eqs. (14.30) and (14.31), shows that for κi = τi

–1 the NHB signal computed
for the current approach behaves very similar to that dealt with in Sect. 14.2.3.1,
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thus suggesting that the assumptions made here are not critical. If one attempts
to describe the recovery process only (and thus to circumvent possible problems
associated with a detailed description of the pump process) it may be worth-
while to parameterize the shape of the NHB signal, ΔΦ, in terms of a distribu-
tion of effective temperatures Ti. The correlation between the shape of ΔΦ(t) =
ΣiΔΦi(t) and the hole refilling time which may be anticipated on the basis of this
suggestion [69] can be checked experimentally [70].

If reorientation and hole refilling are governed by the same mechanism, then
the condition κi = τi

–1 is expected to hold. It is easy to imagine scenarios for
which this is not the case, i.e., for which relaxation time and recovery time are
not strictly correlated [51]. Of course for EP → 0, the relation κi = τi

–1 should be
valid in any case.

14.3
Experimental Aspects

Pulsed dielectric spectroscopy and nonresonant spectral hole burning are time-
domain techniques which can be carried out in several ways. An important dis-
tinction is whether the polarization is detected under conditions of constant
voltage or under conditions of constant charge. A sketch of the general set-up
used in the first case is shown in Fig. 14.7a. It is essentially based on the time-
honored Sawyer-Tower circuit [71]. The desired field sequence is produced us-
ing an arbitrary function generator and then passed through a high-voltage am-
plifier. The voltage across the very low-loss reference capacitor (with Csample <<<
Cref) is essentially proportional to the dielectric displacement and hence the po-
larization of the sample. The reference voltage is detected using a high-imped-
ance amplifier and then digitized. This allows for a straightforward implemen-
tation of the pump, wait, and probe scheme depicted in Fig. 14.4.

Measurements under constant-charge conditions can be performed using the
circuit adapted from [72] (cf. Fig. 14.7b). In the pump and wait parts of the ex-
periment the sample is connected to the high-voltage amplifier. Then, immedi-
ately (< 0.5 ms) after the application of the detection voltage,a fast relay switches
the capacitor to the high-impedance device. For electrically conducting samples
this set-up is to preferred over the one presented above. This is because it avoids
space charge effects which otherwise would hamper proper signal detection
during long acquisition times.

For both approaches essentially the same dedicated components (a high-volt-
age and a high-impedance amplifier) are used. It should be mentioned that for
pulsed dielectric spectroscopy the high-voltage amplifier will usually not be re-
quired. Suitable bipolar high-voltage amplifiers are commercially available.
Concerning high-impedance amplifiers for many applications it is preferable to
work with battery powered devices in terms of signal to noise ratio. The use of
home-built impedance transformers is advisable in view of the dielectric break-
down which occasionally may occur, particularly in the study of supercooled
liquids. Such events not only call for a replacement of the sample but usually also
of the high-impedance amplifier.
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Most NHB experiments were carried out in the time range between about
10–3 s and 102 s. However, it does not present any difficulties to extend the range
towards shorter times by improving on the high-voltage amplifier and/or the
switching devices,and to extend towards longer times by further minimizing the
unavoidable leakage currents appearing in the detection circuit.

For the experimental protocol of NHB phase cycling is essential, since the
hole burning signal is obtained as the difference between step response and
modified response.A minimum of four scans is required as sketched in Fig. 14.4.
However, in order to recognize and eliminate possible artifacts it has proven
useful to employ an eightfold cycle as summarized in Table 14.1. Note that each
of the scans comes as a positive and negative pair with the correspondences be-
ing 1 and 8, 2 and 7, 3 and 6, 4 and 5, and also 1 and 2 (as well as 7 and 8). The re-
dundancy inherent in the extended cycle allows one to check thoroughly the re-
producibility of the measurements. Furthermore, this phase cycle efficiently
suppresses slight asymmetries which may sometimes be present in the output of
the driving amplifier.An experimental example of the various scans is shown for

Fig. 14.7. Schematic representation of two types of NHB spectrometers. In both set-ups a dig-
ital to analog converter (located in a computer) drives the high-voltage (×1000) amplifier. The
detection circuits consist of a high-impedance (1015 Ω) operational amplifier and a fast volt
meter. Circuit: a is employed for the experiments that require detection under a constant field;
b for detection under constant charge conditions. In (b) Csample is connected to the high-volt-
age amplifier during the pump and wait periods. Almost immediately after the application of
the pump voltage a high-resistance relay connects Csample to the detection circuit (cf. the
dashed line)
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cyclo-octanol [73] in Fig. 14.8, from which the symmetry of the phase cycle be-
comes obvious.

Prior to NHB measurements a number of checks should be performed. First
the recycle delay, td, between each scan of the phase cycle has to be chosen suffi-
ciently long. In the case of the supercooled liquids, supercooled plastic crystal
and the ion conductor this was particularly simple to achieve since one only
needs to set td to 3…5 times the mean primary or conductivity relaxation time,
respectively. For the relaxor materials the recycle delay was chosen such that the
results did not depend on td. If td is chosen too short then, even in practically ex-
ponentially relaxing model systems, aging effects can be produced which at first
glance can look somewhat similar to NHB [74, 75].

Another important issue is to ascertain that one works in the linear regime
with respect to the step field. In view of the considerations outlined in
Sect. 14.2.3, above, the NHB investigations should be done in the quadratic
pump field regime. Since NHB is a difference spectroscopy the effective signal is
often relatively small. Then large pump fields are required to achieve a satisfac-
tory signal to noise ratio. To illustrate this point we compile typically employed
pump fields in Table 14.2. In order to generate these fields, thin samples have
been used in the studies of the liquids glycerol and propylene carbonate (50 μm)
[16], of the glassy ionic conductor 2 Ca(NO3)2 · 3 KNO3 (25 μm) [76], as well as
of the supercooled plastic crystal cyclo-octanol (10 μm) [73].

By comparing with the expressions for the magnitudes for the NHB signals,
as given in Sect. 14.2.3, one recognizes that the magnitude of the hole depths can
also be affected by several other factors. An important question is how pro-
nounced the temperature dependence of the mean relaxation time is.At least for
supercooled liquids this property is directly related to their kinetic fragility [77].

Table 14.1. Signs of pump and probe voltages. The zero implies that no pump voltage is ap-
plied at all. To obtain the final NHB signal the scans have to be co-added taking into account
the signs given in the last row

Step # 1 2 3 4 5 6 7 8

Pump 0 0 + + – – 0 0
Probe + – + – + – + –
Detect + – + – + – + –

Table 14.2. Typical values for pump fields, maximum dielectric losses, energy absorptions
(~ε′′E2

P,0), and hole depths (measured in terms of Δm) for some materials for which NHB ex-
periments were carried out

Material Glycerol CKN 90PMN-10PT

EP,0 [V/mm] 20,000 10,000 50
ε′′max 25 1.5 3000
ε′′E2

P,0 [(kV/mm)2] 10,000 150 7.5
Δm [decades] 0.03 0.01 1.5



On the other hand, one should realize that very strongly temperature dependent
relaxation times impose also more stringent conditions on the stability of the
sample temperature. Furthermore, the specific heat contributions, Δcp, of the de-
grees of freedom addressed by the pump, cf. Eq. (14.35), may be quite different
in different situations. It is well known that Δcp associated with the primary re-
laxation of supercooled liquids is readily accessible with standard methods.
However, the much smaller contributions which are due to the arrest of “decou-
pled” processes has only been studied occasionally, e.g., for the freezing of ions
in glassy networks [78] or for the slow-down of secondary processes in disor-
dered crystals [79]. Then, the considerations near the end of Sect. 14.2.3.1 raise
the possibility that also non-linear susceptibilities play a role. When using large
electrical fields, a proper experimental determination in supercooled liquids
[80] may be more difficult than it is for rigid solids [81].

Finally, we should note that unless explicitly stated otherwise all experiments
reviewed in this chapter were collected after excitation with NΩ = 1 cycle of a si-
nusoidal pump field. Also, if below we do not give explicit values for the waiting
time, this always should be read as the shortest waiting time (of tw = 1 ms) that
can conveniently be implemented by our current dielectric apparatus.

14.4
Applications

14.4.1
Supercooled Liquids and Plastic Crystals

14.4.1.1
Pulsed Dielectric Spectroscopy

The main advantage of pulsed dielectric spectroscopy is that it allows one to em-
phasize (or suppress) specific regimes of the dielectric response. This can be
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Fig. 14.8. Polarization P(t) of
cyclo-octanol monitored
subsequent to applying vari-
ous field sequences, cf.
Fig. 14.4. The step response
functions (0+ and 0–) 
are characterized by 
〈τ〉 = 0.13 s and β = 0.74.
Note that the cycles with
positive pump fields [traces
(i) and (ii) in Fig. 14.4], and
hence with EP < 0 in the 
second half cycle, yield 
P(t → 0) < 0. For further 
details see [73]



useful for supercooled monohydric alcohols for which a strong Debye-type re-
laxation dominates other high-frequency contributions [82]. However, also for
other viscous liquids one finds simultaneously a strong dielectric loss peak and
a weak so-called wing region at high-frequencies [1]. Under these circumstances
one may aim at emphasizing the short-time contributions to the response. This
can be achieved using the single-pulse experiment in which an electric field of
constant magnitude, ΔE, is switched on for a time interval t1. In Fig. 14.9 corre-
sponding experimental results for supercooled propylene carbonate just above
its glass transition [83] are shown. If t1 is chosen sufficiently long then one mea-
sures the structural relaxation which in this example can be parameterized us-
ing P(t)/P0 = Φ(t) = exp[–(t/τ)β] with 〈τ〉 = 9.9 s and β = 0.71. For pulse lengths
comparable to or shorter than the relaxation time τ it is seen that the response
functions decay considerably faster, with effective relaxation times τS. Adopting
the distribution picture this is due to the fact that the amplitude function here is
given by AS(τ) = [1 – exp(– t1/τ)] ΔE. In other words one may then say that while,
near the end of the pulse, the faster dipoles are already oriented by the electric
field the slow ones did essentially not respond. Recourse to the distribution con-
cept is, however, not necessary since the effective response functions ΦS(t) are
fully described by Eq. (14.4) which simply reads here ΦS(t) = Φ(t) – Φ(t + t1).
This expression immediately shows that for t1 → 0 the impulse response,
–t1 ∂Φ(t)/∂t, is obtained. For finite t1 the effective relaxation times are given by

(14.37)

The latter equality with ξ ≡ (t/τ)β and P(β–1, ξ) denoting the incomplete Gamma
function [84] only holds if Φ(t) is of the Kohlrausch form. In Fig. 14.10 we
demonstrate that the theoretical results based on these considerations compare
favorably with the experimental data.

Various other applications of pulsed dielectric spectroscopy are described in
[30]. Here we only mention a method allowing to map out distributions of re-
laxation times directly from time domain measurements. The pulse sequence is
schematically depicted in Fig. 14.11.After an electric pulse of duration t1, a wait-
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Fig. 14.9. Normalized polar-
ization P(t)/P0 of propylene
carbonate as measured at T
= 160.0 K subsequent to the
application of an electrical
pulse of length t1 as shown
as inset. For the longest t1
the step response function
is measured. The double bar
indicates the acquisition pe-
riod. Reproduced from [30]



ing interval t2 at zero field is inserted before the acquisition of the polarization
P(t) is started. For sufficiently broad distributions g(τ) one finds that P0 ≡ P(t →
0) as measured as a function of t1 (with the ratio t1/t2 kept fixed) is proportional
to the distribution. More precisely one has g(〈log10τ/s〉) ~ P0(log10t1/s) [30].
Corresponding experimental results for a polymeric material are shown in
Fig. 14.11. For these measurements we have chosen t1/t2 = 10 which implies that
the associated amplitude function AB(τ) = exp(– t2/τ) [1 – exp(– t1/τ)] ΔE is
peaked near τ ≈ 0.6 t1. Hence there is a slight shift of 0.23 decades between top
and bottom axes in Fig. 14.11. For t1/t2 = 10 the full width at half maximum of
AB(τ) is only slightly larger than the Debye width of 1.14 decades. The ability to
map out g(τ) may be rationalized by noting that the slowest dipoles are not
aligned by the electric field during t1 while the fastest have already relaxed dur-
ing t2. Thus only a band of intermediately fast relaxations contributes to the sub-
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Fig. 14.10. Normalized non-
equilibrium relaxation
times 〈τS(t1)〉/〈τ〉. The solid
line has been calculated
according to Eq. (14.37).
For illustration purposes
the dashed line shows re-
sults for β = 0.5. Adapted
from [30]

Fig. 14.11. The time dependent polarization of poly(lauryl methacrylate) (PLMA) is shown in
the frame on the right hand side for pulse durations (from left to right) t1 = 1.6, 8.9, 50, 281,
1580, and 8900 ms. The employed electric field sequence is schematically depicted as inset. The
left part of the figure presents the distribution of relaxation times g(τ) as a function of
log10(t1/s) (lower axis) and 〈log10 (τ/s)〉 (upper axis). Reproduced from [30]



sequently measured polarization response. This statement alludes to the notion
of a distribution of dipolar relaxation times. However, according to the discus-
sion in Sect. 14.2.1 up to this point it has remained open whether the distribu-
tion concept is more than a matter of mathematical convenience. It has to be re-
iterated that the results from frequency selective NHB, which we describe next,
indeed demonstrate that it is more than that.

14.4.1.2
Nonresonant Spectral Hole Burning

For our initial NHB experiments we have chosen propylene carbonate and glyc-
erol. Both supercooled liquids are well studied using dielectric and other tech-
niques [1, 37]. They exhibit a sizable maximum dielectric loss (ε′′m in the range
of 20–30) which is, however, only moderately broadened.While the large ε′′m is fa-
vorable if the NHB effects are related to the absorbed energy, the broadening of
about 1.5 decades implies that the pump frequency cannot reasonably be varied
over very wide ranges. Propylene carbonate has the advantage that it is quite
fragile [77], i.e., a given temperature variation is associated with a particularly
pronounced change in relaxation time.

In Fig. 14.12 we show NHB results obtained for propylene carbonate just
above Tg. In the upper part of this figure we compare the step response with the

548 14 Principles and Applications of Pulsed Dielectric Spectroscopy

Fig. 14.12. a Equilibrium
and modified responses of
propylene carbonate repre-
sented in terms of the di-
electric relaxation constant.
(b, c) The NHB signals Δε(t)
b and Δ(t) c are defined
here as the logarithmic dif-
ference in the times be-
tween modified and step re-
sponses. In frame (a) the
lower and upper pair of
curves have been offset for
clarity. Adapted from [16]



modified response. Both are plotted in terms of the dielectric constant for sev-
eral pump frequencies Ω. Already in the raw data it is seen that the large pump
frequency modifies the dielectric response most at short times and vice versa.
This finding reveals not only the spectral selectivity of NHB, but it also provided
the first direct experimental evidence that the dipolar relaxation of a super-
cooled liquid is heterogeneously broadened. As we have pointed out previously
the finding of dynamic heterogeneity not necessarily implies the existence of
spatial heterogeneity. In this context it is interesting to mention that experi-
mental evidence for spatial heterogeneity of a glass-forming substance, slightly
above Tg, was recently obtained using multidimensional NMR techniques [85].

Returning to the data shown in Fig. 14.12 one recognizes that even with the
relatively large pumping fields of UP = 900 V across the capacitor gap of 50 μm
(in conjunction with the likewise quite sizable probe voltage of US = 150 V) the
NHB effect here is smaller than about 1.5% (cf. Fig. 14.12b). In order to bring out
the deviations between step response and modified response more clearly in
Fig. 14.12b,c we plot the vertical differences, Δε(t), and the horizontal ones, Δ(t),
respectively (cf. Fig. 14.12a). The maximum modification Δεm as seen in the ver-
tical difference signal strongly depends on Ω (Fig. 14.12b). It is largest where the
slope dε(t)/d logt is largest.

Each one of the representations chosen in Fig. 14.12b,c has specific advan-
tages and drawbacks. Δε (or ΔP or ΔΦ) can be evaluated directly if, within a
phase cycle,data are recorded using the same timing scheme,whereas for the de-
termination of Δ(t) a (straightforward) interpolation procedure is required. The
assignment of a reference time becomes ambiguous if Δ(t) turns larger than 0.1
decades, say. In view of the small NHB effects in supercooled liquids this is not
an issue. The main advantage of the Δ(t) representation is that it allows for an
unambiguous distinction of homogeneous from heterogeneous responses, even
if a measurement at a single pump frequency is carried out. This is because for
completely homogeneous relaxations the modified and the step responses are
related by a mere shift along the logarithmic time axis, cf. Appendix 14.2. Thus,
the horizontal difference is constant, i.e., it does not depend on time [86].
However, in the heterogeneous case Δ(t) is not constant (cf. Fig. 14.12c).
Furthermore, via ΔTf (t) ≈ –Δ(t) ln(10)(kBT)2/B, [cf. Eq. (14.33)] the increase in
fictive temperature can directly be obtained from the horizontal difference Δ(t).
For propylene carbonate a change in Δ(t) of about 1% thus corresponds to a
ΔTf(t) variation of roughly 20 mK. From Fig. 14.12c one may infer that the ex-
perimental uncertainty in ΔTf is about 5 mK.When working very close to Tg one
may also express ΔTf using the liquid fragility, m = B(Tg)/[Tg ln(10)], here writ-
ten in terms of the temperature scaled effective barrier [77]. With ΔTf (t) =
–TgΔ(t)/m one recognizes that even for a low-fragility material like glycerol
(with m = 53), for which Δ(t) was in the percent range [31] as well, ΔTf/Tg is of
the order of 10–5. Thus for the NHB study of supercooled liquids stringent con-
ditions have to be placed on the stability of the sample temperature which
should be comparable in magnitude to ΔTf/Tg.

However, it is also important to check whether the conditions for the applica-
tion of the theoretical frameworks outlined in Sect. 14.2 are fulfilled. Here it is
important that the hole depths are proportional to ES and to EP

2. In Figs. 14.13
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and 14.14 we present corresponding data for supercooled glycerol. Both condi-
tions are nicely fulfilled, i.e., the NHB effect is proportional to the energy ab-
sorbed during the pump cycle (Fig. 14.13), and linear in the probing field
(Fig. 14.14).

In order to address the question regarding the nature of the broadening of di-
electric loss spectra it suffices to apply just NΩ = 1 pump cycle. However, it is also
interesting to see what happens if one increases NΩ. Corresponding data have
been reported and analyzed for propylene carbonate elsewhere [24, 31]. In
Fig. 14.15 we present corresponding data for glycerol in the format ΔPm(NΩ)/
ΔPm(NΩ → ∞) for two pump frequencies. In order to compare these data to one
another they are not simply plotted as a function of NΩ, but displayed vs the to-
tal pumping time 2π NΩ/Ω. It is clearly seen that for a sufficiently large number
of cycles the hole depths saturate.

Not only the build-up but also the refilling of the spectral holes has been stud-
ied for propylene carbonate and glycerol [16]. It was found that hole refilling and
step response take place on the same time scale. Based on the considerations
presented in Sect. 14.2.3.1 this is expected in the absence of extrinsic relaxation
effects and implies that also build-up and refilling of the spectral holes should
proceed on the same time scale. This expectation is seen to be confirmed by the
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Fig. 14.13. Maximum spec-
tral modification ΔPm ob-
tained for glycerol using
Ω/2π = 0.5 Hz. Note that in
Fig. 14.8 of [31] correspond-
ing data for Δm(UP) were
presented

Fig. 14.14. Hole depths ΔPm
as a function of the probe
voltage recorded for glyc-
erol using Ω/2π = 0.5 Hz



data shown in Fig. 14.15 [87]. The time variable appearing on the abscissa of this
plot is to be understood either as the total pumping time tp = 2π NΩ/Ω (corre-
sponding to the build-up experiment), or as the waiting time tw (for the recov-
ery experiment), or simply as the running time (when referring to the step re-
sponse).All data are scaled so that they represent a decay from 1 to 0. One clearly
recognizes that the results for build-up and refilling coincide within (the con-
siderable) experimental error. They reflect a dynamical process which is a factor
of about 1.4 slower than the step response. Note that this result which is based
on analyzing ΔPm is slightly different from that obtained by evaluating Δm(t)
[16]. In both cases, however, we may conclude that recovery and equilibrium re-
sponse occur practically on quite similar time scales.

While the results described in the foregoing refer to the primary or α-relax-
ation, it is of course also of interest to check what the nature of the response of
secondary processes is.About 30 years ago Johari and Goldstein [88] found a re-
laxation in the glassy state which today is often called the slow β-process. These
processes are typically characterized by symmetrically broadened dielectric
loss spectra that exhibit strongly temperature dependent widths. The dynamic
heterogeneity in these degrees of freedom was confirmed by deuteron NMR
[89]. Furthermore, using solvation spectroscopy the β-relaxation (of glassy 
D-sorbitol) was reported to be spatially uniform in the sense that no signs of “is-
lands of mobility” could be detected [90]. The latter optical technique relies on
the optical switching of the dipole moment of dye tracers. It may therefore 
be viewed as a local dielectric experiment which bears some resemblance to 
the electrical field relaxation experiment, i.e., the modulus technique [72].
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Fig. 14.15. The response functions measured for glycerol and scaled to decay from 1 to 0 is
shown as solid line. These data are compared with the hole depths from the waiting time ex-
periment ΔPm(tw) subsequent to pumping with one cycle, NΩ = 1. Also hole depths ΔPm(tp)
with tp = 2π NΩ/Ω recorded for variable NΩ and for several Ω are included; tp and tw are sim-
ply denoted as “time” in this plot. This representation demonstrates that within experimental
error the build-up [ΔPm(tp)] and the decay [ΔPm(tw)] of the spectral holes proceed on the same
time scale which is somewhat longer than the α relaxation time. For these data we employed
US = 150 V and UP = 1 kV [87]



Recently an NHB experiment was conducted for glassy D-sorbitol (Tg =
268 K) [91] with detection proceeding under constant charge conditions. This
glass-former previously was studied not only for its relatively strong β-process
[92] but also for its interesting aging kinetics [93]. The NHB investigation was
conducted at a temperature of 204 K. Here the loss spectrum is centered at
roughly 102 Hz and is about six decades wide.The results presented in [91] nicely
demonstrate the dynamic heterogeneity of the β-process of this molecular
glass-former and provide evidence for a pronounced spectral selectivity. The
latter led to a shift in the hole positions that can be expressed as tm = 0.25 Ω–α

with α = 1. Here the factor of 0.25 was ascribed to the fact that in these experi-
ments the usual electrical field pump was used in conjunction with a detection
under constant charge conditions. This fact has also to be taken into account in
the interpretation of the recovery experiments presented in [91]. Recently, bi-
nary glass-formers composed of α-methyl-pyridine and polystyrene were in-
vestigated using NHB for various compositions [94]. In each case evidence for
dynamic heterogeneity was found.

Cyclo-octanol belongs to the class of supercooled plastic crystals which bear
a number of similarities to glass-forming liquids [95–97], except that they often
exhibit a highly symmetrical center of mass lattice. In recent years the dielectric
properties of cyclo-octanol were extensively studied using broadband dielectric
spectroscopy [98, 99]. Near the freezing temperature defined by τ ≈ 100 s (for
simplicity also called Tg; Tg = 168 K) the dielectric loss spectra of cyclo-octanol
are about 1.5 decades wide (β = 0.74) and ε′′m is around 10 [98].

NHB experiments were carried out on cyclo-octanol several degree above Tg.
Some raw data are shown in Fig. 14.8. An analysis of the step response functions
show that here the mean dipolar relaxation time is 0.13 s [73]. For this crystalline
material the spectral selectivity, hence dynamic heterogeneity of the dipolar re-
laxation, as well as the EP

2 dependence of the NHB effect were confirmed. In
Fig.14.16 we present some results from the hole refilling after pumping at 0.3 Hz.
From these data it may be inferred that the recovery proceeds on about the same
time scale as the dipolar step response, similar to what has been found for the
supercooled liquids.

14.4.2
Ion Conducting Glasses

Also for ion conductors nonexponential relaxation phenomena are well known.
A number of techniques are available for studying the electric relaxation associ-
ated with the migration of charge carriers. The measurements can be presented
in various formats, e.g., as the frequency dependent complex conductivity, resis-
tivity, or dielectric function, but also in the time domain as the (dis-)charging
current or as the electrical modulus. Each specific representation emphasizes or
suppresses certain aspects of the experimental results and there is an ongoing
debate as to what is the most appropriate representation of electrical relaxation
data [100].However, there is also the more fundamental question concerning the
proper theoretical description of ion transport [101]. When dealing with glassy
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ionic conductors it is easy to imagine that the conductivity pathway is affected
by the structural disorder of the vitreous matrix. On the other hand, depending,
e.g., on the ion concentration Coulomb interactions among the mobile ions may
or may not lead to an effective averaging over these structural inhomogeneities.

On the basis of a kinetic model it has been argued that such an averaging
should be most pronounced in solid electrolytes for which there is a substantial
decoupling of the electrical from the structural degrees of freedom [102]. While
many fast ionic conductors are strongly decoupled [103], there is also a (small)
number of solid electrolytes which exhibit less pronounced decoupling. Among
the latter is the binary salt 2 Ca(NO3)2 · 3 KNO3 (CKN) which has been thor-
oughly studied using impedance spectroscopy [104–106] and other techniques.
Interestingly, in the vicinity of the glass transition (Tg = 333 K) of CKN it is pos-
sible to probe the structural relaxation via measurements of the d.c. conductiv-
ity [107].

According to the predictions put forward by Moynihan [102] more strongly
coupled systems should be characterized by a more heterogeneous ion dynam-
ics. The structural heterogeneity specifically of CKN [108] was already ad-
dressed using NMR in the liquid [109] as well as deep in the glassy states [110].
The electrical degrees of freedom can very effectively be probed by an experi-
ment such as NHB. One should realize, however, that in this case the response
functions reflect translational motions, while above we have primarily ad-
dressed reorientational ones. As mentioned in Sect. 14.3, above, this calls for a
detection scheme which avoids excessive accumulation of charges near one of
the sample electrodes.

In Fig. 14.17a we plot the so-called electric modulus M(t), i.e., the electrical
field relaxation of CKN as detected under constant charge conditions [76]. These
experiments were carried out about 33 K below Tg implying that the ionic mo-
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Fig. 14.16. Comparison of
polarization response
P(t)/P(0) (dots) and hole re-
filling ΔPm(tw)/ΔPm(0) (dia-
monds) after pumping at
0.3 Hz. The dotted line rep-
resents an exponential fit. In
the inset we show the spec-
tral holes (in arbitrary
units) at two different wait-
ing times recorded using 
US = 30 V and UP = 300 V.
The solid line is drawn to
guide the eye. Reproduced
from [73]



tions take place in an essentially rigid vitreous host. NHB signals recorded at
300 K are plotted for large pump frequencies in Fig. 14.17b and in Fig. 14.17c for
relatively small ones. It is clearly recognized that the behavior in these two
regimes is qualitatively different. When probing on a short time scale, Ω < ΩC,
(Fig. 14.17b) frequency selectivity is found, i.e., the maximum modifications
shift with Ω. This is the hallmark of heterogeneous response. However, for low
burn frequencies, Ω < ΩC, the maximum modification appears always on the
same time scale, irrespective of Ω. From the plot of the times of maximum
modification, tm, vs Ω, as shown in Fig. 14.18a, the crossover frequency ΩC can
easily be determined. Furthermore for Ω < ΩC it is seen that the maximum
modifications always occur near tm = τ.

This latter behavior can be understood if one assumes that when probed on
long time scales electrical relaxation is dynamically homogeneous. As men-
tioned above this scenario is associated with a uniform shift of the response
function along the logarithmic time axis. For small shifts the shape of the corre-
sponding NHB signal ΔMhom is thus nothing else than the derivative ΔMhom(t) =
Δ ln(τ/s)∂[M(t)/M∞]/∂ ln(t/s). If one assumes that M(t)M∞ = exp[–(t/τ)β] then
|ΔMhom(t) | = [(β B ΔT/T2) × (t/τ)β × M(t)/M∞] is maximum for t = τ. Here we
have again used Eq. (14.33) which thus allows one to associate the shift on 
the logarithmic time scale with a fictive or effective temperature change. With 
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Fig. 14.17. a Time depen-
dent field relaxation of
CKN. The line represents a
Kohlrausch fit with 
τ = 1.89 s and β = 0.79.
b,c The NHB signals are pre-
sented for Ω > ΩC and 
Ω < ΩC, respectively. The solid
lines in (c) correspond to ho-
mogeneous modifications
ΔMhom. Adapted from [76]



B = 4980 K, T = 300 K, (τ = 1.89 s), and β = 0.79 fictive temperature changes of
up to about 0.25 K can be inferred from the data presented in Fig. 14.17c. As
Fig. 14.18b shows, ΔTf (i.e., ΔMm) depends on the pump frequency, however, in a
manner which for Ω < ΩC is currently not fully understood. In the heteroge-
neous regime, Ω > ΩC, the magnitude of the hole burning effects is proportional
to the dielectric loss of CKN as one may have expected.

In order to understand better why at low pump frequencies evidence for ho-
mogeneous electrical relaxation is observed, it is instructive to compare the
NHB data with results from the electrical resistivity, of
CKN. From Fig. 14.18a one recognizes that the crossover from d.c. to a.c. resis-
tivity, i.e., from dispersive to steady state ionic transport occurs right at the
crossover frequency ΩC. This coincidence can be interpreted as follows. When
addressing short time scales (via high pump frequencies) dynamic heterogene-
ity is observed in accord with the expectations formulated in [102]. However,
when viewed at longer time scales the ions can visit a representative set of sites
along their conductivity pathway and thus effectively perform a spatial averag-
ing. In other words, under these circumstances the dynamics looks homoge-
neous. Such a scenario is consistent with models of hopping conductivity [101].

The question regarding the number of sites required to be visited by ions be-
fore homogenization is attained, i.e., the issue of a characteristic length scale is
very interesting. It has been addressed using conductivity measurements in the
linear [111] as well as in the non-linear regime [112–114]. Another possibility
would be to count the number of jumps that can occur on the time scale set by
1/ΩC. This requires to measure directly the time scale associated with single 

ρ ε( ) ( )–t M t tt= ′ ′∫0
1

0
d

14.4 Applications 555

Fig. 14.18. a The open circles
show the frequency depen-
dent resistivity of CKN
measured at T = 300 K [72].
The other symbols reflect
the times, tm, of maximum
modification as a function
of Ω for pump fields rang-
ing from 4.0 to 9.6 kV · mm–1.
The dashed line represents
the relation tm ~ Ω–α with 
α = 0.5. The horizontal line
corresponds to tm = τ.
b Symbols correspond to
hole depths ΔMm as a func-
tion of Ω. The curve repre-
sents the dispersive compo-
nent of the dielectric loss.
On its high frequency wing
it shows good agreement
with the Ω dependence of
ΔMm. Adapted from [76]



ion jumps. In principle this is possible using recently developed NMR methods
[115, 116].

14.4.3
Crystals with Frozen-In Disorder

There is a wide variety of dielectric crystals which are orientationally disordered
down to the lowest temperatures. As one example in Sect. 14.4.1 we have dis-
cussed cyclo-octanol which exhibits self-induced order, only. Then there is the
family of orientational glasses [96, 117]. Here anisotropic interactions together
with the presence of static random fields originating from local concentration
fluctuations lead to frustration effects. Depending on the degree of disorder and
on the strength of the interactions between the orientable moieties these sub-
stances may also exhibit relaxor behavior [118–120]. Relaxors are materials
characterized by nanoscopic domains which presumably are distributed in size.
Each internally ordered domain is thought to be subjected to strong random
fields, so that relatively well defined domain walls exist. In some of these mate-
rials, called quantum paraelectrics, quantum mechanical tunneling may coun-
teract the disorder, at least at very low temperatures [121].

The relaxor ferroelectrics involve highly polar nano-domains and due to the
resulting large dielectric constants and piezoelectric coefficients they have
found numerous technical applications [122, 123]. The mechanism governing
the dynamics of this materials is, however, only incompletely understood, so far.
One of the problems one encounters here is the strong disorder which can lead
to an extremely broad dielectric response. A typical example is PbMg1/3Nb2/3O3
(PMN) which crystallizes in the perovskite structure. For NHB studies PMN ce-
ramics doped with 10% PbTiO3 (90PMN-10PT) were used [70]. In Fig. 14.19 we
show that the step response of this material exhibits an almost logarithmic time
dependence. This is characteristic for a practically constant dielectric loss in the
dynamic range covered by these experiments. Consequently using pulsed di-
electric spectroscopy an exceedingly slow approach of equilibrium showed up
for 90PMN-10PT [124].

Some results from spectral hole burning are also included in Fig. 14.19.When
varying the pump frequency from 0.1 to 10 Hz it is seen that the maximum mod-
ification shifts by two decades as well. The position of the maximum modifica-
tion occurs at tm = Ω–1 as indicated by the arrows in Fig. 14.19. Thus we are able
to address those contributions to the dielectric response which are character-
ized by an intrinsic response time of about τΩ = Ω–1. This finding confirms dy-
namic heterogeneity for 90PMN-10PT as expected on the basis of the strong sta-
tic random fields present in this material. The experiments presented in
Fig. 14.19 were conducted in a regime for which the response is proportional to
ES and to EP

2. Corresponding results were given in [124]. Here we only show that
the peak positions, tm, do not depend on the employed voltages if they are con-
fined to the specified regime (cf. Fig. 14.20). For 90PMN-10PT the relationship
tm = Ω–1 with α = 1 is nicely obeyed in an Ω range of more than three decades.
Interestingly, also for the dilute quantum paraelectric Sr0.998Ca0.002TiO2 dynamic
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heterogeneity could be confirmed at liquid helium temperatures and the spec-
tral holes were reported to shift by about one decade when changing the pump
frequency by a factor of ten [125]. Results on yet another relaxor ferroelectric,
PLZT 9/65/35, are included in Fig. 14.20. While frequency selectivity is also
found here, it is clearly seen that the exponent α is not universal for relaxor fer-
roelectrics [126].

It has also been demonstrated that it is possible to pump at two different fre-
quencies Ω1 and Ω2 simultaneously [70]. The experiments were performed by
first subjecting the sample to a one-cycle pump at Ω1 < Ω2 followed by another
cycle at Ω2. The pump period was designed such that both cycles involved the
same maximum amplitude and they were terminated at the same time. The mea-
surements are shown in Fig. 14.21, cf. the lowest curve which corresponds to a
very short waiting time, tw ≈ 1 ms, between pump and probe. The structure of
these data clearly reflects the ratio Ω2/Ω1 = 103 chosen for these experiments.
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Fig. 14.19. Step response
function P(t) (solid line)
and modified response
functions P*(t) (symbols)
measured for 90PMN-10PT
with US = 2.5 V and 
UP = 25 V. The time scales
associated with the pump
frequencies of 10 Hz and
0.1 Hz are marked by the 
arrows. Adapted from [70]

Fig. 14.20. The times of
maximum modification, tm,
for various pump frequen-
cies Ω. The pump (and
probe) voltages are indi-
cated. The lines represent
the relation tm ~ Ω–α with 
α = 1 for 90PMN-10PT [70]
and α = 0.5 for PLZT
9/65/35 [126]



Figure 14.21 also contains data recorded at longer waiting times up to tw =
30 s. One recognizes that the high-frequency hole refills first and only then the
modification induced at lower frequencies starts to recover. When plotted
against the waiting time the maximum modifications ΔPm ≡ ΔP(tm) reveal a
characteristic re-equilibration time scale τreq. In Fig. 14.22 data recorded for a
wide range of pump frequencies are displayed as a function of the scaled wait-
ing time twΩ. It is seen that in such a representation all data superimpose within
experimental error. Thus, for the re-equilibration time one has τreq ~ Ω–1 as,
more qualitatively, already inferred from Fig. 14.21. The recovery data ΔPm(tw)
can be parameterized using exp[–(tw/τreq)β] with an exponent β = 0.36 and a
mean re-equilibration time scale of 〈τreq〉 = 44 tΩ.

The latter result implies that the time scale for dipolar relaxation and that for
hole refilling are vastly different. This has been taken as evidence for the exis-
tence of a long-lived heterogeneity in 90PMN-10PT and strongly suggests that
that two different relaxation mechanisms are active in this material [70]. Before
providing a somewhat more detailed interpretation, it is helpful to outline some
factors on which the separation of time scale, 〈τreq〉/τΩ, can depend. In Fig. 14.23
we show 〈τreq〉/τΩ as a function of temperature. It is obvious that 〈τreq〉/τΩ be-
comes significantly smaller for higher temperatures. However, also for decreas-
ing pump field amplitudes 〈τreq〉/τΩ decreases and in the limit of small EP

2 ap-
proaches unity.

These findings can be rationalized by assuming that the application of larger
and larger pump fields leads to an increasingly more effective depinning of do-
main walls. Hence, only at the largest pump fields can sizable pinning barriers
be surmounted. During the waiting time, i.e., in the absence of an external elec-
tric field the return to the equilibrium domain wall distribution is slowed down
more, if larger energy barriers have to be traversed back. Such a picture also ren-
ders the decrease of 〈τreq〉/τΩ with temperature plausible not only because of the
concomitant increase in thermal energy, but also because the pinning energies
decrease. The latter may be inferred from the decrease of the coercive field with
increasing temperatures that is usually observed, also for relaxor ferroelectrics.
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Fig. 14.21. Spectral holes
ΔP(t) after pumping as
schematically depicted.
Pump frequencies of Ω1/2π
= 0.03 Hz and Ω2/2π =
30 Hz were applied simulta-
neously. Here we utilized 
US = 5 V and UP = 50 V.
In order of decreasing hole
depths the waiting times, tw,
were 0.001, 0.003, 0.03, 0.3, 3,
10, and 30 s. Adapted from
[70]



It should be noted that the above picture also means that a strict dependence
ΔΦ ~ EP

2 does not hold in this regime. A similar situation is encountered in a
domain theory for spin-glasses [127]. There the response is cubic in the field but
an additional non-linearity enters via the field dependence of the relaxation
times. Finally we point out that additional non-linearities were also suggested as
a source of the relatively broad spectral holes that show up in crystals with
frozen-in disorder [69].

14.5
Related Experimental Methods

Most closely related to nonresonant dielectric spectral hole burning is the mag-
netic variant of this experiment which has been applied to a single-crystal whisker
of iron [19] and to the spin-glass Au:Fe [68]. The experimental procedure used in
the latter case is slightly different to the ones described above. At constant mag-
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Fig. 14.22. Waiting time de-
pendence of the normalized
hole depths ΔPm(tw)/ΔPm(0)
vs the scaling variable twΩ.
The solid line represents a
Kohlrausch fit with the
specified parameters.
Results from double-hole
experiments [with frequen-
cy separations log10(Ω2/Ω1)
given in brackets] and from
an analysis of the hole refill-
ing in the Δ(t) representa-
tion are also included
(crosses). Adapted from [70]

Fig. 14.23. Separation of
time scales, 〈τreq〉/τΩ ob-
tained from master plots
such as shown in Fig. 14.22.
The temperature dependent
data were acquired at a field
of 38.5 V mm–1. The inset
shows the quadratic depen-
dence on the pump field
amplitude at 275 K. Lines
are drawn to guide the eye.
Adapted from [124]



netic field H the sample is cooled through its spin-glass transition (Tg = 21.6 K) to
the temperature at which the experiments are conducted. Then the pump field of
amplitude H0 is superposed onto H and detection is performed using a time do-
main SQUID magnetometer in zero field. Furthermore, prior to each scan of a
phase cycle the sample is heated to above Tg. The spin-glass study revealed evi-
dence for dynamic heterogeneity and a recovery which in our terms could be de-
scribed by exp[– (tw/τreq)β] with β = 0.6 and 〈τreq〉 = 12τΩ . In this context it may be
interesting to note that the widths of the spectral holes are significantly broader
than those seen for the supercooled liquids (see Fig. 14.12). However, they are nar-
rower than those reported for 90PMN-10PT (cf. Figs. 14.19 and 14.21).

A particularly interesting result was obtained for the spin-glass Au:Fe by car-
rying out the magnetic spectral hole burning experiments very close to (but be-
low) Tg [68]. As Fig. 14.24 shows for small pump fields and consequently for
small changes in effective temperature, spectral holes emerge which are charac-
terized by the usual quadratic pump field dependence. However, above a certain
threshold it has been reported that most of the sample remains a spin glass,
while some of the slow response is no longer seen in the (very wide) experi-
mental time window: These contributions were obviously pumped to above Tg.
Their relaxation time is by orders of magnitude faster than at the base tempera-
ture. Remarkably, their recovery behavior was also found to be very different
from what we have described above. With a pump frequency of 0.1 Hz selective
local “heating” was achieved that persisted for several minutes [68].
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Fig. 14.24. Magnetic relaxation (upper frame) and difference spectra (lower frame) recorded
for Au:Fe at a base temperature of 19.6 K and various pump fields. The inset demonstrates that
the hole depths increase quadratically for moderately large pump fields. For the largest pump
amplitude an offset at short time reveals that some of the response has been “pushed” outside
the experimental time window. The lines are calculated using the model defined by Eq. (14.35).
Adapted from [68] and reproduced by permission



One of the main characteristics of NHB is spectral selectivity and this feature
is shared by several other experimental techniques such as multidimensional
NMR [12, 37] and optical deep bleaching [14]. However, there are several dis-
tinctive features of NHB. Both other methods involve a low-pass (or high-pass)
selection scheme. Although band-pass selection, required for highest spectral
selectivity, should also be possible using NMR [128], to our knowledge it has not
been implemented, so far.With NHB, on the other hand, it was demonstrated ex-
perimentally and theoretically (cf. Fig. 14.5) that a relatively narrow spectral
range is addressed. Another advantage of NHB is that it does not require to ad-
mix probe molecules that allow for a coupling to an external perturbation with
which the spectral selection is achieved.

In the NHB studies discussed above the perturbation induced by the pump
process is usually kept so small that one operates in the weakly non-linear
regime. For supercooled liquids we have previously emphasized that this corre-
sponds to working in the domain of linear structural response [31]. When using
very large external perturbations one can, however, drive the system out of equi-
librium. This so-called aging regime [129] is characterized by a breakdown of
the fluctuation-dissipation-theorem already for linearly responding materials
[130]. Non-equilibrium or aging phenomena in relation with driving systems
non-linearly have been reported from mechanical spectroscopy [131–133] and
recently from a computer simulation (cf. Fig. 14.7 in [74]). Under these circum-
stances one may rely on empirical constitutive equations in attempts to disen-
tangle non-linear effects from non-equilibrium ones [134].

It is important not to confuse non-equilibrium results with those obtained
from NHB. This note of caution is very important since several viscoelastic stud-
ies on polymers revealed that strongly non-linear mechanical perturbations can
lead to a seeming acceleration of response (“rejuvenation”) which tends to di-
minish upon increasing the time interval between the application of a large
strain (or stress) and a small “tickle” deformation (“fading memory”) [131–
133]. At first glance, both effects, “rejuvenation” and “fading memory”, look
somewhat similar to the speed-up seen in modified NHB responses (Figs. 14.6
and 14.12) and to hole filling, respectively. However, the pronounced decrease of
the relaxation strengths showing up in the modified (or incremental [131, 133])
viscoelastic responses is just one observation which is quite different from the
NHB signatures presented in previous sections.

Other distinctive features of NHB are that spectral hole burning does not 
require one to invoke non-equilibrium effects or empirical constitutive 
equations (see, e.g., Sect. 14.2.3.1). Furthermore, when performing mechanical
NHB experiments it will be essential to check whether one operates in the 
quadratic pump and the linear probe regimes, and to ensure that the results do
not depend on the time delay between subsequent scans within a phase cycle.
Since the cited viscoelastic studies were carried out prior to the development of
NHB it is not surprising that none of these features were tested. Furthermore,
the large pulse strains applied in the quoted mechanical spectroscopy studies
are not associated with a peaked excitation profile. This may be just one of
the reasons why in these investigations no signs of frequency selectivity are
apparent.
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Apart from spectral selectivity NHB, mainly via its phase cycle, additionally
features the ability to generate symmetric orientational dipole distributions. To
appreciate this point more fully it should be realized that for overall isotropic
equilibrium systems conventional (also non-linear) spectroscopy only allows
one to generate dipolar distribution functions which can be expanded in terms
of Pl(cosθ) with odd l.With NHB, on the other hand, distributions characterized
by even l (> 0) can be achieved. In the weak non-linear limit in which most pre-
vious experiments were carried out, the term with P2(cosθ) should be most
prominent. While this appears as a peculiarity in the framework of (non-linear)
dielectric spectroscopy, the generation of symmetrical orientational distribu-
tion is well known for many optical techniques. Here we may think of photo-
bleaching [39, 135–138] and Kerr effect methods [40, 50, 139, 140]. Those optical
methods are to be distinguished from NHB since they lack spectral selectivity.
One of the reasons for this difference is due to the fact that these latter optical
methods, like, e.g., neutron scattering [141], rely on the detection of two-point
response or correlation functions.

14.6
Conclusions

Nonresonant spectral hole burning is a powerful dielectric technique which al-
ready has yielded valuable insights into the dynamics of a diverse variety of disor-
dered materials. In this review we have presented results obtained for supercooled
liquids and plastic crystals, for glassy ion conductors,and for relaxor-ferroelectrics
as well as for spin-glasses. In most of the materials studied so far evidence for dy-
namically heterogeneous responses was obtained.Together with results from other
dynamically selective techniques these studies have provided clues to resolve long
standing issues concerning the nature of dielectric (or magnetic) relaxations.

We have also reviewed some theoretical concepts that are useful in order to
describe NHB. While more general theoretical considerations have been pre-
sented elsewhere here we have focused on a relatively simple ADWP model
which provides useful insights into the fundamentals of NHB. In particular, it
helps one to gain a basic understanding of homogeneous types of relaxations
and of spectral selectivity. The latter is also an important ingredient of the box
model that we have discussed above. Clearly, further complex models for the
weakly non-linear dielectric effects which play an important role in NHB spec-
troscopy need to be developed. One of the reasons being that several experi-
mentally observed effects currently still require a phenomenological treatment.
Here we mainly think of the extrinsic relaxation mechanisms that have been in-
voked to rationalize the recovery behavior in the relaxor materials.

It is also reassuring that experimental evidence for dynamically homoge-
neous relaxation could be achieved. This observation, made in the non-disper-
sive regime of glassy CKN, does not really come unexpected. However, so far it
could not be achieved with any other technique. A particularly impressive piece
of experimental evidence is provided by the “local heating” experiments per-
formed on a magnetic spin glass.
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Many further applications of NHB can be conceived. When suitably adapted
to the degree of freedom that relaxes, this new method can be a useful tool for
all kinds of materials characterized by non-exponential response functions. An
obvious extension, that we have already mentioned above,would be into the field
of mechanical spectroscopy. For materials in which, e.g., dielectric and mechan-
ical degrees of freedom are coupled it should be possible to carry out cross-ex-
periments which involve pumping on one channel and detecting on the other.
Such NHB studies would allow one to find out just how well various degrees of
freedom are coupled to one another.
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Appendix 14.1

The solution of Eq. (14.22) as given by Eqs. (14.24), (14.27), and (14.28) is
straightforward. However, since it is central to the theoretical development out-
lined in the present chapter, we nevertheless briefly recall the two-step strategy
to solve this linear differential equation. With a(t) ≡ –τ –1[1 + e(t)δ] and b(t) ≡
τ –1[e(t) + δ] N it is seen that Eq. (14.22) is of the standard form

(A1.1)

The homogeneous part of this equation [i.e., with b(t) set to zero], written as

, can immediately be integrated to yield the general solution (of the
homogeneous part)

(A1.2)

In the second step one treats the constant n(t0) as a variable. With the re-
placement n(t0) → c(t) the derivative of Eq. (A1.2) can be compared with
Eq. (A1.1) to yield a differential equation for c(t). By solving this equation in
combination with Eq. (A1.2) one obtains the solution of the inhomogeneous
equation as

(A1.3)

To obtain closed analytical expressions one can expand the inner integrals in
terms of the (pump) field amplitude eP(t) up to the quadratic order. Together
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with the (convenient) condition = 0 (implying here t0 = 0), the solu-
tion (Eq.A1.3) can be rearranged into the form given by Eqs. (14.27) and (14.28).
Alternatively these equations can be obtained by solving the more general
Eq. (14.21) and expanding the results for n(t) up to the terms which are qua-
dratic in e(t).

In the linear response regime the general solution, in the presence of a con-
stant field eS, is obtained from Eq. (A1.3) by replacing a(t) → a ≡ –τ–1[1 + eSδ],
b(t) → b ≡ τ –1[eS + δ] N, and by expanding the field-dependent terms in linear
order in eS. This yields Eq. (14.24).

Appendix 14.2

In terms of response functions Eqs. (14.29) and (14.30) can be summarized for
tw = 0 as Φ *(t) = Φ(t) + ΔΦ(t) with Φ(t) = e–t/τ and with
the normalized excitation profile Xn(Ω) = ζδ 2X(Ω)/χDWP. Thus the modified re-
sponse is . Recognizing that Xn(Ω) � 1 one can in-
terpret the expression in the square brackets as the first term in the expansion
of an exponential function giving .
The latter equation simply expresses the definition of a modified relaxation time
τ * = τ /[1 + Xn(Ω)] ≈ τ [1 – Xn(Ω)]. Hence the normalized change in relaxation
time (τ * – τ)/τ ≡ Δτ/τ = Δ ln(τ/s) is Δ ln(τ/s) = –Xn(Ω).

Via the Arrhenius expressions τ * = τ0exp(B*/T) or τ * = τ0exp(B/T*) the
modified relaxation time may either be connected with a modified (lowered)
barrier B* or a modified effective (non-thermodynamic) temperature T*. Both
approaches can be interpreted to indicate that the occupation or Boltzmann fac-
tor of the ADWP has effectively been changed by the pump process. Assuming,
e.g., that B remains invariant one has T* = T + Xn(Ω)T 2/B. This result can of
course also be obtained by combining Δ ln(τ/s) = –Xn(Ω) with Eq. (14.33) to
yield a change in effective temperature ΔTi = Xn(Ω)T2/B.

Now the defining condition for Δ(t) is Φ*(t*) = Φ(t) and it has to be solved for
t* or equivalently for Δt ≡ t* – t. On the logarithmic scale this gives Δt/t ≈
Δln(t/s) ≡ ln(10)Δ(t), as desired, provided Δt is small. For a single ADWP the for-
mulated condition leads to exp(–t*/τ*) = exp(–t/τ) or t*/t = τ*/τ. Using the
above result this directly yields 1 + Δt/t = 1 – Xn(Ω) and hence Δ(t) =
–Xn(Ω)/ln(10).This shows that Δ(t) is not explicitly time dependent if only a sin-
gle relaxation time exists. In the presence of a distribution of relaxation times
g(τ) it will, however, depend on time because Δ(t) = – [ ∫ d lnτ e–t/τ Xn(Ωτ)g(τ)]/
[ln(10) ∫d lnτ e–t/τ g(τ)], cf. Appendix B of [31]. Here we have explicitly written
out that Xn(Ωτ) ≡ Xn(Ω) depends on the relaxation time as well.

Finally we note that the arguments presented here remain valid if Φ(t) is not
given by the exponential e–t/τ [51, 52].
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List of Abbreviations and Symbols

A(τ) Amplitude function
B Energy barrier
Dr Rotational diffusion coefficient
Ylm(w) Spherical harmonic
EP Pump field
ES Probe field
e(t) Normalized field
gi Weighting factor
g(τ) Distribution of relaxation times
Gik(t) Conditional probability
G(wi,ti|wk,tk) Conditional probability
H Magnetic field step
H0 Magnetic pump field amplitude
H Hamilton operator
L Liouville operator
m Fragility index
M(p,q,t) Electric dipole moment
M(t) Electric modulus
n (Modified) population difference
neq Equilibrium population difference
NΩ Number of pump cycles
N Number of dipoles
pi (Modified) population of state i
p(w,t) Probability to find w at time t
Pl Legendre polynomial of rank l
p,q Phase space coordinates
Q Absorbed energy
s Magnitude of non-linear effects
S(t) Dynamic variable
tp Duration of pump cycle
tw Duration of waiting time
t (Probe) time
Tg Glass transition temperature
UP Pump voltage
US Probe (or step) voltage
w Orientation
W Hopping rate
X(Ω) Excitation profile
α Pump frequency exponent
β Stretching exponent
δ Normalized asymmetry
Δ Asymmetry of ADWP
Δ(t) Horizontal spectral modification
ε Dielectric function
ζ Non-linear coefficient
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θ Polar angle
κ Rate
μ Dipole moment
ν0 Attempt frequency
Πij Transition rate
Π(wi|wj) Transition rate
ρ(p,q,t) Phase space density
ρ(t) Resistivity
τ Relaxation time
τ * Modified relaxation time
τJ Jump angle correlation time
ϕ Jump angle
Φ Step response function
χ Susceptibility
ω Angular frequency
Ω Pump frequency

ADWP Asymmetric double well potential
NMR Nuclear magnetic resonance
NHB Nonresonant spectral hole burning
PDS Pulsed dielectric spectroscopy
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15 Local Dielectric Relaxation by Solvation Dynamics

R. Richert

15.1
Introduction

This chapter is concerned with a method of measuring dielectric relaxation phe-
nomena locally, in order to complement the information regarding the dynam-
ics of molecules inferred from the various macroscopic dielectric techniques
outlined in previous chapters. In a simplified picture, these solvation dynamics
experiments measure the dielectric relaxation of a liquid as a response to a step
in the dielectric displacement of a molecule rather than the macroscopic effects
following a field step applied to a capacitor. The time dependent dielectric po-
larization in the immediate vicinity of a probe molecule gives rise to a Stokes-
shift of the luminescence. This tendency of the emission wavenumbers –ν to shift
towards the red is monitored by recording the emission spectra I(–ν) as a func-
tion of time using straightforward techniques of optical spectroscopy. The key
quantity for assessing the dynamics of the liquid is the time dependent average
emission energy 〈–ν (t)〉 [1].

Although dielectric relaxation and solvation dynamics effects are highly re-
lated phenomena, there are differences in the experimental conditions under
which the dielectric polarization is measured. Disregarding the more subtle fea-
tures, the solvation energy is a measure of the local electric field relaxation at a
constant dielectric displacement, and therefore better represented by the dielec-
tric modulus M(t) than by ε(t). Because the spatial resolution inherent in this
experimental approach is of the order of a few molecular diameters only, its ap-
plication is advantageous wherever a spatial variation of dynamics or polarity is
anticipated.

For many materials, the interactions between a guest molecule and its liquid
host environment involve electrostatic forces. In the absence of ions it is mainly
the dipole-dipole coupling which determines the energy required to remove en-
tirely the guest or probe molecule from its solvent. In the case of dipolar systems,
this free energy of solvation depends on the dipole moment of the solute and on
that of the solvent constituents, where the latter is directly related to the dielec-
tric constant ε of the liquid. The solvation free energy also depends on the mu-
tual orientation of the dipoles, which gives rise to inhomogeneous broadening
of the optical lines in disordered materials. A simple way of envisioning the sol-
vated state is to consider the solvent dipoles being in equilibrium with the elec-
tric field which arises from the dipole moment of the guest molecule. In the pre-



sent context, the interesting aspect of dipolar solvation is the possibility of al-
tering the solutes permanent dipole moment from the ground state to the ex-
cited state value, μG → μE, by electronic excitation at t = 0.As a consequence, the
solvent is suddenly removed from its equilibrium state because the local electric
field has changed. This situation induces a dielectric relaxation process aimed at
attaining equilibrium conditions with respect to the excited state of the solute.
As with the macroscopic dielectric properties, the time scale of this relaxation is
determined by the orientational correlation time in the system and hence often
coupled to the viscosity [2].

Time resolved studies of dipolar solvation have initially been advanced 
using fluorescent probe molecules with typical excited state lifetimes τfl be-
tween 10–12 s and 10–9 s [3]. Due to signal intensity limitations, solvent dynam-
ics are observable in a time range of approximately 10–2 τex ≤ t ≤ 10 τex, where
τex is the lifetime of the excited state. Accordingly, fluorescence solvation dy-
namics studies are typically limited to liquids of low viscosity associated with
orientational correlation times of ≈ 10 ns or faster [4]. In contrast, triplet state
lifetimes τph of phosphorescent chromophores are between 10–3 s and 1 s, such
that analogous experiments focusing on the dynamics in the viscous regime of
supercooled liquids near their glass transition temperature Tg have become
available [5, 6].

The following sections are organized as follows: Section 15.2 describes the
experimental approach to phosphorescence solvation dynamics including the
requirements regarding probe molecules and properties of the liquids. In
Sect. 15.3 the relevant optical transitions and their dependence on the dielectric
properties of the liquid are outlined more quantitatively in order to clarify the
relation between dielectric polarization and solvation coordinate. Finally,
Sect. 15.4 is devoted to the experimental results by demonstrating the extent to
which solvation data can be rationalized in terms of the liquids dielectric func-
tion ε*(ω) and by discussing several applications which exploit the local nature
of this technique.

15.2
Experimental Techniques

The perturbation of the system which initiates the solvation relaxation process
is the electronic excitation of a probe molecule present at a low concentration in
the liquid under study. In general, such an electronic transition is accompanied
by a change in the permanent dipole moment from μG in the ground state to μE
in the excited triplet state of the solute. Because the oscillator strength of the di-
rect S0 → T1 transition is practically zero, the first excited triplet state T1 is pop-
ulated via a singlet S0 → S1 absorption followed by intersystem crossing. The se-
quence of transitions are schematically shown in the energy level diagram in
Fig. 15.1. The time scale of this process is around 1 ns and can be considered in-
stantaneous for what follows. An electronic transition is accompanied by a di-
pole moment change Δμ = μE – μG which initiates the solvation process. This
process of the solvent approaching the equilibrium state with respect to the ex-
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cited state of the solute lowers the energy level of the excited state T1 and in par-
allel increases that of the ground state S0, as indicated in Fig. 15.1. The aim of the
experiment is to record this time dependent change in the S0 ← T1 emission en-
ergies along the solvation coordinate.

The requirement regarding the solvents usable for solvation studies is their
transparency at the wavelength of the exciting light source and at the emission
wavelength of the dye molecules. Appropriate probe molecules are those with a
significant change Δμ in their permanent dipole moment upon electronic exci-
tation. On the other hand, extreme values of Δμ often exhibited by charge-
transfer states are likely to induce dielectric saturation in their immediate
vicinity [7]. Rigid probe molecules are preferred in order to keep intramolecu-
lar structural relaxations from interfering with solvation processes. Since exci-
ton migration is an effective route for lowering the average energy of the ex-
cited states, any donor-acceptor coupling has to be avoided in order to assure
that only solvation processes are responsible for the red-shift. For this reason,
the electronic energy levels of the solvent molecules should exceed those of the
dye. Furthermore, the dye concentration should be sufficiently low such that
energy transfer among the dye molecules remains negligible. Due to the short
ranged exchange interaction of triplet excitations the allowable chromophore
concentration can be as high as 10–4 mol mol–1. Highly purified materials
should be used for a phosphorescence solvation experiment, because impurity
luminescence can easily interfere with the low level emission from the triplet
state of the probe molecule.
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Fig. 15.1. Schematic energy level diagram for the electronic states S0, S1, and T1 comparing the
situations where the ground state S0 is solvated (left) and where the excited state T1 is solvated
(right). The dashed curves indicate the gradual process along the solvation coordinate. The T1
population proceeds via internal conversion (IC) and intersystem crossing (ISC). Reprinted
with permission from The Journal of Chemical Physics, Copyright 2000,American Institute of
Physics [50]



The experimental methods used to study the dynamics of solvation consist of
the basic techniques of time resolved optical emission spectroscopy. For phos-
phorescent chromophores one observes the S0 ← T1 (0 – 0) emission spectrum
which is related to long excited state lifetimes τph, typically between 1 ms and 1 s.
In order to observe Stokes shift dynamics in such a time range, the solvent has
to exhibit orientational relaxation processes which occur within the time win-
dow of the excited state lifetime. Therefore, most probe molecules will limit the
observation of phosphorescence solvation dynamics to the viscous regime of
glass-forming materials near their glass transition [8].

For observing dipolar solvation, the most appropriate phosphorescent dye
molecules should exhibit both a high quantum yield and a significant change in
their permanent dipole moment upon electronic excitation. The triplet solva-
tion probes examined thus far are quinoxaline (QX, Δμ = 1.31 D, τph = 0.31 s),
quinoline (QI, Δμ ≈ 0, τph = 1.11 s), and naphthalene (NA, Δμ ≈ 0, τph = 2.27 s).
For these molecules, the phosphorescence quantum yields are fairly high (≥ 0.5),
but only QX is associated with a significant change Δμ for the S0 → T1 transi-
tion.

The following experimental setup has been employed for the solvation results
described further below. The sample cell is made of cooper or brass having a
sapphire window which is vacuum sealed by a Kalrez O-ring.The cell is mounted
to the cold stage of a closed cycle He refrigerator (Leybold, RDK 10–320, RW 2)
and temperature stability within ± 30 mK can be achieved by a temperature con-
troller (Lake Shore, LS 330) equipped with calibrated diode sensors. An excimer
laser (Radiant Dyes, RD-EXC-100) operated at 308 nm with pulse width ≈ 25 ns
and pulse energy 120 mJ serves as excitation light source. The repetition rate
should not exceed values corresponding to ≈ 3τph. The incident laser beam has
to be attenuated sufficiently in order to avoid photoinduced degrading of the
sample. The phosphorescence emission is coupled via fiber optics to a triple
grating monochromator (EG&G, 1235) and registered by a micro-channel-plate
(MCP) intensified diode array camera (EG&G, 1455B-700-HQ) with controller
(EG&G, 1471A), gating options (EG&G, 1304), and synchronization facilities
(SRS, DG-535). The spectra, consisting of 730 channels with a resolution of
0.04 nm/channel for the 1800 g mm–1 holographic grating, were wavelength cal-
ibrated with Xe and Kr calibration lamps. The time resolution is defined by gat-
ing the camera with gate widths between 100 ns and 10 ms. For the probe mole-
cule QX the usable time range is limited to 10 μs ≤ t ≤ 2 s. An alternative tech-
nique to the time resolved detection outlined above is to scan the temperature
for a fixed position of the detection time window. This allows for a faster
overview of the solvation effects over a large temperature range, but without
showing the details of the dynamics.

In the low temperature/high viscosity regime where phosphorescence solva-
tion is applied, the vibrational bands are often well resolved and homogeneous
contributions to the line broadening remain small. A representative set of S0 ←
T1 (0 – 0) emission data for QX in 2-methyltetrahydrofuran (MTHF) is shown in
Fig. 15.2 as a function of wavenumber –ν and time t. The decay of the overall in-
tensity as time increases is due to the phosphorescence lifetime τph = 0.31 s of
QX, whereas the gradual shift of the emission band towards lower energies indi-
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cates the solvation process. For inhomogeneously broadened lineshapes,
Gaussian profiles are the rule, i.e., the intensity I(–ν) follows

(15.1)

The line shape is thus characterized by the average energy 〈–ν〉 and the Gaussian
width σ. In a solvation dynamics experiment, 〈–ν〉 is commonly observed to vary
non-exponentially with time, such that a single 〈–ν(t)〉 sweep is insufficient for
unambiguously defining the limiting values attained at short and long times,
〈–ν(0)〉 and 〈–ν(∞)〉. Their difference, Δ–ν = 〈–ν(0)〉 – 〈–ν(∞)〉, quantifies the energy
change associated with the entire Stokes shift. The limiting values of 〈–ν(t)〉 for 
t → 0 and t → ∞ are required for constructing the solvation time correlation
function C(t):

(15.2)

which is the appropriate normalized decay function for focusing on the dynam-
ical aspects of the solvation process, while disregarding the absolute energy
scale. The relation between the resulting C(t) curve and the original data set is
represented graphically in Fig. 15.2. A typical set of C(t) decays obtained for QX
in the polar non-associating solvent MTHF is compiled in Fig. 15.3 as master
plot C(t) vs t/τKWW. These measurements cover the range 91 K ≤ T ≤ 97 K or 
Tg ≤ T ≤ Tg + 6 K or 3 × 10–3 s ≤ 〈τ〉 ≤ 54 s, in which βKWW = 0.5 is temperature
invariant.
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Fig. 15.2. Altitude map of
the S0 ← T1 (0 – 0) emission
intensity (in arbitrary units)
on energy and evolution time
in the ranges 20900 cm–1 ≤ –ν
≤ 21900 cm–1 and 
0 ≤ t ≤ 0.6 s for QX in MTHF
at T = 93.9 K. Also shown are
the limiting values of the 
average emission energy,
–ν(0)and ν(∞), and the 
resulting C(t) decay pattern.
Reprinted with permission
from The Journal of Chem-
ical Physics, Copyright 2000,
American Institute of
Physics [50]



15.3
Dielectric Aspects of Solvation

The dipole moment change Δμ = μE – μG resulting from the excitation of the
chromophore implies a change ΔE in the inhomogeneous electric field around
the probe molecule. This process of locally perturbing the system thus corre-
sponds to applying a field step to a capacitor in the classical time domain di-
electric experiment [9]. In a given electronic state of a molecule, however, it is
the charge distribution rather than the electric field which remains constant or
polarization invariant. Additionally, the assumption of a homogeneous field as
in the case of a macroscopic capacitor is certainly not appropriate for the field
created by a molecular dipole.

The dielectric polarization process P(t) depends on the experimental condi-
tion, e.g., the constant charge vs constant field case. While PD(t) ~ ε(t) holds for
the constant field case with E(t) = E0, the condition of a constant charge or of a
polarization invariant dielectric displacement D leads to PE(t) ~ M(t), where
M(t) is the electric modulus. The special situation of a Debye type dielectric has
been treated already by Fröhlich [10], with the result that an exponential
constant field polarization PD(t) ~ exp(–t/τD) with dielectric time constant τD
corresponds to a constant charge response PE(t) ~ exp(–t/τE) which is again ex-
ponential but with a time constant τE given by

(15.3)

Due to the inequality es ≥ e∞, the decay associated with the constant charge time
constant τE is always faster than its constant field counterpart τD. In the context

τ ε
ε

τE
s

D= ∞
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Fig. 15.3. Solvation dynam-
ics C(t) results (symbols) for
QX in MTHF (Tg = 91 K) for
temperatures ranging from
91 K to 97 K in steps of 1 K
[33]. The data are plotted as
master curve C(t) vs t/τKWW.
The solid line is a fit using a
stretched exponential 
φ(t) = exp[− (t/τKWW)0.5].
The inset shows an activa-
tion plot of τKWW(T). Re-
printed with permission
from The Journal of Chem-
ical Physics, Copyright 2000,
American Institute of
Physics [50]



of time dependent solvation effects, the time constant τE is often referred to as
the longitudinal time τL. The above simple relation between τE and τD holds only
for Debye type systems, characterized by a single exponential dielectric re-
sponse. For the experimentally more relevant non-Debye systems associated
with a distribution of relaxation times, the separation between the average lon-
gitudinal, 〈τE〉, and average dielectric, 〈τD〉, time scales becomes even more pro-
nounced [9]. In a simple approximation, the time dependent changes in the av-
erage emission energy are governed by the electrostatic interaction energy of a
permanent dipole μ with the local electric field, W = – �Eloc(t). Therefore, this
optical technique measures the electric field Eloc(t) or the electric modulus
Mloc(t) (~ Eloc(t) in the constant charge case) at the location of the probe mole-
cule [9, 11].

It remains to establish a relation between the time dependent local field
Eloc(t) and the macroscopic dielectric properties of the liquid, usually charac-
terized by the frequency or time dependent dielectric function, ε *(ω) or ε(t),
respectively. In a continuum approximation, one attempts to cast the entire be-
havior of the solvent into ε *(ω), while disregarding the microscopic structure
of the liquid. This is appropriate only when the constituents forming the di-
electric body are much smaller than the length scales associated with the spa-
tial inhomogeneities of the electric field. Consequently, the first solvent shell
surrounding the probe molecule may be only poorly represented by the con-
tinuum model, although these nearest neighbors are dominant regarding the
interaction energies [12].

The Mean Spherical Approximation (MSA) in its dynamic (d-MSA) version
advanced by Rips et al. [11] is one of the theories which go beyond the contin-
uum picture in order to predict the solvation on the basis of the dielectric func-
tion ε *(ω). Although more sophisticated approaches to this problem have been
worked out [7], we focus on the d-MSA because it yields the results in terms of
closed analytic expressions while capturing the important deviations from the
continuum model. It should be noted that the complex relaxation dynamics of
liquids and supercooled liquids including the temperature dependence are not
predicted by the d-MSA. These properties are an input to this electrostatic cal-
culation in terms of ε *(ω) in order to solve for the time dependent solvation free
energies. The system considered is a solute represented by a point dipole of mo-
ment μ centered in a non-polarizable hard sphere of diameter D and solvent
molecules represented by point dipoles centered in hard spheres of diameter d.
In the following, the case d = D will be discussed only, i.e., assuming solute and
solvent molecules of equal sizes. For this model, the MSA integral equation has
been solved to yield the steady state solvation free energies Es(εs) [13]:

(15.4a)
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(15.4c)

and

(15.4d)

For practical purposes, the resulting Es(εs) is well approximated by the empiri-
cal relation

(15.5)

In the continuum limit corresponding to d → 0, the classical result of Onsager
(ONS) is recovered,

(15.6)

All of these relations between the solvation free energy and the static dielectric
constant εs demonstrate that Es is a pronounced nonlinear function of ε. Within
this approach and for a given solute molecule and temperature, the energy Es de-
pends only on εs, i.e., solvent specific interactions of other that dipolar nature re-
main disregarded.As detailed below,it is this quantity Es(εs) which determines how
the solvent affects the optical lineshapes, i.e., their spectral position and width.

Optical line shapes of an electronic two-level solute dissolved at infinite dilu-
tion in an equilibrium dipolar hard-sphere solvent have been addressed in a sta-
tistical mechanical approach by Loring [14]. As in Eq. (15.4a), the thermody-
namic state of the solvent is entirely cast into the dimensionless function αs(εs),
whose explicit dependence on εs is a matter of the particular solvation theory
used. The prediction for any linearized theory is a Gaussian line shape with vari-
ance σ 2

inh and positioned at –ν0 + Δ–ν, where –ν0 is the gas phase emission energy
and Δ–ν is the Stokes shift. The steady state results for Δ–ν and σinh are

(15.7a)

(15.7b)

where εs again refers to the static (t → ∞) dielectric constant. It is interesting to
note that the ratio σ 2

inh/Δ–ν in an equilibrated fluid no longer depends on the
thermodynamic state of the solvent,

(15.8)
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This equation (Eq. 15.8) constitutes a special case of the fluctuation-dissipation
theorem. For αs(εs) we can directly use the static MSA solutions given in
Eq. (15.4) or the continuum limit of Eq. (15.6), which then allows one to compare
molecular approaches with continuum models as regards the steady state results
of the solvation theory.

According to basic electrostatics [15], the electric field E of a point-sized par-
ticle with dipole moment μ1 is

(15.9)

where the particle 1 is assumed to be positioned at the origin and with r = r r0.
Being interested only in the radial dependence of the interaction energies w, we
can focus on the equatorial plane with respect to �1, i.e. to �1 r0 = 0. The interac-
tion energy of a dipole possessing a permanent moment �2 with the field E(r) is
given by w = – �2 E(r). For the dipole pair we thus obtain wμ – μ ~ (�1 �2)r–3.At a
certain distance r from the central dipole in a liquid, the number N of solvent
dipoles increases as r2, i.e., as the surface area of a sphere with radius r. For the
equilibrium configuration of a disordered fluid we have to consider 〈wdip〉 =
– NμE 〈cosθ〉, with 〈cosθ〉 being the ensemble average regarding the various ori-
entations of dipoles with respect to the field of the central dipole. For non-in-
teracting dipoles the Boltzmann distribution leads to 〈cosθ〉 = μE/3kBT and thus
〈wdip〉 = – Nμ2E2 (3kBT)–1, i.e., 〈wdip〉 ~ r–4 for a solute dipole centered in a spheri-
cal shell of radius r of equilibrium solvent dipoles. If screening effects are ig-
nored, i.e., for solvents of little polarity, integration from the solute radius r =
D/2 up to the distance r = x of the above results for 〈w〉 yields the energy 〈W〉 =
∫ 〈w〉dr related to the entire solvent within the radius x. For the radial depen-
dence the result is 〈Wdip〉 ~ x–3, implying that approximately 90% of the contri-
bution to the solvation free energy originates from the first solvent shell [12].
This limited spatial scale of the solute/solvent coupling has also been derived
from simulation work [16].

In order to obtain the entire time dependence of the solvation process,
the MSA equations have been solved using the frequency dependent dielectric
function ε̂ (p) = ε*(ω) [p = iω] instead of the static limit εs only [11]. We express
the result in terms of the solvation time correlation function C(t) in Eq. (15.2),
the inverse Laplace transform L–1 of the normalized admittance χ̂ (p) of the sys-
tem,

(15.10a)

The d-MSA result for the dipole solvation dynamics reads

(15.10b)
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where a Debye type dielectric with relaxation time τD would enter the calcula-
tion as

(15.11)

Figure 15.4 compares the dipole solvation d-MSA prediction for C(t) with the
normalized constant field and constant charge dielectric polarization decays,
and εn(t) = [εs – ε (t)]/[εs – ε ∞] = exp(–t/τD) and Mn(t) = M(t)/M∞ = exp(– t/τE),
respectively. The parameters are adopted from Fig. 3 of [11] assuming a Debye
type solvent of substantial polarity with ε ∞ = 2, εs = 30. Finally, we note that the
d-MSA, as most other solvation theories, assumes that each solvent dipole is
equally exhibiting the dynamics associated with the dielectric function ε(t) or
ε *(ω). This picture of spatially homogeneous dynamics is not necessarily realis-
tic in cases where non-Debye systems are considered.

15.4
Solvation Dynamics

In this section we explore the extent to which experimental phosphorescence
solvation data can be rationalized in terms of the macroscopic dielectric prop-
erties of the solvent. The total Stokes shift Δ–ν is a measure for the amplitude of
the response to the electronic excitation of the solute molecule and represents
the solvation analog of the dielectric relaxation strength Δε = εS – ε∞. The theo-
retical relation between the steady state values 〈–ν(∞)〉 and εs is given by insert-
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Fig. 15.4. Solvation time
correlation functions C(t) as
predicted by the d-MSA for
the dipolar and ionic case
on the basis of a Debye type
ε *(ω) with ε∞ = 2, εs = 30,
adapted from [11]. The di-
electric function is plotted
as εn(t). The dashed lines 
refer to εn(t) but rescaled in
time by a factor of (εS/ε∞)1/2

and εS/ε∞, respectively, with
the latter case correspond-
ing to the modulus Mn(t).
Reprinted with permission
from The Journal of
Chemical Physics,
Copyright 2000, American
Institute of Physics [50]



ing Eq. (15.4) into Eq. (15.7). Figure 15.5 tests the 〈–ν(∞)〉 data obtained for a se-
ries of solvents differing strongly in εs against both the Onsager (ONS) contin-
uum model and the MSA results using the lineshape theory outlined above [14].
It is obvious that the linear correlation between theory and experiment is ob-
tained for the MSA case only, while the continuum or Onsager approach fails to
correlate the experimental results with the prediction properly [17].

Regarding the dynamics of solvation using phosphorescent probes, the initial
attempt to associate the solvation dynamics with orientational solvent motion
focused on the correlation of the onset of slow solvation effects with the struc-
tural relaxation of the solvent. It was observed for more than ten different glass
forming liquids that the Stokes shift sets in at the glass transition temperature of
each solvent [6]. Conversely, different probe molecules in the same solvent lead
to almost identical dynamical responses, i.e., the observed solvation dynamics
are independent of the particular probe molecule [6]. In a next step, we compare
in Fig. 15.6 solvation and dielectric average time scales only, but over a large
range of temperatures and response times for the solvent 2-methyltetrahydrofu-
ran (MTHF). The C(t) data have been obtained for various probe molecules with
different excited state lifetimes, in order to cover decay times ranging from 10 ps
to 100 s. Within these 12 decades in time, the Stokes-shift dynamics closely fol-
low the course of the dielectric relaxation time, τD [18].

For a closer scrutiny of the C (t) ↔ ε(t) relation, we select two temperatures
in Fig. 15.6, T = 94 K and T = 120 K, for which the relaxation times differ by
eight orders of magnitude. Figure 15.6 displays the typical temperature depen-
dence of a fragile glass-forming liquid, characterized by a drastic increase of the
apparent activation energy as the glass transition at Tg = 91 K is approached. In
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Fig. 15.5. Experimental re-
sults for the steady state
gas-to-solvent shift,
Δ––ν = –ν0 – –ν (∞), obtained
for QX in various solvents
[17]. The predictions
based on the Onsager
(ONS) and MSA model as
input to a lineshape theory
are plotted vs the experi-
mental data. The identity
line indicates agreement
between theory and obser-
vation, the line along the
ONS data is a guide only.
Reprinted with permission
from The Journal of
Chemical Physics,
Copyright 2000, American
Institute of Physics [50]



the domain of the phosphorescent probes, τ ≥ 1 ms, the relaxation time is ex-
tremely sensitive to temperature changes. Therefore, in order to avoid ambigui-
ties, the dielectric relaxation experiment has been performed simultaneously
with the optical data acquisition [5]. The dielectric data of the polar solvent
MTHF are well represented by a Cole-Davidson type ε *(ω) with γCD = 0.49, ε∞ ≈
3, and εs ≈ 19 near Tg. This result for ε *(ω) is easily transformed to the respective
normalized time domain representations,

(15.12)

The upper panel of Fig. 15.7 confronts the experimental C(t) results, C(t), at T =
94 K, εs ≈ 18.4, with the normalized dielectric retardation curve εn(t), the equiv-
alent relaxation Mn(t), and the d-MSA prediction using ε*(ω) as input. An anal-
ogous plot for the T = 120 K,εs ≈ 14.4, case is shown in the lower part of Fig. 15.7.
The relation among the various curves is very similar for the two examples plot-
ted in the respective ranges 0–0.5 s and 0–10 ns [18]. The average time scales of
the C(t) results are close to those of the constant field polarization decay εn(t),
although a faster C(t) according to τE = τD ε∞/εs with ε∞/εs ≈ 5.5 may be ex-
pected. In both cases the relaxation time dispersion, or deviation from expo-
nentiality, is larger for the Stokes-shift dynamics relative to the macroscopic po-
larization curve. The simple continuum prediction, calculated as the constant
charge polarization decay Mn(t), yields decays which appear unreasonably fast.
Also the d-MSA results for dipole solvation decay more rapidly than do the C(t)
measurements. However, the decay patterns of the d-MSA closely resembles
those of the experimental C(t) curves. This is demonstrated in Fig. 15.7 by
rescaling the C(t) data in time, which results in a good agreement between C(t ′)
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Fig. 15.6. Activation plot of
the average solvent relax-
ation times as derived from
solvation dynamics experi-
ments, C(t) (symbols), and
from dielectric relaxation,
ε*(ω) (dashed line) [18]. The
various solvation time
regimes are covered using
three different probes:
quinoxaline, Ru(bpy)2(CN)2,
and 4-aminophthalimide
(static and time resolved
data). Reprinted with per-
mission from The Journal of
Chemical Physics,
Copyright 2000, American
Institute of Physics [50]



and the d-MSA C(t) result. The scaling factors used in the plots are somewhat
different for the two temperatures, but consistently given by √3ε∞/√2εs(T) for both
cases. This factor has been found to represent the ratio of the ‘1/e’ times for the
dipolar MSA result Cdip(t) and the ε(t) decay, as indicated by the vertical dashed
lines in Fig. 15.4 which are a factor of √3ε∞/√2εs apart. Therefore, the C(t) data
agrees with the relaxation time dispersion of the d-MSA Cdip(t) prediction but
exhibits the time scale of the constant field polarization decay, which corre-
sponds to Cdip(t) only in the limit of non-polar solvents.

The above results concerning the solvation time correlation function C(t) and
the solvation amplitude Δ–ν indicate clearly that solvation dynamics tracks the
dielectric properties. However, as with the comparison between other relaxation
methods, the quantitative relation between C(t) and ε(t) is not entirely under-
stood. That a significant dipole moment change Δμ upon exciting the probe is
crucial for a local measurement of the dielectric orientational polarization is
emphasized in Fig. 15.8. This plot compares how the Stokes shift Δ–ν increases
with solvent polarity for the dipolar probe QX with Δμ ≈ 1.3 D, whereas the non-
polar probe NA with Δμ ≈ 0 displays no coupling to the polarity or to the di-
electric relaxation strength Δε.

15.4.1
Dynamic Heterogeneity

The dispersive relaxation dynamics of supercooled liquids and polymers have
been observed to originate from a distribution of site specific time scales. The
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Fig. 15.7. Plots of experi-
mental log10C(t) curves
(solid symbols) and the
scaled log10C(κt) data (open
symbols) vs time, where k =
(εs/ε∞)1/2 [18]. In each panel,
the normalized dielectric
response, εn(t), as well as the
MSA and ONS predictions
are included as solid lines as
indicated. Upper panel: data
for QX in MTHF at T = 94 K
for times 0 ≤ t ≤ 0.5 s. Lower
panel: data for 4AP in
MTHF at T = 120 K for
times 0 ≤ t ≤ 10 ns.
Reprinted with permission
from The Journal of
Chemical Physics,
Copyright 2000, American
Institute of Physics [50]



possibility of selecting a subensemble whose relaxation is slower or faster than
the average is regarded as proof of this heterogeneity regarding the dynamics
[19]. In fact, the initial experimental approaches to heterogeneity were based on
techniques capable of employing dynamical selectivity, like multidimensional
NMR methods [20–22], optical bleaching techniques [23–25], and non-resonant
dielectric hole burning [26–28]. Instead of focusing on higher order time corre-
lation functions, the solvation dynamics technique exploits the information
contained in the higher moments of a two time correlation function. While a
typical relaxation trace refers to the ensemble average, solvation data also con-
tains information on the spatial variance of the relaxing quantity and is thereby
directly sensitive to heterogeneity.

One advantage of the phosphorescence type solvation experiment is its capa-
bility of directly observing the inhomogeneous optical linewidth σinh, practi-
cally unobstructed by homogeneous broadening or unresolved vibronic struc-
ture. This linewidth is constant below the glass transition of the solvent, σinh(T
< Tg) = σo. Its value reflects the frozen in disorder of solvent dipoles and the re-
sulting spatial variation of the solvation free energy or of the local electric field
at the sites of the probe molecules.Above Tg,σinh is observed to become time and
temperature dependent, indicating a peak in the σinh(t) curves but with σinh(0)
= σinh(∞) = σo [29]. Within the framework of dipole solvation theories, no pre-
diction for such time dependence of the linewidth has been advanced. In cases
where the solvent dielectric properties enter solely in terms of ε *(ω), as for the
d-MSA, the dipole dynamics are assumed spatially homogeneous, i.e. the dy-
namical behavior of each dipole is identically determined by the macroscopic
dielectric function ε *(ω) or ε(t). In this case, the emission spectrum is expected
to shift as a whole while conserving its shape, resulting in σinh(t) = σ0 for all
times.An alternative picture is the situation that every site is associated with sin-
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Fig. 15.8. Values of the total
Stokes-shift Δ–ν for the
probes NA (open symbols)
and QX (solid symbols) in
various glass forming sol-
vents near Tg [49]. The ab-
scissa sorts the solvents ac-
cording to their polarity in
terms of ET

N values at 
T = 20 °C. Lines are meant
to serve as guides only.
Reprinted with permission
from The Journal of
Chemical Physics,
Copyright 2000, American
Institute of Physics [50]



gle exponential dynamics but with the relaxation time being a spatially varying
quantity [30, 31]. In what follows, we address the relation between dynamical
heterogeneity and the inhomogeneous linewidth σinh(t) in quantitative detail.

The solvation time correlation function C(t) is usually non-exponential and
often described by a KWW type decay, C(t) = exp[ – (t/τKWW)βKWW]. Let χi(t) =
exp[–(t/τi)βintr] denote the decay intrinsic in the response of a specific site i, i.e.,
at a given probe molecule. Pure dynamical homogeneity is then described by
χi(t) = C(t), with βintr = βKWW and τi = τKWW, identically for all i. Heterogeneity is
modeled by βintr > βKWW, i.e., the intrinsic decays are not as non-exponential as
the ensemble average C(t). In this case, a distribution of τi must account for the
discrepancy between C(t) and χi(t), and C(t) can be written as

(15.13)

The purely heterogeneous limit is reached when βintr = 1, equivalent to local ex-
ponential decays and an accordingly broad probability density g(τ) characteriz-
ing the spatial variation of relaxation times.

For predicting σinh(t) in the course of a solvation process associated with het-
erogeneous dynamics, both site specific quantities, the solvation free energy –νi
and the characteristic time scale τi, need to be considered. For the equilibrated
energies –νi (∞) we assume a Gaussian distribution centered at –ν(∞) and having a
Gaussian width σ0. The independent values of the τi are subject to a distribution
according to g(τ) defined implicitly in Eq. (15.13). The energetic relaxation for
site i, –νi(t), can be written as [32]

(15.14)

Since the quantities –νi(∞) and χi(t) are independent random variables, the mean
value –νi(t) and the variance σ 2

inh(t) of –νi(t) can be obtained by adding the indi-
vidual corresponding moments.

The mean, 〈χ(t)〉, is directly given by Eq. (15.13), 〈χ(t)〉 = C(t). The variance
of χ(t), denoted ρ(t), can be obtained accordingly,

(15.15)

with ρ(t) = 0 if βintr = βKWW and with ρ(t) attaining a maximum whenever βintr >
βKWW. Inserting the results for 〈χ(t)〉 and 〈(χ(t) – 〈χ(t)〉)2〉 in Eq. (15.14) yields

(15.16)

(15.17)

with ρ(t) stated in Eq. (15.15). A practical way of expressing the resulting rela-
tion between σinh(t) and C(t) is

(15.18)
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demonstrating the impact of βintr on the observable σinh(t), whereas C(t) is inde-
pendent of βintr. The bounds of the time dependent width σinh(t) are σinh(t) = σo
for the case of βintr = βKWW and σinh(t) ≤ [σ 2

0 + Δ–ν 2/4]1/2 for other values of 0 <
βKWW < βintr ≤ 1. Equation (15.18) relates the inhomogeneous linewidth σinh(t)
to the normalized Stokes shift response function C(t). It predicts that an excess
linewidth appears in the course of a solvation process if (and only if) the under-
lying dynamical processes exhibit a spatial variation of time scales.

In order to analyze the present solvation data along Eq. (15.18), it is conve-
nient to have a simple analytical function which matches the C(t) data, such that
C(21/βintrt) can be obtained easily. Figure 15.3 demonstrates that a KWW decay
with βKWW = 0.5 is appropriate for handling C(t) at arbitrary times. Further-
more, the observation of a temperature invariant βKWW makes it sufficient to an-
alyze the σ(t) – C(t) relation on the basis of the master curves, where the vari-
able t/τKWW is used instead of the absolute time. Figure 15.9 compares the ex-
perimental results [σ 2

inh(t) – σ 2
0]/Δ–ν 2 with the predictions, C(21/βintrt) – C2(t), for

various values of βintr. In this plot the solid line refers to βintr = 1, where ρ(t) =
C(2t) – C2(t). This case corresponds to intrinsic relaxation patterns which are
purely exponential and results in an excellent agreement with the experimental
findings [33]. The dashed curves in Fig. 15.9 are for βintr = 0.9, 0.8, and 0.7, where
already βintr = 0.9 is an inferior fit relative to βintr = 1.

An unbiased approach for assessing the intrinsic relaxation pattern is a sta-
tistical analysis of the experimental data according to

(15.19)β β
ρ φ
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Fig. 15.9. Master plot ρ(t)
(symbols) vs t/τKWW based
on the σinh(t) data of the
system QX/MTHF at tem-
peratures 91 K ≤ T ≤ 97 K
[33]. The lines are predicted
ρ(t) curves using φ(t) =
exp[−(t/τKWW) 0.5] for vari-
ous values of βintr = 1.0, 0.9,
0.8, and 0.7, in the order
from top to bottom curve.
The homogeneous case 
βintr = βKWW = 0.5 leads to
the prediction ρ(t) ≡ 0.
Reprinted with permission
from The Journal of
Chemical Physics,
Copyright 2000, American
Institute of Physics [50]



where βintr is now expressed in terms of experimentally well defined quantities,
βKWW, ρ(t) = [σ 2

inh(t) – σ 2
0]/Δ–ν 2, and φ(t) = C(t). The mean and standard devi-

ation for βintr have been computed in the range 2 × 10–2 ≤ t/τKWW ≤ 2 yielding 
βintr = 1.001 ± 0.077 [33]. This result states unambiguously that the orientational
correlation decays exponentially as far as the local response around a probe
molecule is concerned. Within the present experimental range, 91 K ≤ T ≤ 97 K
or Tg ≤ T ≤ Tg + 6 K or 3 × 10–3 s ≤ 〈τ〉 ≤ 54 s, no indication towards a systematic
deviation from βintr = 1 can be found.

15.4.2
Confined Systems

Disordered materials are often studied under the constraints of spatial restric-
tions in order to understand the confinement and interfacial effects on the be-
havior of liquids [34], supercooled liquids [35, 36], liquid crystals [37, 38], poly-
mers [39], and model systems [40]. Concerning the viscous regime of glass-
forming materials, one is often interested in observing the competing effects of
geometrical confinement and the length scale ξ of cooperativity. This latter scale
can be pictured as the distance below which two molecules are dynamically cou-
pled, i.e., the size of a ‘cooperatively rearranging region’ (CRR) or of domains
[41]. This length scale ξ is assumed to attain values near 3 nm at the glass tran-
sition temperature Tg [42]. Porous systems are attractive materials for such stud-
ies because various pore diameters in the range of several nanometers are read-
ily available. Phosphorescence solvation dynamics experiments are particularly
useful for investigating the orientational relaxation of viscous liquids in the op-
tically clear porous silica GelSil-glasses (GelTech) because the probe molecules
are sensitive only to the local response without a significant spatial averaging.

The first solvation dynamics study of a supercooled liquid confined to nano-
pores has focused on the dipolar probe molecule quinoxaline dissolved in the
polar glass-former MTHF [43]. Porous silica glasses with nominal pore diame-
ters between 2.5 and 7.5 nm and with the native glass surfaces have been used
for confining the liquid. The results have shown that the short time orientational
correlation function in pores is the same as in the bulk situation.At times longer
than a certain time te, however, the relaxation became non-ergodic, where te var-
ied systematically with the pore size and with temperature.An example is shown
in Fig. 15.10. The experimental findings are consistent with the idea that coop-
erativity of a certain length scale ξ couples an increasing fraction of the liquid
to the boundary conditions as time proceeds [44]. These boundary conditions at
the pore wall are defined by the surface properties, which are believed to be
dominated by the silanol groups of a native silica glass surface. The pore size and
temperature dependences were in accord with a cooperative length scale ξ
which increases with decreasing temperature and which attains a value of ξ ≈
3 nm at the glass transition temperature Tg. Consequently, the dynamics of mol-
ecules within the interfacial layer affect the remaining liquid to an extent which
depends upon the length scale of cooperative motion. The above experiment has
been repeated but using silanized porous glasses, in which a hydrophobic pore

15.4 Solvations Dynamics 587



surface is achieved by passivating the silanol groups present on a native silica
surface. Figure 15.11 displays the results for the solvation time correlation decay
C(t) observed in silanized pores. In contrast to the case of MTHF confined to
pores with native surfaces, the relaxation dynamics in silanized pores as small as
2.5 nm is virtually identical to the behavior of the bulk liquid [45].

The data for native pores in Fig. 15.10 show unambiguously that geometrical
confinement is capable of altering the relaxation dynamics of supercooled liq-
uids in a qualitative fashion, such that the changes relative to the bulk relaxation
can not be characterized by a shift of 〈τ〉 or Tg alone. However, Fig. 15.11 indicates
already that much of the bulk behavior can be restored by a surface treatment,
i.e., by changing the properties of the interface only. Since the process of silaniz-
ing actually reduces the pore size slightly, the features seen for the native porous
glass in Fig. 15.10 cannot be considered pure confinement effects. The non-er-
godic component is rather a consequence of the special interactions between
MTHF molecules and the silanol groups of a clean silica surface which appears to
frustrate the reorientation in the interfacial layer considerably. It is then a matter
of pore size and temperature to which extent dynamic cooperativity couples the
remaining liquid within the pore to these boundary conditions.

For the silanized pores, the correlation decays C(t) are well approximated by
KWW functions as in Eq. (15.13), with a temperature invariant exponent βKWW
in the temperature range, 91 K ≤ T ≤ 98 K, near the glass transition at Tg = 91 K.
Therefore, temperature variations affect C(t) only in terms of the characteristic
time τKWW(T) without changing the functional form and a single master curve
C(t) vs t/τKWW covering six decades in reduced time can be constructed from a
series of isothermal measurements according to the observation of the time-
temperature superposition. Figure 15.12 compares the C(t) results on reduced
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Fig. 15.10. Solvation dynamics C(t) results for MTHF at T = 92 K [45]. The curves correspond
to the bulk case (solid symbols) and to the cases of confinement in native pores (GelTech) of
different diameter φ as indicated. The short time data is invariant to confinement effects, while
the value of φ determines the time above which the process appears non-ergodic. Reprinted
with permission from Journale de Physique IV France, Copyright 2000, EDP Sciences [46]
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Fig. 15.11. Solvation dynamics C(t) results for MTHF at T = 94 K [45]. The curves correspond
to the bulk case (solid symbols) and to the cases of confinement in silanized pores (GelTech)
of different diameter φ as indicated. The entire decays are independent of the pore size.
Reprinted with permission from Journale de Physique IV France, Copyright 2000, EDP
Sciences [46]

Fig. 15.12. Master curve for the Stokes-shift correlation functions C(t) vs t/τKWW for QX in
MTHF as derived from measurements at various temperatures in the range 91 K ≤ T ≤ 98 K
[46]. Solid symbols refer to the bulk liquid, open symbols are for the confinement to silanized
pores of 5 nm diameter. Both data sets are well approximated by the Kohlrausch-Williams-
Watts decay function with temperature independent exponents βKWW = 0.50 and βKWW = 0.47
for the relaxation in the bulk and in pores, respectively. Reprinted with permission from
Journale de Physique IV France, Copyright 2000, EDP Sciences [46]



time scales for the case of the confinement to silanized pores of 5 nm nominal
diameter with those for the bulk liquid [46]. The stretching exponents reflect the
degree of deviations from an exponential decay pattern and are found to be very
similar, βKWW = 0.47 and βKWW = 0.50 for the porous and bulk case, respectively.
The total Stokes shift for the porous sample is Δ–ν = 〈–ν(0)〉 – 〈–ν(∞)〉 = 21342 cm–1

– 21110 cm–1 = 232 cm–1, whereas the bulk supercooled liquid MTHF displays a
value of Δ–ν = 21360 cm–1 – 21113 cm–1 = 247 cm–1.

In contrast to other techniques [44], the solvation dynamics method unam-
biguously identifies the amplitude of the relaxation function in porous media,
because this value of Δ–ν is inferred independently from the shift of the emission
energy without referring to the number of emitting probe molecules. The total
Stokes shift for the porous sample is Δ–ν = 232 cm–1, and therefore only 5.6% be-
low that of the bulk liquid. Considering that some chromophores might be im-
mobilized in the smallest pores of the existing pore size distribution or in the bot-
tleneck between two pores, the bulk of the response amplitude is preserved inside
the 5-nm pores. The normalized orientational correlation decays confronted in
Fig. 15.12 are practically identical within the data scattering of the C(t) results for
the porous sample, although βKWW = 0.47 vs βKWW = 0.50 indicates a subtle in-
crease in the relaxation time dispersion in silanized 5 nm pores over the bulk
case. MTHF in silanized 5-nm pores appears to be an example of a confined liq-
uid where the dynamics in the interfacial layer do not differ strongly from the
bulk dynamics. This is the ideal situation for observing pure confinement effects,
but they remain almost unnoticeable in the present case of MTHF in 5-nm pores.

The characteristic times of the KWW type C(t) decays, τKWW, are strongly
temperature dependent near Tg, because MTHF is a fragile liquid (F1/2 = 0.73) if
classified within the strong-fragile pattern [47]. Figure 15.13 compiles the
τKWW(T) data for the bulk and confined liquid as symbols in an activation plot.
The line in this graph reflects the temperature dependence of the average di-
electric relaxation time of bulk MTHF as seen in a macroscopic dielectric ex-
periment. Above a temperature T = 94 K (103 K/T = 10.6) the relaxation times
from the two experiments agree, but below 94 K the orientational correlation de-
cays faster in the pores, which amounts to a factor of ≈ 4 at T = Tg = 91 K.

The above results emphasize the importance of the surface properties for the
dynamics of molecules in porous media. A more detailed approach to discrimi-
nating interfacial from purely geometrical confinement effects requires a tech-
nique which facilitates the measurement of dynamics selectively in the interfacial
layer. In what follows we briefly outline how solvation dynamics can be applied 
to achieve such a spatial selectivity [45]. The system used is QX in the nonpolar
liquid 3-methylpentane (3MP) imbibed in native pores of 5 nm diameter.
Figure 15.14 compares the temperature dependent average emission energies
recorded at a fixed time t0 = 100 ms for the porous and bulk case. In contrast 
to the QX/MTHF sample, the curves in Fig. 15.14 are offset by as much as Δ–ν ≈
780 cm–1 on the energy scale. This value agrees favorably with the Stokes shift 
observed only when the probe QX is dissolved in alcohols. Therefore, we con-
clude that the QX molecules are located at the pore walls, where the silanol 
groups are responsible for the 780 cm–1 energy offset. For both cases plotted in
Fig. 15.14 the solvation dynamics near Tg lead to a Stokes shift of Δ–ν ≈ 70 cm–1 .
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Fig. 15.14. Average emission energy 〈–ν〉 of QX in 3MP recorded at a fixed time t0 = 100 ms and
as a function of temperature [45]. The solid symbols refer to the bulk 3MP liquid, open sym-
bols are for 3MP in a native porous glass with 5 nm sized pores.At low temperatures, T ≤ 70 K,
the energy values are separated by Δ–ν. The inset shows the relative changes of Δ〈–ν〉 on ex-
panded scales. Reprinted with permission from Journale de Physique IV France, Copyright
2000, EDP Sciences [46]

Fig. 15.13. Activation plot of τKWW(T) derived from fits to the Stokes-shift correlation function
C(t) for QX in MTHF [46]. The data is taken for temperatures between T = 91 K and T = 98 K.
Solid symbols refer to the bulk liquid, open symbols are for the confinement to silanized pores
of 5 nm diameter. The line is a Vogel-Fulcher fit to dielectric data of unconfined MTHF. The
glass transition temperature of MTHF is Tg = 91 K (103 K/Tg = 11.0). Reprinted with permis-
sion from Journale de Physique IV France, Copyright 2000, EDP Sciences [46]



The inset of Fig. 15.14 presents these solvation dynamics effects on enlarged
scales.

Because 3MP is a non-dipolar liquid, the relaxations associated with the
70 cm–1 red-shift are due to mechanical responses of the environment rather
than orientational motion as with dipolar solvation [48, 49]. The curve in the in-
set of Fig. 15.14 associated with the interfacial layer is shifted to higher temper-
atures and the transition is broader. In terms of the molecular dynamics, this im-
plies that the relaxation at the interface is a factor of ≈10 slower, its distribution
of relaxation times is broader, but there appears no qualitative difference like a
motionally blocked interfacial layer. Note that a change in relaxation time by a
factor of 10 amounts only to a fraction of the entire width of the broad relaxation
time distributions typical for supercooled liquids.

15.5
Summary

This chapter has demonstrated that the optical technique of phosphorescence
solvation dynamics is a versatile tool for assessing the local dynamics and po-
larity of molecules in soft condensed matter. The steady state as well as time de-
pendent S0 ← T1 (0 – 0) emission profiles originating from appropriate chro-
mophoric guest molecules can be rationalized in a semi-quantitative fashion on
the basis of the dielectric properties of the supercooled liquid, especially when
going beyond continuum type approaches.

The close relation between the observed Stokes shift correlation function
C(t) and dielectric relaxation data ε *(ω) allows one to exploit the local charac-
ter of the solvation dynamics experiment in situations, where spatial hetero-
geneities regarding dynamics or polarity are anticipated. Two examples have
been discussed, where local rather than macroscopic techniques are advanta-
geous: detailed measurements of the dynamic heterogeneities intrinsic in the
non-exponential orientational relaxations of supercooled liquids, and studies of
liquid dynamics under geometrical confinement to pores in silica glasses with
diameters of a few nanometers. A promising application of solvation dynamics
is the possibility of tagging particular spatial regions of interest, like the interfa-
cial layer of a liquid in porous glass, which are then measured selectively.
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List of Abbreviations and Symbols

c Vacuum speed of light
C(t) Stokes shift correlation function
D Dielectric displacement
D Solute molecule diameter
d Solvent molecule diameter
E Electric field
Eloc Local electric field
Es Solvation free energy
F1/2 Fragility
h Planck’s constant
I Emission intensity
kB Boltzmann’s constant
M(t) Electric modulus
Mn(t) Normalized electric modulus
M∞ High frequency electric modulus
Mloc Local electric modulus
P(t) Dielectric polarization
PD(t) Constant field polarization
PE(t) Constant charge polarization
S0 Singlet ground state
S1 First excited singlet state
T1 First excited triplet state
Tg Glass transition temperature
W Interaction energy
αs Solvent state function
βintr Intrinsic non-exponentiality
βKWW KWW exponent
γCD Cole-Davidson exponent
ΔE Electric field change
Δμ Dipole moment change
Δ–ν Total red shift
ε(t) Dielectric function
εn(t) Normalized dielectric function
εs Static dielectric constant
ε0 Permittivity of free space
ε∞ High frequency dielectric constant
μE Excited state dipole moment
μG Ground state dipole moment
–ν Wavenumber
–ν 0 Gas phase wavenumber
ξ Cooperativity length scale
ρ(t) Variance of relaxation function
σ Optical linewidth
σinh Inhomogeneous linewidth
τE Modulus time constant
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τex Excited state lifetime
τD Dielectric time constant
τKWW KWW time scale
τL Longitudinal time constant
τph Phosphorescence lifetime
χi (t) Local response function

d-MSA Dynamics MSA
KWW Kohlrausch-Williams-Watts
3MP 3-Methylpentane
MSA Mean spherical approximation
MTHF 2-Methyltetrahydrofuran
NA Naphthalene
ONS Onsager theory
QI Quinoline
QX Quinoxaline
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16 Dielectric and Mechanical Spectroscopy – 
a Comparison

T. Pakula

16.1
Introduction

Mechanical spectroscopy is a technique of material characterization in which
material deformation and flow behavior is analyzed by means of dynamic me-
chanical methods. As in dielectric spectroscopy, advantage is taken of the mate-
rial reaction to periodic variation of the external field, however with the differ-
ence that the applied field is mechanical instead of the electrical one. Materials
respond to the applied field (stress or strain) by dissipating the input energy in
a viscous flow (non-reversible response), by storing the energy elastically (re-
versible response), or through a combination of both of these two extremes.
Dynamic mechanical method makes it possible to detect variation of both con-
tributions as a function of temperature or deformation rate and to determine in
this way the spectra of relaxation processes which control the viscoelastic be-
havior of a given material. The mechanical behavior is often a key criterion for
a possibility of application of the materials even if some other properties (e.g.,
optical or electrical) are effectively used. As a result mechanical spectroscopy is
a widely used experimental technique both as a material testing method and as
a tool for analysis of the dynamics in complex polymer systems.

A very large variety of very complex macromolecular systems with specific
molecular structures is available both in nature and as synthetic materials. The
molecular structures are formed in order to fulfill specific functions or to con-
tribute to formation of larger complex aggregates in order to achieve specific
material properties. Recent progress in scientific techniques in chemistry and
physics have made it possible, with increasing success, to manipulate atoms and
molecules to create such novel structures with desired properties. Especially, in
macromolecular science and technology, a lot of systems have been developed in
which a controlled molecular architecture leads to self-organization of mole-
cules to various supramolecular structures with interesting properties. The ma-
terials under consideration are generally complex macromolecular fluids in
which various kinds of interactions and a predetermined atomic order within
molecules contribute under certain conditions to formation of specific supra-
molecular order. Generally, all kinds of interactions present in a given system,
like excluded volume, intramolecular bonds, dipoles, charges or incompati-
bility of molecular segments, can contribute to the self organization processes.
By a specific molecular design of atomic constitution and topology of bond



skeletons of molecules, contributions of various interactions can be controlled
to a large extent. Some typical examples of such self assembling macromolecu-
lar structures are presented in Fig. 16.1, in which the topology of molecular
skeletons and the atomic constitution within chains is varied. Various classes of
systems can be generated by changing only these two parameters.

Figure 16.2 shows an example of structures to which a linear block copolymer
system can organize in a condensed state. The hierarchical nature of order ex-
tending over many decades of the size scale, is illustrated. The broad size range
of structures in such systems involves a broad variety of related relaxations
which contribute to the dynamics extending over an extremely broad time range
sometimes exceeding the observation possibilities. The dynamic spectrum of
such materials becomes very important for understanding the correlation be-
tween parameters of the molecular and supramolecular structures on one hand,
and macroscopic properties on the other. Analysis of these correlations appears
to be extremely difficult and usually requires application of many experimental
techniques for characterization of both the structure and the dynamics. In this
chapter, dynamic mechanical measurements will be considered as a source of
information about the dynamics consisting of relaxation processes in various
polymeric systems.

Despite the structural and related dynamical complexity of polymeric mate-
rials, the phenomenological description of the mechanical behavior of the sys-
tems is rather simple and based on rather simple models [1, 2]. The two limiting
behaviors – the elastic behavior of a solid and the viscous behavior of a liquid –
are characterized by the well-known simple linear relationships between
stresses and strains or strain rates and are given by Hooke’s and Newton’s laws,
respectively. Polymers are usually considered as viscoelastic materials. The sim-
plest viscoelastic behavior can be represented by a single relaxation time
Maxwell model which describes the dynamic transition between the elastic and
viscose regimes corresponding to times shorter (higher frequencies) and longer
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Fig. 16.1. Illustration of various macromolecular structures differing by the topology of bond
skeletons and distributions of comonomers in copolymer systems



(lower frequencies) than the relaxation time, respectively. Polymers such as for
example those illustrated in Figs 16.1 and 16.2 are characterized not by one but
by several relaxation mechanisms with different relaxation times and can only
be represented by a set of relaxing elements considered, for example, as con-
nected in parallel when the assumption can be made that the interaction be-
tween the relaxation processes during the course of deformation is negligible.
Each relaxation transition means usually a switching on and off a particular
type of motion in the system and separates two dynamically different states of
the material with different properties.

Formally there are many analogies between the behavior of materials in the
electrical field and the above described cases of the mechanical responses. An
ideal isolator can be regarded as analogue of the elastic solid and an electrical
conductor as an analogue of the viscose liquid. Hence viscoelastic response has
its analogy in dielectric relaxation, and both the experiments and the formalisms
used to describe the results of dielectric and mechanical spectroscopies have
many similarities. In this chapter mainly the mechanical spectroscopy technique
and related results will be described but a correspondence to the results of the di-
electric spectroscopy will be shown whenever possible. A comparison of these
two techniques has already been considered earlier by other authors (e.g., [1, 3]),
as well as, in the former chapters of this book (see Chaps. 1 and 3).
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Fig. 16.2. Illustration of structures which can be detected at various size ranges in a block
copolymer system and corresponding dynamic relaxation processes which extend over a very
broad time range. The rates of relaxations and consequently the properties which can vary be-
tween a hard solid and a viscous liquid are additionally controlled by temperature



16.2
Principles of Mechanical Analysis

Force and deformation are the two physical quantities which accompany any
mechanical testing of a material. The mechanical experiment consists usually in
determination of a relationship between stress (force normalized with respect to
the cross-section of the sample) and strain (deformation normalized with re-
spect to the original shape or dimension of the specimen). Such relations are
characteristic for materials and are called “constitutive relationships”. Strains
and stresses are generally tensors of the second rank each characterized by a
number of components related to a given deformation state. Consequently, the
quantities describing relations between strains and stresses are tensors of the
fourth rank which in the most general case require specification of 36 compo-
nents. Depending on the way in which the forces are applied to the material, var-
ious kinds of deformation can be distinguished and various components of the
more general relations between strains and stresses can be determined. As ex-
amples, tension, simple shear and compression are illustrated in Fig. 16.3. For an
elastic material, the three types of deformations allow one to determine the
Young’s modulus (EY = σ/ε), the shear modulus (G = σ/γ), and the compression
modulus (K = p/Δ) as ratios of corresponding stresses and deformations.

The procedure of properties analysis can generally be considered as an input-
output system in which the input signal in the form of time dependent force or
deformation is applied to a sample, which is kept under an environmental con-
trol (e.g., temperature, humidity, etc.), and the output signal as resulting defor-
mation or exerted force, respectively, is monitored in time and related to the in-
put signal.Various input functions including periodic ones have been applied in
various variants of mechanical techniques.

The two simplest limiting behaviors, the elastic for solids and the viscous for
liquids, are characterized by the simple linear relationships given by Hooke’s law

(16.1)σ γ= ⋅G
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Fig. 16.3. Examples of vari-
ous deformation modes
(tension, shear, and com-
pression) used in the me-
chanical analysis of materi-
als. Arrows correspond to
forces applied to the sample.
Dashed and solid lines illus-
trate sample forms in the
non deformed and de-
formed state, respectively



and Newton’s law for fluids

(16.2)

respectively. The corresponding material constants are the elasticity modulus G
and the viscosity η. The simplest description of a viscoelastic behavior is pro-
vided by the Maxwell model with a single relaxation time:

(16.3a)

which describes the time dependent stress relaxation related to the dynamic
transition between the elastic and viscose regimes corresponding to times
shorter and longer than the relaxation time τ , respectively. Considering an in-
stantaneous deformation γ0 related to the initial stress the behavior can be rep-
resented by means of a relaxation modulus

(16.3b)

which describes the decay of perturbation introduced by the initial deforma-
tion. This formula goes beyond the Maxwell model, it corresponds to the Debye-
relaxation function used in the dielectrics, and can be regarded as a basic rela-
tion for the simple relaxation process (see Chap. 3). An example of responses of
the model materials to a single step stress function as an input is illustrated in
Fig. 16.4. Immediate reaction and a unique correspondence of strain to stress is
seen for the ideal elastic system whereas the viscous behavior is characterized by
the irreversible response which can be considerably delayed with respect to the
applied stress. In the case of the viscoelastic system much more complex strain
functions are detected both at switching on and after switching off the stress.
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Fig. 16.4. Mechanical experi-
ment considered as an input-
output system. Examples 
of responses (strain vs time)
of various model materials
(elastic, viscous, and linear
viscoelastic) to a rectangular
stress signal are shown



In a dynamic mechanical experiment, a sinusoidal strain is usually applied to
a material and the resulting stress is measured. The stress signal is then sepa-
rated into two components: an elastic component which is in phase with the ap-
plied strain, and a viscous component which is in phase with the strain rate, or
90° out of phase with the strain. In this way, both the stress-strain relation and
the stress-strain rate dependence can be measured, giving information on both
the elastic and viscous components of the properties. The input-output relations
become in this case relatively simple. Illustration of responses for the three dif-
ferent types of material behavior are shown in Fig. 16.5. The behavior is consid-
ered as linear when the output functions remain sinusoidal and differ only by
amplitude and phase shift from the sinusoid at the input.

16.3
Linear Viscoelastic Behaviour

Formally, the properties of linear viscoelastic materials are usually described by
the storage G ′ and loss G ′′ moduli, representative for the elastic and viscous
components, respectively. These properties of materials are usually determined
by applying sinusoidal shear strain of amplitude γ0 and frequency ω. The shear
strain as a function of time is

(16.4)

and the corresponding shear strain rate

(16.5)˙( ) cos( )γ γ ω ωt t= 0

γ γ ω( ) sin( )t t= 0

602 16 Dielectric and Mechanical Spectroscopy – a Comparison

Fig. 16.5. Responses of the
three model materials (elas-
tic, viscous, and linear visco-
elastic) to the sinusoidal de-
formation. The stress (out-
put signal) is shown in com-
parison with the
deformation (input signal)



For the linear response the resulting shear stress will also be sinusoidal but can
be shifted in phase as follows:

(16.6)

where δ is the phase shift angle and σ0 is the stress amplitude. The phase angle
is limited (0 < δ < π/2) and can be regarded as characterizing the distribution of
the deformation energy into the two fractions: (1) the energy stored in the sys-
tem as an elastic deformation and (2) the energy lost irreversibly due to flow. For
purely elastic behavior δ is zero, and the ratio between shear stress and strain is
constant in time. For viscous behavior δ = π/2 and the ratio between the shear
stress and strain rate becomes constant (Fig. 16.5).

The shear stress is usually written as a trigonometric identity as follows:

(16.7)

The storage and loss moduli are also often considered as the real and imaginary
parts of the complex dynamic modulus, G*(ω) = G ′(ω) + iG ′′(ω). Both real and
imaginary parts of the complex modulus are functions of frequency with a char-
acteristic behavior at frequencies around the relaxation frequency of structural
units in a simple viscoelastic system. An example of such behavior is illustrated
schematically in Fig. 16.6 by using the G ′(ω) and G ′′(ω) dependencies deter-
mined for the simple Maxwell model which gives explicit formulas for these de-
pendencies (e.g., [2]):

(16.8)

(16.9)

In the high frequency range the plateau of G ′ and the low G ′/G ′′ ratio (G ′ � G ′′)
are both characteristic for the elastic behavior (Hookean). The elastic shear
modulus describing the material properties in this range is given by

(16.10)

In the low frequency limit the behavior typical for the Newtonian flow is seen for
which G ′′ � G ′ and where G ′ and G ′′ obey the characteristic proportionalities
to ω 2 and ω, respectively. Here the system can be characterized by the complex
viscosity η*(ω) given by

(16.11)

The value of the complex viscosity η*(ω) is equal to the kinematic viscosity η
only if G ′′ � G ′. Only in this range is the viscosity a meaningful material prop-
erty and the complex viscosity can approach here the value of the zero shear vis-
cosity
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The two limiting types of behavior are separated by the intermediate cross-over
region in which the system can be regarded as typically viscoelastic. The point
at which G ′ and G ′′ cross each other determines the place (ω on the frequency
scale) which is related to the relaxation time of the structural units constituting
the system (τ = 1/ω). In the simple example of the relaxation represented by the
Maxwell model, the G ′′ assumes a maximum and the lines log G ′ and log G ′′ vs
logω extrapolated from low to higher frequencies cross each other at the same
frequency directly related to the relaxation time. These characteristic points in
the G ′ and G ′′ vs ω dependencies are sometimes used to determine the relax-
ation times in real systems in which, however, the correspondence of these
points to the relaxation times is only approximate. In real systems the relaxation
is more complex and usually extends over a broader frequency range than in the
simple example shown here, making an impression that they would consist of a
variety of relaxation effects with various relaxation time spectra around the
time corresponding to the cross-over point.

Figure 16.6 gives an example of a possible structural interpretation of the
mechanically observed relaxation which can be considered for molecular or
colloidal systems. For the dense system of spheres, which can be regarded as
representing molecules or particles, there is the solid-like state at higher and
the liquid-like state at low frequencies. The nature of these states is illustrated
in the figure by particle trajectories. In the high frequency regime they indicate
only vibrational motions and quasi localized positions of particles between the
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Fig. 16.6. Frequency dependencies of the real (G ′) and imaginary (G ′′) parts of the modulus
and the viscosity (η) for the simplest relaxation model (Maxwell) with a single relaxation time
(τ). Different behavior of elements in the systems of spherical particles below and above the
frequency corresponding to 1/τ is illustrated by trajectories of sphere centers in a short time
interval. Ordered non-mobile systems (high frequencies) becomes mobile (low frequencies)
due to the relaxation process involving longer range translations



neighbors, whereas at low frequencies displacements exceeding particle sizes
make the system viscous – changing neighbors becomes possible. According to
such a model, the relaxation is related to the position correlation of particles
and the mechanical response can be considered as a Fourier transform of the
position autocorrelation function with the characteristic relaxation time nec-
essary for particles to escape from the surroundings of the initial neighbors.
The single exponential correlation function (ρ(t) = exp(–t/τ)) constitutes the
case equivalent to the Maxwell model when the relaxation is observed in the
time domain.

If the considered structural units are bounded to or constitute fragments of
some larger structure elements their complete relaxation with the single relax-
ation time is impossible. They can flow only locally within the size range con-
trolled by the size and flexibility of the larger structure. In order to relax com-
pletely they have to wait until the larger structure with all constituting elements
will become mobile. Such unrelaxed part manifests itself by a low frequency
plateau in G′ which can extend over a frequency range corresponding to the re-
laxation time of the larger structure.

In analogy to the described mechanical behavior, in dielectric experiments an
alternating electric field (sinusoidal input function) with amplitude E0

(16.13)

produces an electric polarization which in the case of most polar materials will
show a frequency dependent lag (δ) with respect to the applied field

(16.14)

where P0 is the frequency dependent polarization amplitude. The polarization
results from displacements of charge clouds of opposite signs in response to the
applied external field. In analogy to the formalism described above for the me-
chanical field we can define an electric modulus

(16.15)

with the frequency dependent real and imaginary parts M ′(ω) = ε0(E0/P0) cos δ
and M ′′(ω) = – ε0(E0/P0) sin δ, respectively. ε0 is the electric permittivity of the
vacuum. At the relaxation processes, i.e., when the charges become in some way
mobile, the electric modulus components should behave analogously to the ex-
ample shown in Fig. 16.6 and such a process can in general be considered as a
transition between an insulator at high frequencies and a conductor at low fre-
quencies; however, the spatial range of charge motion can be limited. For most
relaxation processes the charges get only a very local mobility because they re-
main bounded to molecular structures. In the case of materials with permanent
dipoles the motion of charges involved by the external field results in a dipole
reorientation (see discussion in Chap. 1).

M M iM*( ) ( ) ( )ω ω ω= ′ + ′′

P t P t( ) sin ( )= +0 ω δ

E t E t( ) sin( )= 0 ω
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16.4
Experimental Procedures and Typical Data Analysis

Dynamic mechanical measurements are usually performed by means of a me-
chanical spectrometer which, depending on the source of the instrument, can be
used in various types of time dependent measurements. The most frequently
used experimental arrangement is schematically illustrated in Fig. 16.7. The si-
nusoidal input signal is supplied to the motor and the resulting torque is mea-
sured by the transducer which in some spectrometers is also capable of measur-
ing the normal force (the force in a direction normal to the plates) exerted by the
sample subjected to shear between the parallel plates.

Depending on the sample state (solid, melt, or solution) various test geome-
tries are used as illustrated in Fig. 16.8. The first two geometries plate-plate (a)
and cone-plate (b) are typically used for melts, the rectangular bars (c) are used
when materials under examination are solids, and the couette (d) geometry can
be applied for polymer solutions or for liquids. The geometry can be varied for
the same material when the properties change considerably as, for example, with
changes of temperature.

Shear or in some cases tensile deformation can be applied under condition of
controlled deformation amplitude, which should remain in the range of the lin-
ear viscoelastic response of studied samples. The storage (G ′) and loss (G ′′)
shear modulus can be measured in various procedures, such as single point, fre-
quency sweep, temperature sweep (both cooling and heating), amplitude or time
sweep, etc. Experiments can usually be performed under dry nitrogen atmo-
sphere. The typical frequency range accessible for the spectrometers is between
0.001 and 500 rad s–1. The temperature can usually be varied in a broad range,
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Fig. 16.7. A scheme of the dynamic mechanical spectrometer system. The sample is sheared
between parallel plates by means of a motor controlling the deformation signal D(t) and the
resulting torque signal F(t) is recorded and analyzed in comparison with the deformation.
The sample is under environmental control



i.e., between –150 and 600°C. In order to overcome the problem of very limited
frequency range (especially in comparison with the dielectric spectroscopy),
master curves are constructed which combine results of measurements per-
formed at various temperatures to a single reference temperature but represent-
ing the material properties in a much broader frequency range (Fig. 16.9).

In order to do that, the frequency dependencies of G ′ and G ′′ measured, for
example, within the frequency range 0.1–100 rad s–1 at various temperatures are
used. In the construction of the master dependencies only shifts along the fre-
quency scale should be performed under the condition that the geometry is ad-
justed with the temperature changes in order to account for the thermal expan-
sion of the sample and the expansion of the tools. This procedure provides the
broad range frequency dependencies of G ′ and G ′′, as well as a temperature de-
pendence of shift factors (log aT vs T). The low frequency range of the master de-
pendence of G ′′ (with G ′′ ~ ω, indicating the Newtonian flow range) can be used
to determine the zero shear viscosity at the reference temperature (η0(Tref) =
G ′′/ω). Viscosity values related to other temperatures can be determined as
η0(T) = η0(Tref) + logaT.

The relaxation time corresponding to the transition between the Newtonian
flow range at low frequencies and the rubbery plateau range at higher frequen-
cies can usually be determined as τ (Tref) = 1/ωc, where ωc is the frequency at
which the G ′ and G ′′ dependencies cross each other. For the transition to the
glassy range (high frequencies) the same procedure can be applied in order to
get the segmental relaxation times at the reference temperature. Relaxation
times at another temperatures are then given by τ (T) = τ (Tref) + logaT.

The described procedure leading to the master curves has considerable limi-
tations. It can be applied for a limited class of materials which are considered as
rheologically simple and usually within a limited temperature and frequency
range. It seems to work for various amorphous polymers at conditions allowing
to detect segmental and slower relaxations. It does not work for materials chang-
ing structure or in the temperature-frequency range where relaxations with dif-
ferent temperature dependencies of relaxation times overlap.

An example of temperature dependencies of G ′ and G ′′ recorded with vari-
ous deformation frequencies for a poly(methyl methacrylate) sample [4] is
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Fig. 16.8. Illustration of various sample geometries: a plate-plate; b cone-plate; c rectangular
bar; d couette used in application to various states of materials (melt, solid, solution, etc.)

a) b) c) d)



shown in Fig. 16.10. It is interesting to notice that the results for various fre-
quencies have been obtained simultaneously using the so-called multiple fre-
quency sweep technique in which the sample during a single temperature ramp
is subjected to deformation being a superposition of sinusoidal signals of dif-
ferent frequencies. A strong effect of frequency on the relaxation rates is ob-
served. Exceptionally in Fig. 16.10, the tanδ values are included in order to
demonstrate that the positions of the tanδ maxima can be displaced consider-
ably with respect to the maxima of G ′′ and cannot be taken as an indication of
the positions of relaxation processes on the temperature scale. The maximum of
tanδ appears between two relaxation processes and only when a slower process
exists. Therefore for the terminal relaxation (at higher temperature) tanδ does
not have a maximum.

Measurement techniques in dielectric spectroscopy have been discussed in
various parts of this book (see Chap. 2). An analogy already mentioned earlier
between dielectric and mechanical spectroscopy can clearly be seen. To some
extent similar sample geometries, similar forms of signals at input and output,
and similar data analysis are used. The procedure of master curve construction
can also be applied to dielectric spectroscopy results but is not often used be-
cause of the extremely broad frequency range accessible to dielectric spec-
troscopy techniques at constant temperature. Nevertheless, an example of an at-
tempt to construct a master dependencies of the electric modulus is illustrated
in Fig. 16.11. It works reasonably in a limited frequency range but parts corre-
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Fig. 16.9. Illustration of a construction of a master frequency dependencies of G ′ and G ′′ for
a polystyrene melt (Mw = 200,000) taken as an example.Frequency dependencies of G ′ and G ′′
are measured at various temperatures in a frequency range indicated by the vertical dotted
lines. One of these dependencies is taken as a reference and all other are shifted along the fre-
quency scale only by log aT to overlap with dependencies measured at adjacent temperatures
and to form finally the continuous master curve corresponding to the reference temperature.
The data measured at the reference temperature are not shifted. For the clarity of the figure
only some data measured at various temperatures are shown
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Fig. 16.10. Temperature dependencies of G ′, G ′′, and tanδ for a PMMA bulk sample (Mw =
100,000) at three different modulation frequencies applied simultaneously

Fig. 16.11. An example of the electrical modulus spectrum as determined for a poly(n-butyl
acrylate) melt (Mw = 36,000) at the reference temperature of 254 K. In order to obtain the mas-
ter dependencies, both the real (M ′) and imaginary (M ′′) components measured at a given
temperature have been shifted along the frequency scale simultaneously (in analogy to the
procedure illustrated in Fig. 16.9)
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sponding to different relaxations do not overlap, because of different tempera-
ture dependencies of the relaxation times for the different processes.

16.5
Differences in Data Treatment

Despite the analogies between dielectric and mechanical spectroscopy methods,
different traditions in the representation of results have been developed in these
two research techniques.As described in the former paragraph, the modulus has
mainly been used for representation of results in mechanical spectroscopy,
whereas, in dielectric spectroscopy the data have usually been represented as the
dielectric permittivity (see, for example, Chaps. 1 and 3). The dielectric permit-
tivity differs by 1 from the susceptibility which constitutes the reciprocal value
of the electric modulus defined in the former section.

In order to compare results obtained by the two techniques, mechanical and
dielectric, for a given material, at first, a common formalism should be consid-
ered. The modulus representation of the dielectric spectroscopy results has
been suggested by Macedo et al. [5], mainly for highly conducting materials but
it remains equally suitable for representing the dielectric relaxation [6] and it
will be used throughout this chapter in order to avoid effects of data represen-
tation on the results when different methods are compared. It is known that the
content of information in various representations is the same; nevertheless, this

Fig. 16.12. Frequency de-
pendencies of: a real and
imaginary components of
the modulus; b real and
imaginary parts of complex
susceptibility for the
Maxwell model
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problem still constitutes a controversy both in mechanical and dielectric spec-
troscopy. It is important to recognize from other authors [1, 6] that the charac-
teristic times determined from various representations of data have different
meanings and can assume values which can considerably differ between each
other. Taking into account the controversies and possible uncertainties in in-
terpretation of results it is worthwhile to clarify this point here. For a single
Maxwell relaxation process the modulus and susceptibility representations are
compared in Fig. 16.12.

The complex modulus representation of such relaxation (Fig. 16.12a) has a
number of characteristics which are clearly related to the relaxation rate. These
are the maximum in the M ′′ and the cross-point of M ′ and M ′′ both at the 
ωτ = 1, the plateau of M ′ for ω � 1/τ, and the characteristic slopes 1 and 2 in 
the double logarithmic plots of M ′′ and M ′ vs ω, when ω � 1/τ. On the other
hand, the complex susceptibility is rather featureless in this frequency range
(Fig. 16.12b). The real part remains constant and the imaginary part keeps the
constant slope of –1. There is no maximum in the imaginary part of susceptibili-
ty which could be related to the relaxation time and only the cross-point of the
χ′ and χ′′ indicates the relaxation process. In the susceptibility representation
only a superposition of two relaxation processes can create a maximum in the
imaginary part as illustrated in Fig. 16.13.

Fig. 16.13. Frequency de-
pendencies of: a the real and
imaginary components of
modulus; b the real and
imaginary parts of complex
susceptibility for a superpo-
sition of two relaxation
processes differing by relax-
ation times (τ1 and τ2) and
with a variable amplitude of
the slower component. The
three cases with different
amplitude of the slower
process are denoted as A, B,
and C



The susceptibility maximum appears only when a non relaxed part (in this
case as a second slow relaxation process) is present. Moreover, the susceptibility
maximum can coincide with the maximum in the imaginary modulus only
when the amplitude of the faster relaxation is very small. Otherwise, the suscep-
tibility maximum describes the retardation time which can differ considerably
from the relaxation times of the assumed processes. The examples in Fig. 16.13
show the effect of amplitude of individual processes on their superposition.
They illustrate that some arbitrary point will be considered as a relaxation when
the susceptibility maximum is taken as an indicator. On the other hand, the as-
sumed relaxations are very well distinguishable in the modulus representation
of the superposition. Taking this into account, the modulus representation will
be preferred here for both mechanical and dielectric spectroscopy.

16.6
Typical Behaviour of Polymeric Materials

16.6.1
Melts of Linear Polymers

In complex systems like bulk polymers, structural units of considerably differ-
ent sizes, i.e., the monomers and polymer chains, relax with rates which can dif-
fer from each other by many orders of magnitude. Therefore, the observed fre-
quency dependencies of G ′ and G ′′ indicate more than one relaxation region as
illustrated already in Fig. 16.9. The two different relaxation ranges observed for
the polymer melt at low and high frequencies correspond to structural re-
arrangements concerning the two different structural units, i.e., monomers and
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Fig. 16.14. Depiction of:
a electric; b mechanical
modulus spectra (master
curves) for a linear polyiso-
prene melt (Mw = 50,000).
The vertical dashed lines 
indicate positions of M′′
maxima



polymers, respectively. The ranges characteristic to flow and elastic response ap-
pear now at various deformation rates and correspond to different size scales in
the examined system. The separation of the processes is strongly dependent on
the molecular weight of the polymer.

For polymers having a segmental dipole moment which is oriented at some
angle with respect to the polymer chain contour, the perpendicular and parallel
components of the dipoles can reflect the segmental and chain relaxation, re-
spectively. Figure 16.14 shows an example of results characterizing the vis-
coelastic behavior of a polyisoprene sample in comparison with the dielectric
measurements represented as the frequency dependence of the electric modu-
lus [7]. The dependencies shown, both dielectric and mechanical, are “master
curves” which have been obtained by means of the procedure described in
Sect. 16.4. Such results correspond to the behavior of the studied material at a
chosen reference temperature Tref. The shift factors are considered as reflecting
differences in the elementary relaxation rates at the reference and the measure-
ment temperatures. The procedure works well for melts of amorphous polymers
in which temperature independent structure and temperature independent re-
laxation spectrum can be assumed or experimentally detected.

This result shows a good coincidence of the chain relaxation times but some
differences in rates of relaxation of the polymer segments. This is more pre-
cisely seen in Fig. 16.15, in which the relaxation times determined from results
of the two methods are presented. The comparison of temperature dependen-
cies of the relaxation times obtained from the two methods indicates the very
good coincidence of the terminal relaxation times determined from mechani-
cal results and the normal-mode relaxation times determined from dielectric
measurements [8]. Even though the results from different methods overlap
only within a relatively narrow temperature range (determined by experimen-
tally accessible conditions), they can be very well described by a single WLF-re-
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Fig. 16.15. Temperature de-
pendencies of the segmental
and chain relaxation times
determined from mechani-
cal and dielectric spectra of
the linear polyisoprene melt



lation, shown by a solid line (WLF parameters: Tref = 250 K, C1 = 7.05, C2 =
77.7 K, f250 = 4.03 Hz).

Despite the coincidence of chain relaxation times, there is a gap between re-
laxation times related to segmental processes determined by the two methods.
The gap between the two relaxation times seems to be temperature independent
and is attributed to the fact that the two methods detect relaxations of different
units of the local chain structure. On the other hand, the observed coincidence
of the terminal relaxation times determined by the two methods indicates that
in both cases orientational relaxation of linear chains is detected. It should be
mentioned that polyisoprene is a quite exceptional polymer for which the com-
parison of mechanical and dielectric results concerning both segmental and
chain relaxation is possible, due to the location of segmental dipole moments
within the backbone and their specific orientation with respect to the chain con-
tour [9, 10]. For many other polymers, one or both relaxation modes observed
here are non-active dielectrically because of a lack of dipoles or because of lo-
cation of dipoles in side groups showing relaxation modes differing from these
illustrated here.

16.6.2
Block Copolymer Systems

The specific property of polyisoprene allowing one to detect simultaneously both
segmental and normal relaxation rates has been used in many cases to measure se-
lectively relaxation of molecular fragments as, for example, in block copolymers
[8, 11]. Using copolymers of polyisoprene and polybutadiene it was, for example,
possible to detect relaxation times of polyisoprene blocks of various lengths lo-
cated at various positions within linear chains. The dielectric spectroscopy has in
this case been used for selectively sensing the relaxation of polyisoprene blocks
and the mechanical spectroscopy, non selective, but providing information about
the relaxation of whole copolymer chains [8], as shown in Fig. 16.16.

The interpretation of results concerning copolymers has been made under
the assumption that the miscibility of polybutadiene and polyisoprene in the
temperature range used created an average segmental mobility of both compo-
nents. This was justified by single segmental relaxation processes observed in
copolymers, independent of their composition, both by means of dielectric and
mechanical measurements, as well as by a continuous shift of Tg of copolymers
with their composition, within the range between the glass transitions temper-
atures of components. Under this assumption, the block relaxation times can be
regarded as describing relaxation of fragments of a uniformly relaxing linear
chain. Within the accuracy of this assumption the results have indicated that
there is a considerable discrepancy between the experimental observations and
predictions of the reptation theory which, however, does not indicate a non-va-
lidity of the reptation mechanism of chain motion, but rather is caused by an in-
complete theoretical solution of the model postulated [8].

For disordered states of block copolymers,as in the case shown above, the vis-
coelastic behavior is usually similar to that observed for homopolymer melts.
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The two relaxation processes, the chain relaxation at low frequencies and the
segmental relaxation at high frequencies, can be observed, although, in some
cases, with a broadening or bifurcation in the range of segmental relaxation de-
pending on the nature of comonomers. At temperatures higher than the order-
disorder transition, the time temperature superposition (TTS) also usually
works well and the moduli exhibit typical terminal behavior (G ′ ~ ω 2 and 
G′′ ~ ω). When examined over a broad temperature range, however, TTS can be
violated because of the order-to-disorder transition which drives the system
from the disordered state to a microphase separated state [7, 12].

At temperatures smaller than the order-disorder transition temperature and
at low frequencies, new ultra slow relaxation process related to morphological
rearrangements appear and the moduli can exhibit weak frequency dependen-
cies, which results from the plateau modulus of the slowest process. Un-
fortunately, quite often a complete relaxation of the microstructure of the
copolymers cannot be observed within the accessible frequency and tempera-
ture window. An example of the behavior of such system is presented in
Fig. 16.17 for the bulk styrene/isoprene diblock copolymer (SI) as characterized
by means of the mechanical and dielectric spectroscopy.

Results for a nearly monodisperse sample (Mw/Mn = 1.04) with molecular
weight Mw = 65,000 and 20.7 wt% of PS are reported. A spherical microdomain
morphology has been detected for this system by means of the small angle X-ray
scattering [7]. Two processes similar to those for the PI homopolymer (as in
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Fig. 16.16. An example of
frequency dependencies of
viscoelastic (G ′and G ′′) and
electric (M ′′) quantities
(master curves) for a tri-
block copolymer melt with
isoprene blocks at chain
ends (IBI). Frequencies cor-
responding to segmental,
block and chain relaxation
are indicated



Fig. 16.14) are seen for the copolymer as well. In the case of the copolymer, they
correspond to the segmental relaxation of the polyisoprene units (high fre-
quency) and to the polyisoprene block relaxation in the microphase separated
system (low frequency). Although the polyisoprene forms a continuous liquid
matrix for the glassy PS microdomains, the copolymer sample does not flow at
frequencies smaller than these corresponding to the polyisoprene block relax-
ation which means that no terminal relaxation process can be found besides the
two relaxation processes attributed to the polyisoprene block chains.

This indicates a highly ordered phase of block copolymer micelles and the
structural arrangement of the PS microdomains remaining maintained during
the rheological experiment. This involves the clear plateau in the low frequency
range for this sample. Such an effect can be considered as an example of the in-
fluence of the order-to-disorder transition on the frequency dependencies of G ′
and G ′. It demonstrates the breakdown of TTS; the main effect is observed at low
frequencies where the Newtonian behavior of the disordered state is replaced by
a rubbery state related to non-relaxed morphology [7, 12].

Macroscopic flow of such material can be induced only by an increase of tem-
perature above that of the presented measurements, where the microdomain
structure could change to a more disordered state or by dilution of the micelles
in a solvent or in the homopolymer matrix.An example of the later possibility is
shown in Fig. 16.18 where the relaxation behavior of a homopolymer/copolymer
mixture is presented. As in the two former cases, the two relaxation processes –
the PI segmental relaxation and the relaxation of PI chains or blocks – are both
detected also in the mixtures at characteristic frequencies. In the mixtures, how-
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Fig. 16.17. Frequency de-
pendencies of: a the real
and imaginary parts of the
electric modulus; b the
components of the shear
modulus for the styrene iso-
prene block copolymer at
indicated reference temper-
atures. Vertical dashed lines
indicate the segmental and
block relaxation processes
of the isoprene component



ever, a low frequency relaxation is additionally observed which partially over-
laps with the PI chain relaxation for small copolymer concentrations but be-
comes well separated for higher copolymer content in the system. The appear-
ance of this process is well correlated with the development of order between
block copolymer micelles dispersed in the homopolymer matrix and can be at-
tributed to a structural relaxation involving translational rearrangements of a
certain number of micelles. This slow relaxation controls the cross-over to the
terminal Newtonian flow regime of the mixture, and therefore it must be related
to the onset of the global micellar mobility and can be regarded as the colloidal
α-relaxation. Such mechanical response of the sample as that shown in Fig. 16.18
is to a large extent analogous to the behavior observed for other ordered melts
as for example the melt of multiarm stars [13].

The two examples presented above of comparison of results from mechanical
and dielectric spectroscopy have shown that such a comparison can consider-
ably improve possibilities of assignment of observed relaxation processes. The
unique assignment of the intermediate mode observed in the mechanical spec-
trum (Fig. 16.18b) to the relaxation of polyisoprene chains was only possible be-
cause of the specific localization of the dipole moments in the polymer chains
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Fig. 16.18. Frequency de-
pendencies of: a the imagi-
nary part of the electric
modulus; b the components
of the complex shear modu-
lus for the blend of a
styrene-isoprene block
copolymer and a polyiso-
prene at indicated reference
temperatures. Vertical
dashed lines indicate the PI
segmental (τs), PI chain (τ1)
and structural (τ2) relax-
ation processes; c the relax-
ation modulus G(t) is
shown as determined from
the dynamic mechanical re-
sults presented in (b). The
solid line in (c) represents
the best fit of the sum of
two stretched exponential
decays, used to determine τ1
and τ2



making the dielectric relaxation spectrum selectively sensitive to this type of
motion. This appears particularly important for systems in which complex mo-
lecular architectures or complex morphologies make the response of materials
to an external field rather complex.

16.6.3
Highly Branched Polymers

From the macromolecular structures shown in Fig.16.1 the comb-like polymers,
in a specific version known recently also as bottlebrush polymers [14], can be
considered as more complex example of regularly branched macromolecules
which, due to their specific architecture, assume a well defined shape with a
characteristic intramolecular density distribution. They consist of a linear back-
bone with a high grafting density of side chains (usually one side chain per re-
peat unit of the backbone). It was reported that such macromolecules assume
the shape of flexible cylinders with a large persistence length and a diameter re-
lated to density and length of side chains in solution. Bottle-brush polymers
have also been directly visualized on surfaces by means of atomic force mi-
croscopy [15]. There is, however, little information about the dynamic behavior
of such polymers in the condensed phase.Again here, an application of both dis-
cussed experimental techniques has helped in understanding the dynamic be-
havior of such systems. As an example, results of the dynamic behavior of poly
(n-butyl acrylate) brushes are reported. The polymers have been synthesized by
means of the grafting-from polymerization using controlled radical polymer-
ization ATRP [16] with various macroinitiators and side chain monomers.

Three characteristic relaxation regimes can be distinguished in the polymer
brush melt. They are indicated in Fig. 16.19 by arrows at frequencies that can 
be related to the corresponding relaxation times. The high frequency relaxa-
tion is identical with that observed in the melt of linear PnBA and is attribut-
ed to segmental relaxation, which is responsible for the solidification of the
material to a glass at the highest frequencies. At low frequencies, on the other
hand, a Newtonian flow regime is observed with the characteristic scaling of
G ′ ~ ω 2 and G ′′ ~ ω. The transition to that flow regime is controlled by the 
slowest relaxation, which has to be attributed to the motion of entire brush 
molecules.

The relaxation, which can be distinguished in the intermediate frequencies
must correspond to intramolecular relaxation of some well defined structural
units and we attribute it to the side chain motion.A coincidence of the relaxation
rate of that process with the rate of motion of linear chains having the length
twice as large as the side chains in the bottle brush has been considered as sup-
porting such an assignment. The deciding argument for the consideration of
this process as a side chain motion came, however, from the dielectric spectrum
illustrated in the insert of Fig. 16.19.

As can be seen, a process corresponding to the segmental relaxation is detected
in this spectrum together with another strong slower relaxation which is attrib-
uted to motion of the bromine atoms present in this sample at the end of each side
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chain as a result of the polymerization mechanism in which the bromine atoms
move with the side chains ends during their growth initiated at the linear back-
bone. It has also been observed that the length of side chains in the brush macro-
molecule influences both the intermediate and the terminal relaxation rate
whereas changes of the backbone length affect only the terminal relaxation.
Similar effects have been observed earlier for the multiarm polymer stars [13].

All this further suggests that the behavior of brush macromolecules at low
frequencies can be regarded as analogous to the behavior of normal linear
chains in melts with a shift on the size and time scales corresponding to the con-
siderably larger “segment” of the brush. Instead of the series of monomers in
normal linear polymers, in the brush one can consider a series of multiarm stars
as macro-segments.

16.7
Suggested Analysis of Modulus Spectra

The possibility of description of the dynamic mechanical or dielectric results by
means of analytical functions with a reasonably small number of parameters is
of general interest because it simplifies the analysis of data on the one hand and
allows one to use the functions in modeling of polymer behavior under various
conditions on the other. Many empirical phenomenological relations have been
suggested for description of both the mechanical and dielectric spectra consid-
ered in the frequency domain, but in the case of dielectric spectroscopy they are

16.7 Suggested Analysis of Modulus Spectra 619

Fig. 16.19. Frequency de-
pendencies of the mechani-
cal and electric modulus for
a bottle brush poly(n-butyl
acrylate) melt. Lines repre-
sent curves fitted to the data
according to the formulas
described in the text



usually expressed in terms of the dielectric permittivity. A comprehensive re-
view is given in this book in Chap. 3. It will be shown here that a simple formula
which has already been used for description of asymmetric loss peaks of the di-
electric spectra [17, 18] can be used very successfully for description of fre-
quency dependencies of the components the complex modulus usually used in
representations of the dynamic mechanical spectra. For a single relaxation pro-
cess the formula can be written in the following form:

(16.16)

With the four parameters allowing one to represent most of the typical experi-
mentally observed dependencies, it is interesting that this function can be used for
representation of both the real and imaginary components of the complex modu-
lus around the relaxation effects observed in the frequency domain. Examples of
effects related to variation of the parameters b1 and b2 on the form of the function
are shown in Fig. 16.20a,b. Figure 16.20c shows a single Debye relaxation repre-
sented by G ′ and G ′′ using the formula with the characteristic parameters:

(16.17)

The value of τ corresponds to the relaxation time, the parameter A is related to
the height of the plateaus of the real part of the modulus above the frequency
corresponding to the reciprocal relaxation time, and the parameters b1…b4
describe the slopes on both sides of the characteristic frequency.

Examples of application of these relations to fit the experimental results are
shown in Fig. 16.19. In the case of the mechanical modulus the data are fitted
with a three component function whereas for the electric modulus spectrum the
two component function is used. In both cases simultaneous fitting of the real
and imaginary frequency dependencies is performed which means that the am-
plitudes and relaxation times are common for both modulus components. In
both cases, i.e., for the mechanical and the dielectric spectra, a very good fitting
result is obtained. Because of a very broad range of changes of all variables in the
spectra one has to take particular care for a proper form of data representation
(logarithmic or linear) and a compatible definition of the fitting functions in fit-
ting procedures.

16.8
Concluding Remarks

Only some aspects of application of mechanical spectroscopy to studies of poly-
meric materials have been discussed here and only some applications illus-
trated. The technique represents one of the relaxation spectroscopy methods
which, because of a direct relation to mechanical properties of materials, is very
useful. Some limitations of this technique however, such as, for example, low se-
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Fig. 16.20. Illustration of effects of parameter variation on the form of the function given 
by Eq. (16.16). c Real and imaginary parts of the complex modulus for the Maxwell model as
described by the functions at Eq. (16.17) with the parameters shown



lectivity or relatively narrow frequency range, have to be compensated by other
advantageous properties like very high sensitivity or by a combination with
other techniques, such as for example dielectric spectroscopy, which are more
selective or are operating in much broader frequency ranges and can improve in
this way the possibilities of interpretation of the results.

It has been shown, for example, that by combination of results from dynamic,
mechanical, and dielectric relaxation experiments for polyisoprene linear
chains and for block copolymers of polyisoprene and polybutadiene, valuable
details of the dynamic behavior of linear chains in the melt can be obtained.
Both methods provided consistent results describing the orientational dynam-
ics both on the segmental and polymer chain scales. In cases with more complex
molecular structures the dielectric spectra usually help to assign relaxation of
the molecular fragments bearing the dipole moments to the complex mechani-
cal behavior.

Both discussed methods and especially a combined application of them can
be considered as a valuable research tool for polymer chemists, polymer physi-
cists, and for materials scientists and engineers.

List of Abbreviations and Symbols

A, b1,b2,b3,b4 Fitting parameters
aT Shift factor
C1, C2 Parameters in the WLF relation
D, F Deformation, torque
E, E0 Electric field, alternating electric field amplitude
G*, G ′, G ′′ Shear complex modulus, real component, imaginary component
G, G0, EY Shear modulus, value at short time limit, Young’s modulus
L0, ΔL Initial length, length increment
M*, M ′, M ′′ Complex modulus, real component, imaginary component
Mn, Mw Number average molecular weight, weight average molecular

weight
p, Δ, K Pressure, compression, compression modulus
P, P0 Electric polarization, amplitude of a periodic change
t, τ, τs, τc Time, relaxation time, segmental relaxation, chain relaxation
T, Tref, Tg Temperature, reference temperature, glass transition temperature
V, ∂V Volume, volume increment
α, β Relaxation processes
γ, γ0 Shear deformation, shear deformation amplitude
δ Phase shift angle
ε Strain
ε0 Dielectric permittivity of the vacuum
η, η0, η* Viscosity, zero shear viscosity, complex viscosity
θ Angle
σ, σ0 Stress, stress amplitude
χ*, χ′, χ′′ Complex susceptibility (compliance), real component, imaginary

component
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ω Angular frequency

IBI Isoprene-butadiene-isoprene copolymer
PI Polyisoprene
PnBA Poly(n-butyl acrylate)
TTS Time-temperature superposition
WLF Wiliams-Landel-Ferry relation
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17 Dielectric Spectroscopy 
and Multidimensional NMR – a Comparison

R. Böhmer · F. Kremer

17.1
Introduction

Broadband dielectric spectroscopy (BDS) and solid-state nuclear magnetic res-
onance (NMR) are two of the working horses in modern materials research.
Both methods are well suited to study the dynamics in disordered condensed
matter in an extremely broad range of more than 15 decades in time and/or fre-
quency. However, the strategies employed to retrieve information from a given
substance are quite different for NMR as compared to BDS. To the practitioner
of conventional dielectric spectroscopy, who is used to the relatively simple sam-
pling of the electrical polarization in the frequency or time domains, the wealth
of NMR techniques sometimes appears bewildering. Another difference be-
tween the two methods is that quantum effects are rarely needed explicitly in or-
der to analyze a dielectric experiment, while in NMR at least some elementary
knowledge of quantum mechanics is required from the outset. The benefits of
the seeming complexity inherent in theory and experiment of NMR, as com-
pared to BDS, are numerous: NMR is element specific and the selectivity to the
dynamics of certain sites or groups within a molecule or to certain components
within a mixture can often be enhanced further by spectral filtering or isotope
labeling. Some of the more sophisticated NMR techniques, e.g., when perform-
ing multidimensional spectroscopy, due to limitations imposed by the require-
ment to achieve an acceptable signal to noise ratio, can be relatively time con-
suming as compared to experiments carried out using BDS. This advantage of
the latter method may be viewed as arising at the expense of the fact that usually
only an integral response of the subset of those degrees of freedom is measured
which couple to charge carriers or dipole moments in the sample. Hence sys-
tematic (as a function of composition, say) BDS studies are often required to ob-
tain firm assignments of relaxation processes as seen in,e.g.,dielectric loss spec-
tra. The combined application of experimental methods, and particularly of the
two complementary ones dealt with in the present chapter, has greatly advanced
our understanding of the molecular dynamics in disordered materials.

In this contribution we will focus on some similarities and differences be-
tween NMR and BDS. Certainly, there are numerous books dealing either with
NMR or with BDS. An incomplete but useful list of BDS books is found in [1–6]
and a much less complete list of NMR books in [7–11]. Fortunately, each one of
these books, which contain numerous further references, provides a good start-



ing point to familiarize oneself with the two experimental methods. In this chap-
ter we take a different perspective by trying to compare the two techniques.
However, we wish to make clear from the beginning that the present chapter is
highly selective in two respects: first we will only focus on very few NMR tech-
niques and second on a few classes of amorphous or partly ordered materials.
The choices we have made were guided by our anticipation of what kinds of
techniques and experimental results could be most suitable for a comparison
between NMR and BDS. However, probably even more so the choices made in
this chapter reflect our own view of the field which is shaped by our previous sci-
entific interests. This necessarily implies that in the present context we will not,
or only very briefly, touch upon a number of interesting and exciting develop-
ments, such as multiple quantum spectroscopy, magic angle spinning tech-
niques, and magnetic resonance imaging, to name a very few.

In Sect. 17.2, we review several aspects of spin-lattice relaxation and stimu-
lated echo techniques with the additional restriction that we focus mostly on the
nuclei 1H, 2H, and 13C which are important in organic matter. First, some basic
features of the still often employed spin-lattice relaxation time measurements
are outlined in order to facilitate comparison with BDS. Then, in Sect. 17.2.2 the
stimulated echo technique is presented. With respect to translational motions
(Sect. 17.2.2.1) it is really complementary to incoherent neutron scattering and
to conductivity spectroscopy. Rotational motions, which can be studied using
two- and higher-dimensional NMR techniques, are then dealt with. Here some
of the unique advantages of NMR show up since the wealth of geometrical in-
formation (e.g., on jump-angle distributions) that can be obtained via time do-
main (Sect. 17.2.2.2) and frequency domain (Sect. 17.2.3.1) techniques is not ac-
cessible directly using BDS. Next, we will give an introduction to some features
of higher-order correlation functions in Sect. 17.2.3.2 as a basis for a compari-
son with recent non-conventional dielectric approaches. Then, in Sect. 17.3, we
will discuss several combined dielectric and NMR studies as experimental ex-
amples: First, we will focus on low-molecular weight systems, i.e., on super-
cooled organic liquids as exemplified by glycerol and toluene (Sect. 17.3.1) and
a glass forming, triphenylene based, discotic liquid crystal (Sect. 17.3.2). Then
polymeric systems are dealt with. Here we particularly focus on the dynamics
and time scale of the dynamics in poly(methyl methacrylate) (Sect. 17.3.3). In
Sect. 17.3.4 we review experiments relating to the dynamic and spatial hetero-
geneity which was thoroughly studied in poly(vinyl acetate) and other systems.
Magnetic field gradient experiments, useful to monitor translational diffusion
processes in single phase and diblock copolymers, are briefly mentioned in
Sect. 17.3.5. Finally results on an inorganic, ion conducting nitrate glass former
are summarized in Sect. 17.3.6.

17.2
Selected NMR Methods

In this section we will focus on a few important, mostly standard NMR methods
which are particularly suitable for comparison with dielectric techniques.
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Before doing so some general remarks are in order. In the approximation of high
magnetic fields, B0, which are most frequently used in NMR, the populations of
the nuclear-spin energy levels are given by a Boltzmann distribution. In the 
simplest case of a spin – system (e.g., protons which have the largest gyro-
magnetic ratio γ of all stable isotopes and thus the highest Larmor frequency 
ωL = γB0) the population difference of the spin-up and spin-down levels is given 
by . Inserting typical numbers (e.g., B0 = 14 T
and T = 300 K, corresponding to a proton frequency of ωL = 600 MHz and an
equivalent thermal frequency of 300 × 20.8 GHz, respectively) gives 10–4. Thus
the sensitivity of solid state NMR, e.g., when trying to monitor a low concentra-
tion species, is often considered to be much smaller than it is for BDS [12].

17.2.1
Spin-Relaxation Techniques

Since the invention of NMR, spin-lattice relaxation has been used as a diagnos-
tic of the dynamics in liquids and solids [7, 13]. Spin-lattice relaxation can be
measured subsequent to perturbing the populations within the nuclear energy
level scheme. At typical Larmor frequencies the spontaneous transitions be-
tween states with different magnetic quantum numbers are exceedingly rare
(~10–25 s–1).Therefore, transitions have to be induced by irradiating the spin sys-
tem at or very close to the resonance (or Larmor) frequency. This can be done
externally by applying radio frequency (RF) pulses. In the absence of external
RF perturbations, equilibration of the spin system is attained through fluctua-
tions of local magnetic fields, Bloc(t), with spectral components near ωL. Via the
fundamental resonance condition, written here as ωeff (t) = γ [B0 + Bloc(t)], in
this context one may alternatively talk about modulations of the effective NMR
frequency. The magnitude of these fluctuation in a certain frequency interval is
usually given in terms of the spectral density, J(ω), which under favorable cir-
cumstances can be related to the imaginary part of the dielectric susceptibility
(see below). The fluctuation amplitude (i.e., the root mean square excursion of
Bloc(t) about its mean) is determined by the interactions of a tagged nuclear spin
to its environment, e.g., to other spins. For example the spin-spin interaction,
and hence the local field, depends on the relative distance of the spins as well as
on the orientation of the internuclear vectors with respect to the external field.
Situations in which the spectral density simultaneously samples orientation and
distance information typically arises in proton NMR. One then has the problem
to separate the contributions arising from reorientational and from transla-
tional motions. Therefore, it is sometimes more advantageous to work with nu-
clear probes for which local interactions dominate. This is usually the case for 2H
and 13C (or also 31P) isotopes.

13C is a rare spin system (1.1% natural abundance) and isotopic enrichment
is often only employed up to a level at which the above-mentioned dipole-dipole
interaction is much smaller than the chemical shift anisotropy (CSA) at the car-
bon site. The CSA arises from the distortion of the electronic ‘cloud’, i.e., from

1 0− − ≈exp[ ( )/ ] /( )h hγ ωB k T k TB L B
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the immediate chemical environment into which the probe nucleus is embed-
ded. Hence, if the electronic environment of 13C, or more loosely speaking the
molecular orientation, fluctuates at a rate close to the Larmor frequency, the
consequent modulation of ωeff renders spin-lattice relaxation particularly effec-
tive. Translational motions remain undetectable under these circumstances, un-
less they are associated with a reorientation of the molecules. Similar consider-
ations hold for the intramolecular dipole-dipole (DD) interaction. 1H and also
13C are among the simpler species in NMR since their spin is I = . Quadrupolar
(Q) interactions come into play for I ≥ 1 probes such as 2H.

In the present context let us focus on deuterons (I = 1) which play a promi-
nent role in studies of organic matter. This is because here the quadrupolar in-
teraction, which is due to the interplay of electric field gradient at the 2H site
with the quadrupole moment of that nucleus, is about a factor of 100 stronger
than the DD interaction between the deuterons. Thus for the corresponding in-
teraction energies (measured in frequency units) one has ωDD � ωQ. On the
other hand, the quadrupolar interaction is still weak enough such as to fulfill
two useful conditions. First, the quadrupolar interaction is very weak as com-
pared to the Zeeman interaction in typical external magnetic fields, ωQ � ωL.
This allows one to treat the former interaction as a small perturbation to the lat-
ter, unlike what is encountered for most other quadrupolar nuclei in solid-like
samples. Second, in a covalent C-2H bond, say, no other field gradients matter
other than those originating from the bond in which the deuteron is located.
Thus, essentially only the orientation with respect to the external magnetic field
determines ωQ. Hence, also in deuteron NMR one usually benefits from the ad-
vantages of a local (or single-particle) probe.

For a more quantitative description the reorientations of the corresponding
nuclear (DD, CSA, or EFG) tensors needs to be specified. This can be accom-
plished using the normalized orientational autocorrelation functions, gl [14],
which for axially symmetric tensors can be cast into a particularly simple form:

(17.1)

Here Pl(cosθ) denotes a rank l Legendre polynomial of the cosine of the polar
angle which is usually defined with respect to a laboratory-fixed axis. The 〈…〉
brackets indicate the average over all orientations (in the NMR context often
called powder or ensemble average). For a variable that in isotropic systems only 
depends on θ it is given by 

In linear dielectric spectroscopy Eq. (17.1) with l = 1 corresponds to the cus-
tomary step-response [~1 – gl(t)] if the so-called cross terms are disregarded 
[5, 6]. Furthermore, here P1(cosθ) = cosθ and θ is the angle enclosed by dipole
moment and external electrical field. It is well known that in NMR (but also for
Kerr effect studies [15, 16] and for other techniques which probe second rank
tensors) θ designates the angle between the largest principal axis of the tensor
and the relevant external field.

The spectral density corresponding to the fluctuation of rank l tensors is given
by the Fourier transform of the correlation function as J(l)(ω) = N ∫ gl(t) eiωtdt 
[14]. As a probability density J(l)(ω) has to be properly normalized. This is ex-
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pressed by the factor N. Via the fluctuation dissipation theorem, written as
J(1)(ω) ~ χ′′(ω)/ω ~ ε′′(ω)/(ωΔε), the rank one spectral density is directly re-
lated to the dielectric loss. Here Δε is the so-called dispersion step. It should be
noted that the fluctuation dissipation theorem may not be obeyed in glassy, out-
of-equilibrium systems. In order to test potential violations the spectral density
can be determined directly by the measurement of polarization noise, as re-
cently applied to various disordered systems [17–20].

In order to facilitate comparison with the dynamic structure factor, accessi-
ble directly via inelastic neutron scattering, the effective spectral density may be
written as with S(q,ωL) denoting the dynamic struc-
ture factor [21]. The coupling coefficients A(q) are known in special cases only.
It should be noted that an NMR frequency of ωL = 242 MHz corresponds to an
energy of . Therefore, viewed from the perspective of inelastic neu-
tron scattering, NMR is sometimes considered a ‘zero frequency’ technique.

Roughly speaking the spin-lattice relaxation rate, 1/T1, is proportional to the
spectral density at the Larmor frequency or, more precisely,

(17.2)

if one needs to consider only a single relaxation mechanism λ ∈ {DD,CSA,Q}
and hence a single coupling constant, Cλ. The latter can often be determined ex-
perimentally from corresponding NMR spectra. In favorable cases the knowl-
edge of Cλ allows one to obtain information about motional processes, e.g.,
about the geometry of reorientations. This information is not necessarily avail-
able from J(ω) (and thus also not from χ′′(ω)).

In the simplest case of a single exponential correlation function (CF) gl(t) =
exp(– t/τC,l) with a correlation time, τC,l, the spectral density for isotropic sys-
tems in NMR is given by J(2)(ω) = τC,2/[1 + (ωτC,2)2]. The latter expression when
introduced into Eq. (17.2) yields the famous Bloembergen-Purcell-Pound (BPP)
formula [22]. The BPP approach directly corresponds to the so-called Debye re-
laxation, χ′′(ω) = ωτC,1/[1 + (ωτC,1)2]. A minor difference is that χ′′(ω) is maxi-
mum at ωτC,1 = 1 while inserting J(2)(ω) into Eq. (17.2) yields the minimum T1 at
ωτC,2 ≈ 0.61.

For the limiting scenarios of rotational diffusion and rotational random
jumps, which both lead to single exponential gl(t), the expected ratio of τC,1/τC,2
is 3 and 1, respectively. In accord with many experimental observations, in more
realistic models (e.g., [23]) this ratio is close to 1 even in the presence of a dis-
tribution of relaxation times. In dielectric spectroscopy such distributions are
often used to describe the frequency dependence of the complex dielectric func-
tion. However, their width can be estimated even from scanning the temperature
dependence of ε′ and ε′′ at a single, fixed frequency if the (apparent) activation
energy is known. This is because the ratio of maximum dielectric loss,
ε′′max, and dispersion step, Δε, which equals for the Debye case, is well defined
(and always ≤ ). If specific functional forms are assumed such as given, e.g., by
the Cole-Cole, Cole-Davidson, or Kohlrausch-Williams-Watts distributions then
ε′′max/Δε may be computed; see Fig. 17.1a. Similarly in NMR for the BPP case the
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maximum spin-lattice relaxation rate, 1/T1,min,BPP, is well defined if the nuclear
coupling constant Cλ is known (from the NMR spectrum). In Fig. 17.1b we show
the decrease in rate if specific distribution functions are assumed. This plot al-
lows a simple quantification of potential experimental deviations from the BPP
case in a quantitative manner.

Above we have mentioned that the correlation times, τl, often depend only
weakly on the rank l. Thus dropping the l dependence in the above expres-
sions altogether, the effective spin-lattice relaxation rate is expected to be
proportional to ε′′(ωL) + 4ε′′(2ωL). Thus we may define a ‘dielectric relaxation
rate’ as

(17.3)

cf. Eq. (17.2). Therefore, one may say that temperature dependent measurements
of spin-lattice relaxation times at the Larmor frequency, ωL, roughly correspond
to a determination of the dielectric loss near ωL. Frequency dependent mea-
surements which are very common in BDS are performed only occasionally in
NMR. This is because they require the use of different magnets, or dedicated
techniques such as rotating frame measurements, T1ρ (essentially probing J(ω ≈
50 kHz)), multiple-pulse methods, or field cycling relaxometry [11].
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Fig. 17.1. a Normalized di-
electric loss, ε′′max/Δε.
b Normalized spin-lattice
relaxation rate, T1,min,BPP /
T1,min, as a function of the
Cole-Cole parameter; αCC,
the Cole-Davidson parame-
ter, βCD, or the Kohlrausch
exponent, β. The width pa-
rameters are defined such
that for a numerical value of
‘1’ Debye (or BPP) behavior
results. The Kohlrausch re-
sults in frames a and b are
taken from [91, 194], respec-
tively



For an analysis of temperature dependent spin-lattice relaxation times the
use of empirical distributions of relaxation times, well known from dielectric
spectroscopy, is common. Probably most popular are still those distributions in-
vented by Cole and co-workers [24] but numerous other forms are also in use,
see, e.g., those given in [25, 26]. Via J(ω) ~ χ′′(ω)/ω and Eq. (17.2) it is straight-
forward to derive corresponding expressions for the spectral density and T1, see,
e.g., [13, 27, 28]. For its numerical simplicity the Cole-Davidson distribution is
quite often applied to parameterize not only BDS data but also NMR measure-
ments on disordered materials. Such measurements often yield pronounced
asymmetries in a representation of T1 vs 1/T. In the BPP case such a plot yields
a symmetric V-shaped curve if the temperature dependence of the correlation
time is given by an Arrhenius law. This situation is reminiscent of the symmetry
and asymmetry of dielectric loss spectra, ε′′(logω). This is because via log ω ~
1/T the logarithmic frequency scale can be mapped onto an inverse temperature
axis. This mapping is often employed also in connection with other techniques,
such as mechanical spectroscopy, for which measurements are sometimes ac-
quired at a single frequency only [29].

At the temperature at which the T1 minimum occurs the determination of dis-
tribution parameters is most precise. Potential temperature dependences of
these parameters however, can hardly be mapped out from T1 measurements at
a single Larmor frequency because of the enormous variation of τ (T).

A particular advantage of NMR is that via isotope labeling or via spectro-
scopic means the selective study of intramolecular degrees of freedom becomes
possible. This enables not only the study of side groups which change their di-
pole moment upon reorientation but also of side groups for which this is not the
case, such as phenyl or methyl groups. The latter often can serve as built-in
probes to monitor their local environment. Consequently, in glass-forming sub-
stances they have been utilized occasionally to investigate the energy landscape
below the glass transition temperature. It has to be mentioned that the reorien-
tation of such side groups becomes accessible also to dielectric spectroscopy if
they are partially deuterated. The dipole moments of partially deuterated
groups are of course relatively small [30].

17.2.2
Stimulated Two-Time Echo Spectroscopy

Spin-lattice relaxation provides a somewhat indirect perspective on the molec-
ular dynamics since it probes the spectral density which is the Fourier trans-
form of the underlying microscopic CF. Using stimulated-echo techniques vari-
ous CFs can be probed directly. An example for a rotational CF which, as we will
see, can be understood to involve the orientation dependent NMR frequencies at
two times, has already been given as Eq. (17.1).

The stimulated echo can be generated using a sequence of three pulses as
shown in Fig. 17.2. Its general functional form can be written as

(17.4)F t t i t i t tp m p m p2 0( , ) exp [ ( ) ] exp [ ( ) ]= −〈 〉ω ω
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and involves the correlation of the NMR frequencies prior and subsequent to a
mixing time tm [31]. The NMR frequencies are encoded as the (rotating frame)
phases φ(0) = ω(0)tp and φ(tm) = ω(tm)tp in the dephasing and rephasing peri-
ods, respectively (with usually tp � tm). Depending on what is encoded in the
NMR frequency, not only orientational CFs are accessible. For instance, if the
NMR frequency depends on the spatial position then magnetic resonance imag-
ing becomes possible, but also translational CFs can be measured [11, 32–34].

17.2.2.1
Translational Displacements

Dielectric spectroscopy as well as NMR have often been used to study transport
and diffusion processes. Let us first focus on magnetic field gradient NMR [35]
which is well suited to measure self-diffusion coefficients in a wide dynamic
range. For this technique either static or pulsed field gradients are applied which
lead to a spatial dependence of the NMR frequency. For a gradient along an axis
r, say, superimposed onto the static field,B0||r, one has ω(r) = γB0 + γrg with the
gradient strength g = ∂B/∂r. Inserted into the right hand side of Eq. (17.4) this
gives 〈exp[iqr(0)] exp[–iqr(tm)]〉, which we may call S2(q,tm), with the modulus of
a generalized scattering vector q = γ gtp. The ‘intermediate incoherent scattering
function’ S2(q,tm) can be measured by pulsed field gradient [36] and static field
gradient NMR.A detailed description of these methods can be found in [33] and
[38]. The NMR signal is usually generated by the stimulated-echo RF pulse se-
quence: π/2 – tp – π/2 – tm – π/2 – tp – echo, cf. Fig. 17.2.

The expression for S2(q,tm) is completely analogous [37] to that for the inco-
herent intermediate scattering function, Sinc(q,t) ~ 〈exp[iqr(0)] exp[–iqr(t)]〉,
known from neutron scattering. While in neutron scattering |q–1| typically is of
the order of interatomic distances, in field gradient NMR (with g up to several
hundred T/m) q–1 is typically 10–2 μm–1 to 102 μm–1. Thus, incoherent neutron
scattering and field gradient NMR can often be employed complementarily. In
the case of spatially unrestricted diffusion single exponential ‘scattering func-
tions’, or echo attenuations,

(17.5)

with decay times τq = DT
–1q–2 result. From these the translational self-diffu-

sion coefficient, DT, sometimes also called tracer diffusion coefficient, can 

S q t q D tm T m2
2( , ) ~ exp ( )−
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Fig. 17.2. Stimulated echo sequence consisting of � dephasing and � rephasing periods of
length tp with a mixing time tm interleaved. This sketch only depicts the basic pulse sequence.
Although important for practical implementations of the experiments, in the present context
we will neither discuss spin-relaxation effects explicitly nor will we dwell on the necessity of
phase cycling as well as cross-polarization and decoupling that are usually applied in 13C NMR



be determined directly. If the field gradient is oriented along the z-direction,
then the mean square displacement is given by 〈z2〉 = 2DTtm and hence

If the local (or even the overall) diffusion is anisotropic then the scalar diffu-
sion coefficient should be replaced by a diffusion tensor which, in its principal
axis system, will be characterized by the eigenvalues Dxx, Dyy, and Dzz. This case
can arise,e.g., in partially ordered systems such as liquid crystals.Let us consider
an axially symmetric diffusion tensor with D⊥ = Dxx = Dyy and D|| = Dzz. If
its main symmetry axis encloses the polar angle θ with the (z-) direction 
along which the external magnetic field gradient is oriented, then the above ex-
pression for the mean square displacement has to be written as 〈z2(θ)〉 = 2D⊥tm
sin2θ + 2D|| tm cos2θ. Carrying out the powder (or ensemble) average over

then yields [33]

(17.6)

from which the behavior for one-dimensional (1D) diffusion, D⊥ � D||, 2D dif-
fusion, D⊥ � D||, and isotropic (3D) diffusion, DT = D⊥ = D||, can easily be calcu-
lated.

Diffusion in spatially confined geometries and in particular in porous matri-
ces is often of interest [32, 38]. Then, even for isotropic diffusion (upon which we
will focus in the following) deviations from single exponential (with respect to
tm) and/or from q–2 behavior occur for S2(q,tm) which can be cast into the form

(17.7)

Here P(z,t) is the so-called propagator [38] of the probability density for a dis-
placement of a tagged particle (e.g., a polymer segment) over the distance z
within the diffusion time tm. It is well known that the expressions for free (spa-
tially unrestricted) diffusion are recovered from Eq. (17.7) for a Gaussian prop-
agator [32, 33, 38].

For illustrating the effects of geometrical restrictions let us briefly discuss
here the instructive example of a system of mutually interconnected pores. The
simplest approach is then to measure S2(q,tm) at fixed (sufficiently long) tm. This
gives the structure factor of the pore space, cf. Fig. 17.3, from which the typical
pore dimension, d, can be inferred. Apart from static properties dynamic infor-
mation can be obtained from S2(q,tm) as, e.g., measured for various (fixed) q. For
q–1 < d, one focuses on only a small spatial spot. Thus one effectively samples the
translational displacements within the pore and the spatial restrictions are not
‘seen’. Sometimes so-called short time (or better small scale) diffusion coeffi-
cients Ds are extracted from experiments in this regime. If one sets q–1 > d, then
the diffusing species effectively perform an average over the local topologies and
the scattering function is again of the form S2(q,tm) ~ exp(–Deff q2tm), but now
with an effective diffusion coefficient Deff. The latter is always smaller than the
diffusion coefficient, DT, measured without geometrical restrictions. This is of-
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ten expressed by the obstruction or tortuosity factor, Λ = Deff /DT < 1. Only for a
few geometries is this factor known analytically and otherwise it can easily be
computed numerically [39]. Finally, the regime defined by qd ≈ 1 is useful to
map out the characteristics of pore size distributions.

In studies of translational motions another option is to determine hopping
rates. This requires that the NMR frequency changes if the translationally dis-
placed particle jumps from one site to another. If one is able to determine the
hopping rate 1/τhop then knowledge of the jump distance, a, permits one to esti-
mate the effective diffusion coefficient via the Einstein relationship, DE =
fa2/τhop. The factor f depends on the geometry; for unrestricted diffusion in three
dimensions it is f = 1/6. There are a number of ways that can lead to a change of
the NMR frequency upon translational displacements. Sometimes atomic or
ionic jumps lead to significant variations in the isotropic chemical shift. This
was demonstrated, e.g., for 6Li in an ion conductor [40] or 129Xe in a zeolite [41].
Quite often translational jumps are associated with a reorientation of the rele-
vant interaction tensor at the nuclear site such as the CSA [42], the EFG [43], or
the DD tensors [11]. This mechanism of reorientation mediated by translational
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Fig. 17.3. Squared structure factor of liquid water filling the pore space in a random packing
of spherical beads with a diameter of 15.8 μm for a series of diffusion times tm (20, 40, 70, and
110 ms). For the longest tm the peak at q ≈ 0.06 μm–1, corresponding to a typical pore separa-
tion of 16 μm, is clearly resolved. Reproduced from [195] with permission



displacement (RMTD) is not only exploited using NMR but has occasionally
also been employed in the context of BDS [44]. Its proper application evidently
requires prior knowledge that on-site reorientations do not occur and that each
translational jump alters the dipole orientation.

In the highly fluid state the translational diffusion coefficient can be related 
to the viscosity via the Stokes-Einstein relation, DT = kBT/(6πηrH). Here rH
is the apparent hydrodynamic radius which in supercooled liquids is often 
close but not identical to the van der Waals radius [45]. The rotational diffu-
sion coefficient on the other hand is given by DR = kBT/(8πηrH

3) = 1/(2τC,1).
The latter equality implies that the rotational correlation time is identi-
fied with an l = 1, e.g., a dielectric relaxation time. Thus, if rotational diffusion 
is the dominant mechanism then one may estimate DT from τC,1 via

It should be noted that this relation (cf. the one for DE,
above) can often only be considered as an approximation for several reasons. (i)
The given numerical factors imply that particles diffusing in three dimensional
space are spherical and that stick boundary conditions apply. (ii) The hydrody-
namic radius is not well defined a priori. While these two factors still preserve
the inverse relationship between τ1 and DT, it is (iii) often found to be violated in
experimental studies of deeply supercooled liquids. This phenomenon has been
denoted rotation-translation decoupling or translational enhancement [46].
Numerous authors have suggested models to rationalize this observation, see,
e.g., [23] and the references cited therein.

In ion conducting materials translational displacements can be monitored
using the electrical (d.c.) conductivity, σ [47]. Employing the Nernst-Einstein
relation the associated diffusion coefficient Dσ = σ kBT/(ne2) [48] is often found
to be different from the self diffusion coefficient, DT (≈ DE), as phenomenologi-
cally expressed by the Haven ratio, HR = DT/Dσ. The latter is usually considered
as a measure for correlations of the ionic motions. For crystalline lattices it can
be determined directly [49], while for amorphous ion conductors uncertainties
in jump geometry and carrier concentration enter. Here it was estimated to be in
the range HR ≈ 0.1 … 1 [50].

For many solid electrolytes it is not clear whether variations in the ionic mo-
bility, μ, or in the carrier density, n, affect the temperature dependence of the
conductivity most. This issue is often discussed under the heading ‘strong vs
weak electrolyte model’ [51]. The electrical conductivity is related to the above-
mentioned quantities via σ = neμ. By combining the latter expression with the
Einstein and the Nernst-Einstein relationships, and by further assuming that
HR ≈ 1, the mobility , which is independent of n, can be
determined. However, this requires the hopping distances, a, and hopping times,
τhop, to be known. In favorable cases τhop can be measured directly using the
stimulated-echo techniques, if via an RMTD mechanism each translational
jump alters the orientation of the interaction tensor (and thus the NMR fre-
quency) at the nuclear sites [52].

Thus, from mapping out differences in the temperature dependences between
σ (as obtained from impedance spectroscopy) and μ ~ (Tτhop)–1 (from NMR) it
should become clear whether the charge carrier concentration is approximately
temperature independent or not. In order to estimate the diffusion coefficient
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and mobility corresponding to a hopping rate of τhop = 1 ms that is accessible via
NMR we assume a = 3 Å and T = 300 K (corresponding to eV) thus giving 
DT = 1.5 × 10–17 m2 s–1 and μ = 60 × 10–17 m2 s–1 V–1. Assuming a carrier con-
centration of n = 1022 cm–3 we obtain a readily measurable conductivity of
σ = 10–8 Ω–1 cm–1.

17.2.2.2
Reorientational Dynamics

The rotational analogue of the intermediate scattering function that we have
dealt with in Sect. 17.2.2.1 can yield detailed insights into time scale and geom-
etry of reorientational processes. In particular it allows one to extract informa-
tion about the distribution of reorientation rates and of rotational jump angles,
respectively. The stimulated echo time-domain technique to be described here
is very well adapted to situations in which distributions of small jump angles
(below about 20°) dominate. If well defined large jump angles are a concern, then
frequency-domain methods are often more profitably applied, see Sect. 17.2.3.1.
Here, we shall first discuss the application of the two-time stimulated echo to
study geometry and time scale of the molecular motion. Then we will outline the
conditions under which the stimulated echo can be used as a dynamic low-pass
filter.

Above, we have emphasized the similarity between (the modulus of) the scat-
tering vector, q, relevant for translational motions, and the preparation time, tp,
relevant for rotational motions. Large q are required in order to achieve a high
spatial resolution. By analogy, this suggests that large tp will be necessary to re-
solve small angle reorientations, cf. the discussion in connection with the CF
presented as Eq. (17.4). Employing appropriate phase cycling the cos-cos version
of this equation, i.e., F2

COS(tp,tm) = 〈cos[ω(0)tp] cos[ω(tm)tp]〉 can be measured,
but also the sin-sin pendant

(17.8)

becomes accessible. The general orientation dependence of the rotating frame
NMR frequency for the (DD, CSA, or Q) interactions considered in this article is
given by [9]

(17.9)

Here the azimuthal angle, Φ, and the asymmetry parameter, η, specify the inter-
action tensor in addition to the polar angle, θ, and the anisotropy parameter, δ,
which is a measure of the (dipolar, quadrupolar, etc.) coupling. For the practi-
cally often relevant axially symmetric tensors (with η = 0) the NMR frequency 
reduces to ω δ θ δ θ= − = ×1

2
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The CF g2(t) (cf. Eq. 17.1) is thus seen to be experimentally accessible. In the
limit tp → 0, Eq. (17.8) yields F2

SIN(tp → 0,tm) = tp
2〈ω(0)ω(tm)〉 which for η = 0

directly corresponds to g2(t) and thus allows one to measure the correlation 
time τC,2.

In order for g2(t) of an isotropic system to decay to e–1, say, of its initial 
value the molecules (or better: interaction tensors) have to reorient by about 
40° on average [53]. This confirms that for many applications the angular reso-
lution of the CF for l = 2 could be quite poor (of course that for l = 1 is even
lower). Only for very large l one obtains sensitivity to small jump angles.
However, when returning to the case of finite tp, i.e., to Eq. (17.8) and related 
expressions one recognizes that a dependence on terms with larger l is impli-
cit. This can be shown in a straightforward manner for η = 0 by expanding

The right hand side of this
equation in turn can be written as a sum of higher rank Legendre polyno-
mials. For instance, from the definitions of the Legendre polynomials one has

and, if the above
series is carried further, correspondingly higher terms involving higher angular
resolutions show up.

Thus tpδ can be adjusted to achieve any desired, finite angular resolution, Δϕ.
In other terms, if one sets tpδ larger than a certain threshold (e.g., tpδ > 20 for 
Δϕ ≤ 10°, cf. Fig. 17.4), then any jump should lead to a loss of correlation.
Consequently, in the limit of very long tp Eq. (17.8) defines the so-called angular
jump relaxation function F2

AJ(tm). This function decays with a time constant τAJ
which in general is smaller than τC,2. This becomes clear when considering a sce-
nario for which small-angle jumps (of a few degree, say) dominate.A large num-
ber of such jumps (which in total of course take much longer than τAJ) are re-
quired to lead to a root mean square angular displacement of about 40° (roughly
defining τC,2).
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Fig. 17.4. Double logarith-
mic plot of the normalized
correlation times τ2(tp)/τC,2
as determined from random
walk simulations (Adapted
from [105]). It should be
noted that similar results
were also obtained using a
semi-analytic approach
[109]



Based on the assumption that only a single jump angle ϕ is present, one can
show that ϕ = arcsin[(2τAJ/3τ2)1/2] [54]. This result, but also the full τ2(tp)/τC,2 de-
pendence, is borne out by random walk computations [55, 56], see Fig. 17.4. One
major advantage of the latter numerical method with respect to analytical ones
is that it can easily be adapted to situations in which a distribution of jump an-
gles is present. Finally, apart from τ2(tp) the tp dependent long mixing time limit,
F2(tp,tm → ∞), also contains valuable information concerning the overall reori-
entation geometry. However, here we will not dwell on this aspect, since the anal-
ogy between F2(tp,tm → ∞) and the q dependent elastic incoherent structure fac-
tor from neutron scattering is well known [32, 57].

While further below we point out how, using NMR, g4(t) becomes accessible,
it should be mentioned that in conventional dielectric spectroscopy explicitly l
dependent CFs (apart from l = 1) are not measurable. However, there are several
techniques which allow one to map out CFs with l = 2 by application of electri-
cal fields. Apart from the well-known possibility to use the transient Kerr effect
[15, 58], dynamic birefringence and polarizability spectroscopy (in connection
with non-polar substances) [59–61], electric quadrupole spectroscopy [62, 63],
and nonresonant spectral hole burning [64] may also be useful in this respect. It
has to be noted that the angular resolution of time-domain NMR spectroscopy
at large tp is much higher than the one so far achieved using dielectric methods.
Also the ability to map out angular jump functions, F2

AJ(tm) is quite unique to
NMR.

Angular jump functions form the basis for the construction of dynamic low
pass-filters. This is because in the limit of very large evolution times, tp, any mol-
ecules which in the dephasing period exhibited a frequency, ω1 = ω(0), that dif-
fers from the frequency in the rephasing period, ω2 = ω(t = tm), will not con-
tribute to the F2

AJ(tm) echo. This is often expressed by saying that the molecules
which have reoriented during tm will be filtered out. If F2

AJ(tm) acts as a dynamic
low-pass (cf.Appendix 17.1), then the echo amplitude, F2

AJ(tm), gives the fraction
of ‘molecules’ that have not jumped during the mixing time tm. Thus 1/tm ≡ 1/tfil-

ter defines the edge of a ‘low-pass filter’ and tfilter determines the filter efficiency
FE(tfilter) ≡ 1 – F2

AJ(tfilter) [65].

17.2.3
Multidimensional Techniques

17.2.3.1
Frequency-Domain Spectroscopy

Although in the present chapter our main focus is on time-domain NMR spec-
troscopy, now we will consider frequency-domain NMR. For the techniques
mentioned here, which are more thoroughly treated elsewhere (see, e.g., [9]),
hardly any comparable BDS method exists. They are nevertheless mentioned
here in order to demonstrate some of the extraordinary potential of solid-state
NMR.
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The simplest way of recording an NMR spectrum is to apply a single 
(sufficiently short [66]) RF pulse and to record the subsequent free induction 
decay (FID) F(t) = 〈exp[iφ (0,t)]〉 (or the real or imaginary part of it) with

From the Fourier transform (FT) of F(t) with respect to t

the FID spectrum, I(ω) = FTt {〈exp[iφ(0,t)]〉}, is obtained. Thus, I(ω) tells which
NMR frequencies are present with which weight. Depending on what is encoded
via ω, one can get information on the spatial positions of the spins (which forms
the basis of magnetic resonance imaging [33, 34]), on the kinds of chemical en-
vironments (useful, e.g., in analytical chemistry), and, as yet another example,
on the occurrence of specific orientations (which can, e.g., be used to tell
whether a sample is isotropic or whether orientational order parameters are
non-zero [67]).

Often, FID spectra cannot be recorded reliably for technical reasons. The lat-
ter is often the case in deuterium NMR of disordered solids and usually is cir-
cumvented by application of the solid-echo technique. Solid echoes can be gen-
erated using two suitably phased RF pulses separated by an inter pulse delay tp.
The acquisition of the signal from the echo maximum onwards (which shows up
at a time tp after the second pulse) yields the solid-echo decay, K(t,tp) =
〈exp[iφ (0,t) – iφ (tp,t)]〉, from which in turn the corresponding spectra, S(ω,tp)
= FTt {K(t,tp)}, can be obtained [68].

Solid-echo spectra can yield more information than FID spectra, but at the
expense of being sometimes more difficult to interpret. For instance, if the time
scale, τ, of the molecular dynamics is of the order of δ–1 (in 2H NMR often about
1 μs) or longer, then S(ω,tp) exhibits characteristic line shapes from which τ can
be extracted. By recording solid-echo spectra as a function of tp one may also get
hints about the geometry of motion which already has been in focus in
Sect. 17.2.2.2. Another way of obtaining such information is to carry out orien-
tational NMR hole burning [69]. The most systematic approach, particularly if
(a few) large jump angles are present, is via two-dimensional (2D) spectroscopy.

Figure 17.2 also displays the basic pulse sequence for this experiment.
However, in the present context, not only the echo amplitude but also the entire
magnetization subsequent to the echo maximum, i.e., the signal F2(tp,tm,t) =
〈exp[iω(0)tp] exp[–iω(tm)t]〉 is recorded, cf. Eq. (17.4). Now an FT with respect
to t is performed and yields, in the so-called direct dimension, the NMR fre-
quencies ω2 = ω(tm) which are present subsequent to the mixing time. In order
to map out the frequencies, ω1 = ω(0), prior to tm one has to acquire F2(tp,tm,t)
for a number of preparation times, tp. The frequencies, ω1, in this so-called indi-
rect dimension can then be obtained by performing an additional FT with re-
spect to tp. Thus executing the 2D FT properly [70] one obtains the 2D spectrum
S(ω1,ω2,tm) = FTtp {FTt{F2(tp,tm,t)}}. It represents the joint probability to find an
NMR frequency ω2 (i.e., molecular orientation, etc.) subsequent to tm if there
was an NMR frequency ω1 (originating from the same spin!) prior to tm. Thus,
the principle of two-dimensional exchange NMR in non-rotating solids can be
summarized as follows: it consists of the detection of slow reorientations that
occur during a mixing time by measuring the (here: angle-dependent) NMR fre-
quencies before and after tm [9, 71, 72]. If no reorientation, and consequently no 
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frequency change, takes place during tm, the spectral intensity is confined to 
ω1 = ω2, the diagonal of the frequency plane. If frequency changes do occur dur-
ing tm off-diagonal intensity will appear in the spectrum.

As a simple example let us consider the case represented in Fig. 17.5 in which
a diagonal spectrum with well resolved peaks is sketched (these may be imag-
ined to be associated with different sites in a crystal). Then the exchange peaks
directly reveal the connectivity among the sites. In a second example let a con-
tinuous distribution be present, e.g., an isotropic distribution of C-2H bond ori-
entations. If the motion of these bonds is characterized by a well defined reori-
entation angle, then a well defined relation between ω1 and ω2(ω1) exists. This
situation can lead to the occurrence of elliptical exchange ridges from which the
reorientation angle can be read off directly [9]. It should be noted that large-an-
gle reorientations usually give rise to intensity far off the diagonal of a 2D spec-
trum [73]. Conversely, for reorientations by small angles, the signal appears
close to the diagonal which can appear as a position-dependent broadening of
the diagonal spectrum. This remark is intended to point out that, in general, it
will be hard to perform an unambiguous determination of the underlying re-
orientation angle distribution, if small jump angles dominate.

Using 2D spectroscopy, irrespective of whether it is conducted in the time or
in the frequency domain, one cannot distinguish between those spins which
have not changed their NMR frequency, ω, during tm and those which have
switched to ω′ ≠ ω and then returned to ω near the end of tm. In order to dis-
criminate between these two possibilities, e.g., in order to measure how large the
fraction of molecules is which ‘jump back’ to their original orientation, one
needs to know the NMR frequencies associated with a particular molecule for at
least three points in time.

It is relatively straightforward to reach this goal using multidimensional
spectroscopy since one of the advantages of this technique is its modularity, cf.
Fig 17.6. This property allows one to design experiments yielding signals of the
type 〈exp[iω1tp1] exp[– iω2tp2] exp[iω3t]〉 [74] and even higher multiple-time
correlations. One of the drawbacks of the experimental implementations is that
an excessive number of spectra needs to be measured for an entire array of in-
dependently incremented evolution times tp1, tp2, tp3 (etc.). Therefore, 3D spec-
tra of solids were reported only occasionally and, to our knowledge, no full but
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Fig. 17.5. Schematic contour
plot that visualizes the in-
formation content of a 2D
exchange spectrum with 4
resolved peaks on the diag-
onal. Suppose that each of
these peaks corresponds to
a different site (numbered 1
through 4). The connectiv-
ity resulting from the off-
diagonal pattern would be 
4 ↔ 1 ↔ 3 ↔ 2



only reduced 4D experiments have been performed to date (see Sect. 17.3.4,
below).

Some of the information which these high-dimensional spectra contain can
also be retrieved by analyzing higher-order signals in the time domain. Usually
this is done by again focusing on echo signals which renders the corresponding
experiments relatively time efficient. The significance of multiple-time correla-
tion functions is discussed next.

17.2.3.2
Multiple-Time Correlations

In this subsection we deal with questions relating to the nature of the nonexpo-
nential relaxation or correlation functions in disordered materials. In the litera-
ture on BDS this issue is well known and has long been discussed in terms of,
e.g., empirical distributions as well as defect diffusion [75] and environmental
fluctuation models [76] and their impact on the shape of dielectric loss spectra.
Since the seminal paper by Schmidt-Rohr and Spiess [77], who first studied mul-
tiple-time correlations in glass-forming materials, NMR and later other meth-
ods [64, 78, 79] have provided clues for our understanding of the origin of non-
exponential responses [80–82]. Let us note that several properties of multiple-
time CFs and experimental results relating to spatial and dynamical hetero-
geneities have been reviewed previously [83]. It should be noted that there are
various notions around for the terms ‘spatial heterogeneity’ and ‘dynamical 
heterogeneity’. In particular the latter is sometimes used to imply (i) the exis-
tence of a heterogeneity (or a distribution) in a dynamic (or kinetic) quantity 
or alternatively (ii) that this heterogeneity is not static but transient in nature.
In this chapter we will conform to the definition that we have given previously.
It states that a system will be called dynamically heterogeneous if it is pos.
sible to select a dynamically distinguishable subensemble by (computer) exper-
iments [84].

In Sect. 17.2.2.2 we pointed out that for a proper choice of tp the 2t-echo 
with a fixed mixing time can be considered as a low-pass filter (see also
Appendix 17.1). This property of the stimulated echo, F2

AJ(tfilter), is pictorially
represented in Fig. 17.7a,b. Let us recall that this filter relies on probing the NMR
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Fig. 17.6. Modular design of multidimensional NMR, here for the example of a 4D experi-
ment. In frequency domain spectroscopy each relevant evolution time has to be incremented
systematically in order to map out the frequencies, ωi. In time domain spectroscopy some
mixing times, tmi, are varied with tp kept fixed



frequency at two points in time. In particular, above we have defined the filter ef-
ficiency, FE, as a measure of the fraction of ‘molecules’ (more precise: relevant
nuclear interaction tensors) which have not reoriented during tfilter. Using an RF
pulse the magnetization of this slow subensemble can then be stored for further
analysis, cf. Fig. 17.7c,d. In the experiments, to be described in the following, this
subensemble is probed at two additional points in time. Thus, in total, the NMR
frequency reflecting the orientation of a molecule or molecular segment is mon-
itored at four points in time. Using the notation for the times and frequencies as
implied in Fig. 17.6 one of the relevant 4t-CFs can be written as

(17.10)

It should be noted that the cosine counterpart of E4(tp,tm1,tm2,tm3) as well as the
difference version 〈cos[(ω1 – ω2)tp]cos[(ω3 – ω4)tp]〉 and related functions are
also measurable. In this section we will first consider three types of 4t-CFs which
all derive from the same general function E4(tp,tm1,tm2,tm3) or related expres-
sions. However, these functions differ with respect to which times are kept con-
stant and which ones are varied. In the literature these functions are designated
as G4(tm3), F4(tm2), and L4(tm2) with the written arguments indicating the variable
mixing time. Finally, we will discuss another 4t-CF, called F4

CP(tm2), which previ-
ously has been used to map out spatial heterogeneity.

Conceptually the simplest function is G4(tm3). First, one filters a slow (on the
scale set by tm1 = tfilter) subensemble with the re-equilibration time chosen close
to zero (tm2 = treq → 0). Then the dynamics of the filtered slow molecules are
probed by determining their motional correlation function,G4(tm3); see Fig.17.7c.

E t t t t t t t tp m m m p p p p4 1 2 3 1 2 3 4( , , , ) sin( ) sin( ) sin( ) sin( ) .= 〈 〉ω ω ω ω
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Fig. 17.7. a Three-pulse stimulated-echo sequence which allows one to measure the decay of
rotational correlations when increasing the mixing time, tm = tm1. b This sketch expresses that
for a proper setting of the evolution time, tp, this sequence can act as a low-pass filter for fixed 
tfilter. c Sketch of the sequence for measuring the rotational decorrelation of a filtered
subensemble. For tm2 (= treq) → 0 this corresponds to G4(tm3). d Sketch of the double-filter ap-
proach useful for measuring F4(tm2). Note that variable mixing times are reproduced on yellow
background. The dashed echoes are not detected but stored (i.e., transferred to longitudinal
magnetization) by the pulse applied at its center



In this situation G4(tm3) reduces in fact to a three-time correlation function with
two mixing time intervals tfilter (defining the filter efficiency) and tm3. The latter
is the relevant time variable for probing the dynamics of the slow subensemble.
If the time scale on which G4(tm3) decays is denoted as τ4 then, in a dynamically
heterogeneous scenario for which it is possible to select only effectively slow con-
tributions, one expects τ4 > τ2. For a heterogeneous system the action of the 
filter is sketched in Fig. 17.8. The τ4/τ2 ratio can easily be made quantitative in
the fully heterogeneous case, corresponding to a distribution of exponentials,
since here one has G4(t) = F2(t + tfilter)/F2(tfilter) [84]. The assumption

, with the precautions formulated in Appendix 17.1 in
mind, then yields the ratio of the corresponding time constants as

(17.11)

For the fully homogeneous scenario, sometimes also expressed by saying that
the intrinsic stretching is βin = 1, no dynamic but only amplitude filtering may
be expected so that one obtains G4(t) ~ F2(t); hence τ4/τ2 = 1. Intermediate ra-
tios have been considered elsewhere [84].

In order to address the question of how long it takes the sample to ‘forget’ the
selection one could measure τ4 for successively longer and longer tm2 until τ4(tm2)
approaches τ2. Although the implementation of this idea is relatively time con-
suming, it has been demonstrated using a photobleaching technique [78]. In the
context of NMR there is a more time efficient alternative by employing the same
low pass filter twice, as sketched in Fig. 17.7d. With the requirements regarding
the angular jump filter fulfilled (cf.Appendix 17.1), the four-time echo function,
F4(tm2), will be maximum for tm2 = 0. This is because all molecules which have
‘survived’ the first low-pass filter, with no time allowed for exchange to take
place, i.e., tm2 = 0, will still be slow when entering the second low-pass filter.
However, if tm2 → ∞ then there will be an effective exchange between slow and
fast motions so that just prior to entering the second low pass, the selected
subensemble will exhibit the same shape of the original distribution, albeit re-
duced in overall magnitude. This is sketched in Fig. 17.9 which reveals that the

τ τ β β
4 2

1 11 1 12 2/ [ ln( )] [ ln( )]/ /= − − − − −FE FE

F t t2 2
2( ) ~ exp[ ( / )− τ β
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Fig. 17.8. a In a dynamically
heterogeneous system
F2(tm) probes the entire
spectrum of reorientation
rates. b G4(tm3), on the other
hand, samples only the
small rates, i.e., the effec-
tively slow contributions. If
the filter efficiency is larger,
then fewer fast spectral
components do contribute
to G4(tm3)



amplitude F4(tm2 → ∞) will be smaller than F4(tm2 → 0), but finite. From Fig. 17.9
one may also recognize that variations of the filter edge, tm1 = tm3 ≡ tfilter, will lead
to related changes in F4(tm2 → ∞). The decay of F4(tm2) directly yields the time
scale on which the effective slow ↔ fast exchange takes place. An even simpler
scenario arises if rather than a more realistic, continuous distribution,a bimodal
one is considered, cf. Fig. 17.10a. This will turn out helpful not only when dy-
namic but also when spatial aspects of heterogeneity are dealt with.

The third type of 4t-CF, denoted as L4(tm2), which does not directly address
potential spatial heterogeneities is based on the same pulse sequence as F4(tm2),
but with tp → 0 [85]. In this limit Eq. (17.10) can be used to define

(17.12)

and thus L4(tm2) ~ 〈ω1ω2ω3ω4〉 = (tpδ)4〈P2(cosθ1)P2(cosθ2)P2(cosθ3)P2(cosθ4)〉.
For the latter equality axially symmetric tensors (η = 0, cf. Eq. 17.9) were as-
sumed for simplicity. It should be noted that the proportionality sign in the above
expression is justified by the fact that the term E4(tp → 0,tm1,tm2 → 0,tm3) appear-
ing in the denominator of Eq. (17.12) is constant for fixed filter times tm1 = tm3
(which we always consider in relation to L4(tm2)). Furthermore, from Eq. (17.12)
it is obvious that L4(tm2) approaches unity for tm2 → 0. The CF L4(tm2) has some
interesting properties. In [85] (see also Appendix 17.2) it was shown that L4(tm2)
can be decomposed into three terms: one is proportional to g4(t), one is propor-
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Fig. 17.9. Evolution of effective distributions in heterogeneous systems in relation to the
F4(tm2) experiment. The amplitude of F4(tm2) is the smaller the smaller the dark blue area: a for
short tm2 the slow fraction (dark blue) passes the filter twice; b partial re-equilibration during
tm2 renders some ‘slow’ relaxations ‘fast’: the (dark and light) blue spectrum is the input to the
second filter, but only the dark blue fraction can pass it; c the dynamic exchange is complete,
i.e., red and blue spectra have the same shape but different amplitudes. It is seen that even in
the limit of long tm2 a finite slow (dark blue) fraction remains. Thus for finite filter efficiencies
F4(tm2) does not decay to zero



tional to g2(t),and a third one is not directly dependent on molecular orientations
but on dynamic exchange processes. It was shown [85] that in the absence of
an effective slow ↔ fast exchange L4(tm2) does not decay to below , even in the
limit of long tm2 for which g4(tm2) = g2(tm2) = 0 [86]. However, in the presence of
exchange processes L4(tm2) can drop below this plateau value of . By consider-
ing simple rate exchange models it was demonstrated that the time scale on
which such a decay takes place directly yields the exchange rate [85]. Thus, with
respect to dynamic exchange L4(tm2) contains the same information as F4(tm2),
however, without the requirement to make sure that the random-jump assump-
tion, as implicit in the application of the low-pass filter, is appropriate. This ad-
vantage of L4(tm2) is obtained at the expense of the need to approach closely the
limit tp → 0. Due to finite pulse lengths this conditions will be hard to meet in
practice, unless similar ‘tricks’ to those in 2D exchange NMR are employed [74].

Let us recall that the technique described in this present section, so far, only ad-
dresses the issue of dynamic (sometimes called spectral) heterogeneity. In order
to find out whether dynamic heterogeneity and spatial heterogeneity are related,
13C-NMR experiments on organic glass formers have been performed [87, 88]. In
this approach one augments the F4(tm2) technique with cross polarization (CP)
steps [89] (i) from the carbons to the protons at the beginning of tm2 and (ii) back
to the carbons near the end of tm2 (�τα). The analysis of the associated echo am-
plitude, F4

CP(tm2), is based on the following considerations. If the carbons selected
by the first filter are spatially clustered, so will be the proton magnetization right
after the first CP step, cf. Fig. 17.10b. However, during tm2 spin diffusion (which is
very effective among the protons, but not among the carbons) will lead to a suc-
cessive redistribution of the magnetization first to the protons in the vicinity of
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Fig. 17.10. Schematic repre-
sentation of the timing
scheme for: a the F4(tm2) ex-
periments; b the F4

CP(tm2)
experiments. The latter is
designated here as F4

ξ(tm2).
The simple case of a bi-
modal distribution of reori-
entation rates, kslow and kfast,
is depicted. The exchange
rate is denoted as Γ and the
spin diffusion coefficient as
D. Reproduced from [87]
with permission



the carbons in the selected spatial regions and then to all protons throughout the
sample.Thus,the amount of proton magnetization which is transferred back (only
those carbons in the initially selected regions are relevant) depends tm2, i.e., it will
be smaller the longer tm2 is; see Fig. 17.10b for a schematic illustration.

The main result of this combined dynamic and spatial selection procedure is
that, as compared to F4(tm2), the echo amplitude F4

CP(tm2) exhibits an additional
decay. The smaller the selected spatial regions are the shorter is the time scale on
which this decay takes place. Thus, from measurements of F4

CP(tm2) one can learn
whether the low-pass filtered spins are spatially clustered and then how large
typical cluster sizes are. For further details see [87, 88].

17.3
Combined Dielectric and NMR Studies: Recent Experimental Examples

17.3.1
Dynamics in ‘Simple’ Glass Formers: Glycerol vs Toluene

There are several ways to compare results of NMR with those from dielectric
spectroscopy. In the literature (and also in this chapter) this is most often done
by compiling the characteristic relaxation (or correlation) times from both ap-
proaches. A more detailed view on the dynamics is, however, possible by com-
paring the shapes of the spectral densities or alternatively the (associated) spin-
lattice relaxation times, via Eqs. (17.2) and (17.3). This is exemplified for the typ-
ical glass forming liquid glycerol in Fig. 17.11 [90] for a frequency of 55 MHz.
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Fig. 17.11. Spin-relaxation times, T1, of glycerol-d3 as a function of temperature. The solid
symbols are from NMR the open symbols from dielectric loss measurements. For comparable
frequencies the data from both approaches agree. Tg is marked by the vertical line. Reproduc-
ed from [90] with permission



The agreement between the results of the two experimental techniques is seen
to be very good. Most prominent is the minimum showing up in T1 or in T1

diel

(roughly proportional to 1/ε′′(T)] which is associated with the structural relax-
ation, usually termed α-process. On a qualitative level T1 data of other super-
cooled organic liquids look quite similar to those shown in Fig. 17.11; see, e.g.,
[91] for a recent compilation. However, when quantitatively comparing T1 of dif-
ferent glass formers (even those recorded at similar Larmor frequencies) a num-
ber of differences show up: (i) if the widths of structural correlation times vary
so do the depths of the T1 curves (cf. Fig. 17.1); (ii) if the kinetic fragilities [92]
of glassformers are larger than that of glycerol then the temperature corre-
sponding to the T1 minimum is closer to the glass transition on a Tg-normalized
temperature scale; (iii) below Tg one finds that T1 is dominated by processes
which are fast with respect to the structural relaxation like, e.g., those giving rise
to the so-called dielectric high-frequency wing or other secondary relaxations.
In comparison to glycerol these are much more pronounced in, e.g., toluene.
Consequently, below Tg the spin-lattice relaxation rate of toluene [93] is consid-
erably shorter than that of glycerol. Let us mention that a comparison of l = 1
and l = 2 CFs was previously performed for this glass former by simultaneous
dielectric and Kerr-effect measurements [94].

By analyzing T1 data quantitatively and/or by carrying out frequency depen-
dent dielectric measurements as a function of temperature, characteristic relax-
ation times can be gathered over wide ranges [93, 95–98]. In Fig. 17.12 time scale
data for glycerol and toluene were collected from various experimental tech-
niques covering a large dynamic window. In this Arrhenius plot the trace of the
structural relaxation time data of toluene appears somewhat more curved than
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Fig. 17.12. Activation plot for toluene and glycerol as determined by NMR-techniques and
broadband dielectric spectroscopy. For toluene: 2H spin alignment (toluene-d3, �), 2H-T1
(toluene-d5, +) 1H static gradient technique (toluene-d3,�) [93], and dielectric relaxation (tri-
angles) [196]. For glycerol: 2H spin alignment (glycerol-d5, � [105]; glycerol-d3, � [197]), 2H-
T1 (glycerol-d5, +) [197], 1H static gradient technique (�) [45], and dielectric relaxation (small
symbols) [97, 98]



that of glycerol. This effect is even more pronounced in a Tg scaled plot (usually
called Angell plot), demonstrating that the van der Waals glass former toluene is
considerably more kinetically fragile than the hydrogen bonded network liquid
glycerol [99]. Whenever a direct comparison is possible the results from the two
techniques agree well within experimental uncertainty. It is also seen directly
that apart from the primary response toluene exhibits a secondary, dielectrically
active slow β-relaxation. This process is usually called Johari-Goldstein relax-
ation and it shows up in the dielectric spectrum as a well separated slow relax-
ation [100]. Johari-Goldstein processes are found for the majority of super-
cooled organic liquids and they are sometimes ascribed to slow intramolecular 
degrees of freedom. In view of the fact that in the (rigid) toluene molecule no 
dielectrically active side-group fluctuations can be imagined it may be conjec-
tured that this relaxation is intermolecular in nature. Glycerol, on the other
hand, has no well separated secondary relaxation, but only a pronounced high
frequency wing. In recent experiments it could be shown that the signature of
this process becomes more pronounced after aging for a period of five weeks
[101]; see also Chap. 5. This indicates that the high frequency wing has to be
viewed as a secondary relaxation, too. This secondary process, which has a dif-
ferent temperature dependence as the conventional Johari-Goldstein process
[102], is usually masked by the dominating α-relaxation.

Another striking difference between glycerol and toluene is obvious when
comparing the 2H NMR solid-echo spectra in the correlation time window be-
tween about 1 and 100 μs, cf. Fig. 17.13 [97]. For glycerol the NMR line shape un-
dergoes a transition from a motionally narrowed peak at high temperatures to a
Pake spectrum at low temperatures. Keeping in mind that the deuteron NMR
frequency is determined by the orientation of the C-2H bond with respect to the
external magnetic field, it is obvious that this observation corresponds to a tran-
sition from a fast to a slow isotropic reorientation on the scale of the inverse
anisotropy parameter, δ –1, of about 1 μs.

In contrast to glycerol, the 2H NMR solid-echo spectra for toluene change
only little with temperature in the range shown in Fig. 17.13. The absence of ma-
jor spectral changes for toluene at T < 125 K indicates that the angular excursion
of the molecular reorientations is too small to lead to significant modulations of
the NMR frequency and/or that the distribution of associated correlation times
is essentially out of the NMR time window (which for solid-echo spectroscopy
ranges roughly from about 3 μs to 0.3 ms). A glance at the Arrhenius plot
(Fig. 17.12) reveals that for T < 125 K the α-relaxation time of toluene is indeed
much longer than δ –1, but that the β-relaxation times are in the mentioned time
window. Thus one may conclude that a geometrically highly restricted (i.e.,
anisotropic local) molecular motion is responsible for the β-process. We just
mention here that these spectral changes can be well described by numerical
random walk simulations [56]. In these computations it was assumed that all
molecules perform small-angle rotational jumps, i.e., the orientation of each C-
2H bond is restricted to a cone with an opening angle of a few degrees. (Of course
the orientations of these cones are isotropically distributed.) The important
point is that it is not necessary to invoke the notion that only a subgroup of all
molecules is involved in this process [97]. Thus, studies of one-dimensional
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solid-echo spectra can give valuable insights into the geometry of the molec-
ular motion which is associated with the β-process. Another option that we 
will only mention in this context is to record solid-echo spectra for variable 
inter-pulse delays. Then small-angle and large-angle motions each lead to 
characteristic line-shape changes. This technique, which is well known in the
field of polymers [103, 104], has recently been revived also for supercooled liq-
uids [97].

In order to unravel the motional mechanism governing the α-process, in the
vicinity of the calorimetric glass transition, one may resort to techniques which
operate on still longer time scales. Thus, one may apply two-dimensional spec-
troscopy in the frequency or time domains, which can cover the correlation time
scale of about 0.1 ms to that of T1 (usually in the range of seconds). In Fig. 17.14
we show stimulated-echo data, F2(tp,tm), of glycerol for wide ranges of evolution
and mixing times. A model-free analysis of these data reveals that each C-2H
bond performs an overall isotropic reorientation [105]. This set of data was an-
alyzed further by fitting the data using a stretched exponential function for each
tp. It turned out that the stretching of F2(tm) depends only weakly on tp. But the
effective time scale τ(tp) was found to be the smaller the larger the evolution
time was. The resulting 〈τ(tp)〉 patterns for glycerol and for toluene are shown in
Fig. 17.15 [106]. When comparing these experimental data with the simulation
results presented in Fig. 17.4, it becomes clear that the average jump angle asso-
ciated with the α-relaxation might be around 10°. An excellent quantitative de-
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Fig. 17.13. 2H NMR solid-
echo spectra with inter-
pulse delays of tp = 20 μs for
glycerol-d5 and toluene-d5.
The correlation time win-
dow covers the range from
2 μs to 100 s. Taken from
[97] with permission



scription of the data shown in Fig. 17.15 is only possible (cf. the solid lines drawn
there) by assuming suitable, strongly asymmetric, jump angle distributions
[107]. Among the simplest choices are bimodal distributions involving a large
fraction of small-angle jumps (≤ 2 – 3°) and a smaller fraction of large jump an-
gles (>25°). The large-angle jumps typically contribute at least half of the root
mean square angular displacement in these glass formers, but the relative con-
tributions of small and large angle jumps were reported to differ somewhat for
glycerol and toluene [106]. Overall the molecular motion in the α-relaxation
regime of these substances is quite similar. It should also be mentioned that this
type of composite reorientation process (see the sketch presented as inset to
Fig. 17.15) is found in the primary response also of various other polymeric (see
Sect. 17.3.4, below) and non-polymeric supercooled liquids near the glass tran-
sition [55, 105, 108–111]. Furthermore, there are indications that the mean jump
angle increases with temperature [112].

Next let us address the question regarding the origin of the stretching of
the two-time correlation functions,F2(tm), or of the associated broadening of the
dielectric loss spectra in glycerol and toluene. Evidence for dynamic hetero-
geneity in these materials was obtained from nonresonant hole burning [55, 64]
(see also Chap. 14) and multiple-time stimulated-echo investigations. The 
heterogeneity lifetime was measured for these and other substances using 
four-time correlation functions. As an example in Fig. 17.16 we show an L4(tm2)
correlation function for glycerol recorded at about Tg + 20 K [85]. It is clearly
seen that L4(tm2), for long tm2, drops below the threshold of 7/15. According to 
the considerations in Sect. 17.2.3.2, this signals the presence of dynamic ex-
change which furthermore takes place on the same time scale as the molecular
reorientation. Similar results were obtained for a range of temperatures. Since
the dynamic heterogeneity is thus short-lived (or highly transient) in character,
it may be asked whether under these conditions it is possible to acquire direct
experimental evidence for spatial heterogeneity. This issue was recently 
addressed in a 4D-CP NMR study of supercooled glycerol which demonstrated
the existence of a finite heterogeneity length scale [88]. This finding reveals a
close correspondence of dynamic and spatial aspects of heterogeneity. Similar
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Fig. 17.14. Two-dimensional
surface wire representation
of experimental cosine cor-
relation functions, ECOS(tp,t)
= F2

COS(tp,t)/F2
COS(tp,t → 0),

for glycerol-d5 measured at
T = 204 K. Taken from [105]
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Fig. 17.15. Comparison of the 〈τ(tp)〉 patterns for: a toluene-d5; b glycerol-d5. The lines are
from random walk simulations described in Sect. 17.2.2.2. In a, for toluene the dotted line re-
flects a single jump angle of ϕ = 10° and the solid line represents simulations using a bimodal
jump angle distribution with 80% 4° jumps and 20% 25° jumps. In b, for glycerol the dotted
line reflects a single jump angle of ϕ = 8°, the solid line a bimodal distribution with 98% 2°
jumps and 2% 20° jumps. The inset gives a schematic representation of an orientational tra-
jectory projected onto a unit sphere that serves to illustrate the complex rotational motion
near the glass transition. Adapted from [106]

Fig. 17.16. A four-time rotational correlation function, L4(tm2), of glycerol-d5 measured for 
tm1 = tm3 = 6.4 ms. The plateau value, i.e., L4(tm2 → ∞), becomes much smaller than 7/15
(marked by the double arrow), indicating that dynamic exchange takes place on the same time
scale as the molecular reorientation. The rotational correlation time 〈τ2〉 is also indicated.
Adapted from [85]



observations were also made for polymers, as discussed in more detail in
Sect. 17.3.4, below.

17.3.2
Motional Processes of a Triphenylene-Based Discotic Liquid Crystal

Liquid crystals are used in many technological applications since they allow one
to combine various favorable properties. However, these materials are also inter-
esting to study from a scientific point of view because they are usually character-
ized by a complex molecular dynamics. Hence, dielectric spectroscopy and par-
ticularly NMR are useful for unraveling many of their static and kinetic proper-
ties [11, 113–115]. Here we will focus on triphenylene-based discotic liquid crys-
tals which can be functionalized by a large number of different side groups [116].
In particular we will treat in some detail the liquid crystal of the type depicted in
Fig.17.17.This substance exhibits a broad temperature range in which the colum-
nar mesophase is stable. Also it is a member of the group of those liquid crystals
that show a calorimetric glass transition [117–121].

In order to characterize the dynamics of this system, broadband dielectric
measurements were carried out. As demonstrated in Fig. 17.18 evidence for two
relaxation processes was obtained. These can be ascribed to a secondary β-re-
laxation, with a well defined activation energy, and a primary relaxation associ-
ated with the dynamic glass transition. The α-relaxation times exhibit pro-
nounced deviations from the Arrhenius law, see Fig. 17.19. At the calorimetric
glass transition temperature, Tg = 227 K, the relaxation time is τα (Tg) ≈ 10 s.
Interestingly, X-ray investigations showed, however, no indication of a step in
the thermal expansion coefficient, usually accompanying calorimetric glass
transitions [121]. Rather the thermal expansion measured along the discotic
columns exhibited such a feature at Tg + 30 K. Here the dielectric α-relaxation
time is about 8 ms. This suggested that the glass transition in this system is
strongly anisotropic and that the primary dielectric relaxation stems from a lo-
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Fig. 17.17. Structure and chemical composition of the discotic liquid crystal (2S,3S)-2-chloro-
3-methyl-penta-nonyloxy-pentakis(pentyloxy)-triphenylene. Here the substitution of one of
the ether side chains by a chiral ester side group gives rise to an electric dipole moment. This
substance has a clearing temperature as high, as 455 K and a hexagonally ordered Dh0 phase.
No crystallization but a glass transition at Tg = 227 K is observed. The six C positions (one is
marked) were selectively deuterated for the NMR investigations
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Fig. 17.18. Dielectric loss ε′′ vs temperature of the substance shown in Fig. 17.17 at the fre-
quencies indicated. The calorimetrically determined glass transition temperature Tg is indi-
cated (dashed line)

Fig. 17.19. The circles in this activation plot represent the two dielectric relaxation processes
shown in Fig. 17.17. The NMR data from 1D line shape analysis (�) and 2D 2H exchange spec-
troscopy (�) nicely agree with those from the dielectrically active α-process. The β-process
can be ascribed to librational fluctuations of the side chains. The solid line indicates a fit ac-
cording to a Vogel-Fulcher equation and the dashed-dotted line is an Arrhenius law. The
calorimetrically determined glass transition temperature Tg is indicated (dashed line).
Reproduced from [126] with permission



cal rotational motion. The inter-columnar and the intra-columnar motions are
likely to be associated with different degrees of cooperativity [122].

In order to test the molecular motion via NMR, the system shown in Fig. 17.17
was selectively deuterated at the aromatic core. Thus one is sensitive to the over-
all rotational dynamics (rather than to side group motions). Temperature de-
pendent 2H NMR spectra for samples with an isotropic distribution of liquid
crystalline domains are shown in Fig. 17.20 for three temperatures [118]. In this
context it is important to note that the magnetic fields typically used for NMR
do not realign the directors, unless the clearing point is very closely approached.
At 200 K, well below Tg, a powder spectrum characteristic for rigid triphenylene
rings is found. The spectrum remains unchanged up to 270 K, thus excluding
ring motions at rates higher than approximately 10 kHz. In the temperature
range between 280 K and 380 K the line shape changes due to the onset of ring
motion with rates between 10 kHz and 10 MHz [123–125]. In the fast exchange
limit (see the 400 K spectrum in Fig. 17.20) this motion leads to a Pake type spec-
trum which (with respect to that at low temperature) is reduced in width by
about a factor of two.This is characteristic of an axial motion of the discs around
their column axis. The motional correlation times as deduced from a detailed
line shape analysis [126] of one-dimensional spectra are included in Fig. 17.19
and are seen to agree very well with the dielectric data.

In order to unravel the motional mechanism related to the dielectrically ac-
tive α-process in more detail 2D 2H NMR spectroscopy was employed [126].
Prior to the experiments which we describe in the following, the sample was
cooled slowly through the isotropic to discotic transition at 455 K. In this case
planar order is established, i.e., the directors of the discotic domains are all
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Fig. 17.20. Solid state
2H NMR spectra of an over-
all isotropic (“unoriented”)
sample at the specified tem-
peratures. Additional verti-
cal lines near the singulari-
ties of the low temperature
spectra and the outer edges
of the high temperature
spectrum are drawn to
guide the eye. Reproduced
from [118] with permission
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arranged perpendicular to the external magnetic field; see the inset of Fig. 17.21.
A typical spectrum that was recorded with the mixing time tm set longer than the
α-relaxation time, τα, is shown in Fig. 17.21 (top). For the description of these
spectra three scenarios were considered: (i) jumps of 120° perpendicular to the
columnar axis, reflecting the approximate threefold molecular symmetry, (ii)
one-dimensional small-step rotational diffusion, and (iii) a combination of the
two cases which was termed “jump diffusion in a threefold potential”, cf.
Fig. 17.22 [126]. Only the simulation based on the latter scenario was found to
give an excellent agreement with the experiment; see Fig. 17.21 (bottom). The
distribution of reorientation angles on which this simulation rests was peaked at
0° and ±120°. Each peak exhibited a Gaussian shape which was about ±15° wide.
The time constants that were derived from 2D-NMR measurements compare ex-
cellently with those from dielectric spectroscopy; see Fig. 17.19. Thus, the quasi-
one-dimensional (intra-columnar) rotational dynamics can be regarded as well
understood.

Furthermore, static inter-columnar properties are readily accessible using dif-
fraction techniques. Dynamical aspects, on the other hand, can be mapped out by
investigating the molecular transport [127]. In this context let us discuss results

Fig. 17.21. (Top) 2D
2H NMR spectrum of the
discotic liquid crystal
shown in Fig. 17.17. It was
measured at 270 K with a
mixing time of 10 ms. The
directors were randomly
distributed in planes per-
pendicular to the external
magnetic field (see sketch).
(Bottom) Simulation based
on the model of “jump-dif-
fusion in a threefold poten-
tial”. Reproduced from
[126] with permission



from a static field gradient proton NMR study [128] of the compound shown in
Fig. 17.17 [129]. Some intermediate scattering functions, as acquired using the
stimulated-echo technique for several (fixed) evolution times, are shown in
Fig. 17.23 in a semi-logarithmic representation. This renders deviations from an
exponential decay in S2(tp,tm) obvious. It is also recognized that the data for all tp
superimpose when they are plotted vs the scaling variable tp

2tm (~ q2tm). For com-
parison the limiting behaviors of S2(tp,tm) as calculated from Eq. (17.6) for 2D and
3D diffusion are included in this plot. The non-exponentiality of the experimen-
tal S2(tp,tm) nicely confirms the anisotropic nature of the inter-columnar motion
in this liquid crystal. Thus, the expectation that diffusion along the director axis is
much slower than perpendicular to it is borne out by experiment.

Temperature dependent diffusion coefficients as derived from the initial
slope of S2(tp,tm) echo decays are shown in Fig. 17.24. For this plot a representa-
tion was chosen for which an Arrhenius law yields a straight line. Just below the
clearing point (T = 455 K) deviations from thermally activated behavior show
up. For all temperatures above about 400 K the q–2 dependence of the echo de-
cays is nicely obeyed (see inset of Fig. 17.24). At lower temperatures deviations
from this simple behavior show up, as also documented in Fig. 17.24.
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Fig. 17.22. Schematic visualization of the potential associated with the “jump-diffusion”
model. Rotational diffusion can occur close to the potential minima. The barriers are crossed
by approximate 120° jumps. Reproduced from [126] with permission

Fig. 17.23. Scaled intermediate scattering functions of the compound shown in Fig. 17.17.
They were determined in a static magnetic field gradient of g = 46.1 T m–1. The experimental
data indicate that the behavior is neither pure 2D and nor isotropic (3D) in character.The lines
are calculated using Eq. (17.6). The master plot is based on tm dependent stimulated echoes ac-
quired for the indicated evolution times [128]



In this context it should be pointed out that stimulated proton echo decays
can occur even in the absence of magnetic field gradients, e.g., when the inter-
nuclear vectors of dipolarly coupled spins reorient or change their length in the
time regime set by tm. Corresponding dipolar decorrelation effects are fre-
quently employed in studies of liquid crystals since they allow one to monitor
order parameter fluctuations [130]. When aiming at determining self-diffusion
coefficients the modulation of dipolar interactions is of course unwanted, be-
cause it can lead to a speed-up of the stimulated echo decay (resulting in an ap-
parent increase of diffusion,cf.Fig.17.24).There are various options if one needs
to circumvent these difficulties. One could increase the strength of the magnetic
field gradient so that the diffusion decay is complete before the dipolar decorre-
lation sets in.Alternatively, one could suppress the dipolar correlation by means
of multiple pulse techniques. These have proven valuable not only in homoge-
neous magnetic fields [9] but also in the presence of strong field gradients [131].
However, even without these measures the temperature range covered in
Fig. 17.24 is wider than for many other liquid crystals, simply because the large
width of the temperature range in which the mesophase of the compound shown
in Fig. 17.17 is stable.

17.3.3
�- and �-Relaxations in Poly(methyl methacrylate)

In amorphous polymers, the dynamic glass transition (α-relaxation) is often at-
tributed to the cooperative dynamics of main chain segments. At the calorimet-
ric glass transition temperature the backbone fluctuations are characterized by
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Fig. 17.24. Temperature dependence of effective self diffusion coefficients determined from
the initial slope of S2(tp,tm). The inset demonstrates the q–2 behavior of the diffusion times, τq,
for T = 415 K. Below about 400 K mechanisms other than translational diffusion commence to
contribute to the echo decay. These obviously give rise to apparently tp dependent diffusion
coefficients. The dashed line corresponds to an Arrhenius law with an activation energy of
52 kJ mol–1 [128]
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a relaxation time of about 100 s. Additionally secondary relaxations, often in-
volving fluctuations of side groups, can be observed. These processes have been
studied by a variety of experimental techniques and in keeping with the spirit of
this review we will focus here on a single example, poly(methyl methacrylate)
(PMMA) [132–136], which was particularly well studied using multidimen-
sional NMR. Again we will emphasize the unique capabilities of multidimen-
sional solid-state NMR to unravel the geometry of molecular motion for rota-
tional correlation times ranging from milliseconds to seconds.

However, first let us give a brief overview of the dynamics in PMMA. To this
end in Fig. 17.25 we present the characteristic relaxation times for PMMA as ob-
tained from dielectric [137] and mechanical [138] relaxation studies in the
regime of the β-process. Also included are data from 1D and 2D 13C exchange
NMR which were extracted from typical line shape changes (on the scale of the
inverse anisotropy parameter, δ–1 ≈ 5 ms) and from the mixing-time depen-
dence of the exchange intensity, respectively. The averaged correlation times ob-
tained with the different methods all follow an Arrhenius law and agree well
with one another (Fig. 17.25). This allows for an unambiguous assignment of the
processes seen via NMR spectroscopy.

As for supercooled liquids (Sect. 17.3.1), the motional mechanism governing
the α-process was studied using stimulated-echo and related NMR techniques
for PMMA [132, 139] as well as for other polymers [140, 141]. It was generally
found that a dominant fraction of small jump angles (< 5°) is present, but that a
significant portion of the root mean square angular displacement is performed
by large-angle reorientations (> 30°).

Rather than discussing the α-process again, let us here focus on the sec-
ondary relaxation which for PMMA often was ascribed to reorientational mo-
tions of the COOCH3 side group. It is plausible to associate the strong (dielectri-
cally active) β-process of this polymer with fluctuations of the large dipole mo-

Fig. 17.25. Arrhenius plot of
correlation times of the re-
laxation dynamics in
PMMA. For the β-relax-
ation, time constants as esti-
mated from NMR spec-
troscopy (�) are compared
to those evaluated from di-
electric loss maxima (�)
[137] and from dynamic-
mechanical studies (�)
[138]. The straight line cor-
responds to an activation
energy of 65 kJ mol–1.
Reproduced from [132]



ment exhibited by the carboxyl group. Exactly how this motion proceeds has re-
mained unclear for a long time. Often it was assumed that the entire side group
performs a large-angle motion around the bond linking it to the main chain.
Notably 180° flips have been favored in this context [3]. The local conformation
of the ester methoxy group is depicted before and after such a flip in panels a
and b of Fig. 17.26, respectively. However, as suggested in this figure a simple
180° flip may be impeded by sterical constraints imposed by the immediate en-
vironment of the strongly asymmetric side group. It has also been envisioned
that significant main-chain motions could be involved in the β-relaxation [137].
For example, one could imagine that Fig. 17.26a and b represent two snapshots
of a rocking motion involving side and main chains. Finally, it was discussed
whether below Tg other (dielectrically inactive) motions, such as the rotation of
the methoxy group around the C-OCH3 bond, could take place in PMMA [138].
In a comprehensive multidimensional 2H and 13C NMR study, upon which we
will focus next, the motional mechanism of the sub-Tg relaxation could unam-
biguously be clarified [132].

In Fig. 17.27a we reproduce a 13C 2D-NMR spectrum of PMMA recorded with
a mixing time of tm = 50 ms at 333 K, here τβ ≈ 10 ms. The sample with a molec-
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Fig. 17.26. Schematic sketches of the asymmetric side group of PMMA in its local environ-
ment: a initial side-group orientation; b after an exact 180° flip of the side group it does no
longer fit into its local environment unless the latter undergoes major rearrangements; c only
slight environmental deformations are required if the 180° flip is accompanied by an addi-
tional twist around the local chain axis; d the side group jumps back close to its original ori-
entation in a. It should be noted that the unique principal axis of the CSA tensor at the car-
boxyl 13C site (i.e., the ω33 axis) is perpendicular to the OCO plane (here: essentially the paper
plane). Taken from [132] with permission



ular weight of Mw = 112,000 g mol–1 was 20% 13C-labeled at the carboxyl carbon.
Most of the spectral intensity is located at or close to the diagonal and only 
25 ± 10% appears as exchange intensity.The latter is spread across almost the en-
tire spectral plane. At first glance this spectrum looks as if about one quarter of
the segments perform a quasi-diffusive isotropic motion. This is because the ex-
istence of well defined jump angles usually manifests itself by the occurrence of
elliptical exchange ridges [9]. Of course, an exact 180° flip leaves the CSA tensor
invariant, i.e., it produces no change in the NMR frequency and thus no exchange
intensity. In this context it may be interesting to mention that, typical for carboxyl
group 13C shift tensors, the largest (“unique”) principal axis (corresponding to a
frequency ω33) is perpendicular to the OCO plane and almost parallel to the lo-
cal chain axis [132, 142]. Since in the experimental spectrum, Fig. 17.27a, practi-
cally all of the exchange intensity occurs between the frequencies ω11 and ω22,
corresponding to the other two principal axes, it may be anticipated that the mo-
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Fig. 17.27. a The 2D exchange 13C NMR spectrum of PMMA recorded for T = 333 K and 
tm = 50 ms with 20% of the 13COO side groups labeled. b Simulation using a broad distribu-
tion of flip angles centered at 180°. c Simulation based on the assumption of a 180 ± 10° flip
and a concomitant ~20° rotation around the ω33 direction (local chain axis). d Simulation
based on the assumption of a rocking motion around the ω33 direction but without 180° flips.
Only the simulation shown in c yields a satisfactory description of the experimental spectrum.
Taken from [132] with permission



tion leaves the ω33 axis essentially invariant. This implies that the ω33 axis either
acts as a rotation axis, or that it is inverted during the process, or both.

Any motional model for the β-process of PMMA has to take this constraint into
account. However, it also has to be ascertained that the quasi-diffusive exchange
intensity does not reflect spin-diffusion. Any such suspicion was shown to be in-
substantial because: (i) a natural abundance (i.e.,1.1% 13C) spectrum exhibited an
exchange pattern similar to Fig. 17.27a, albeit with reduced signal to noise ratio –
due to the great dilution of the 13C spins in the natural abundance sample, the di-
pole-dipole interactions among the 13C nuclei which gives rise to spin-diffusion,
are practically irrelevant in this context; (ii) in spectra recorded for the isotopically
enriched sample no exchange intensity occurs at low temperatures (233 K). This
finding can only be understood if molecular motion is responsible for the off-di-
agonal intensity, because spin-diffusion is essentially temperature independent.

In order to describe the exchange pattern more quantitatively simulations
based on various motional models were carried out in [132]. Figure 17.27b
presents a spectrum computed for a π flip (cf. Fig. 17.26b) smeared out via 
a Gaussian distribution of jump angles with the center at 180° and a full width
at half maximum of 60°. This scenario leads to almost circular ridges [143]
which are, however, not observed experimentally. The assumption of a rocking
motion alone also cannot explain the experimental spectrum. A calculated
exchange pattern corresponding to an anisotropic motion around the ω33
axis with a root mean square amplitude of 25° is shown in Fig. 17.27d. Also this
spectrum clearly does not describe the data. A similar conclusion can be drawn
even if much smaller or larger angular excursions are considered [132].
As already suggested by Fig. 17.26c a combination of a 180° flip and a conco-
mitant rocking motion may satisfy the local sterical constraints. Indeed a
simulation based on a 180 ±10° flip and a simultaneous rotation around the ω33
axis (root mean square excursion ± 20°) gives a good agreement with the
experimental spectrum, cf. Fig. 17.27a,c. For a pictorial representation of this
scenario see Fig. 17.26a,c. Obviously the ~ 20° readjustment of the local main
chain axis enables the entire side group to execute 180° flips without the neces-
sity of major rearrangements in its environment. These findings are further cor-
roborated by 3D exchange NMR experiments which revealed that the reorienta-
tion of each segment involves only two sites with relatively well defined poten-
tial energy minima [132]. By studying selectively methoxy deuterated PMMA it
could also be demonstrated that, apart from tunneling excitations [136], the ro-
tational motion around the O-CH3 bond is essentially frozen below Tg [132].
Taken together the NMR results show that the β-relaxation in PMMA is not just
a simple side group reorientation, but a complex process which involves coupled
small and large angle processes of the side and local main chain axes.

In related experiments the molecular dynamics in poly(ethyl methacrylate)
was also analyzed and compared with that of PMMA [133]. In the β-relaxation
regime the two polymers behave similarly. Additionally in poly(ethyl methacry-
late) strongly anisotropic motions were found to characterize its α-process
which is quite untypical. When comparing the characteristic time scales of
poly(ethyl methacrylate) good agreement between the results of NMR [133–
135] and dielectric spectroscopy [144, 145] was found.
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17.3.4
Dynamic and Spatial Heterogeneity in Poly(vinyl acetate)

Polymers, like practically all other glass formers, exhibit a broadening of the di-
electric loss and of many other, e.g., dynamic-mechanical, susceptibility spectra.
The first work which directly resolved the question whether or not a distribution
of relaxation (or correlation) times is causing this broadening was carried out
for poly(vinyl acetate) (PVAc) at Tg + 20 K [77]. In Fig. 17.28 we reproduce some
13C spectra of the COO group from that NMR work. Figure 17.28a exhibits a 2D
exchange spectrum recorded for a mixing time of tm = 10 ms. The appearance of
exchange intensity reveals the presence of reorientational motions on this time
scale. The reduced 4D spectrum shown in Fig. 17.28b demonstrates that it is pos-
sible to select essentially only the “rigid” segments (on a scale of 30 ms); thus
slow and fast motions can be distinguished. This observation is unequivocal ev-
idence for a dynamically heterogeneous scenario. If however the re-equilibra-
tion time is chosen much longer (tm2 = 1 s, see Fig. 17.28c), considerable off-di-
agonal intensity is obtained in the reduced 4D spectrum. By comparison with
the primary relaxation it was concluded the heterogeneities do not persist much
longer than the mean structural relaxation time [146].

These important results gave the first answer to a list of questions relating to
the heterogeneity of the α-response. Among them are the following. Is this het-
erogeneity based on a superposition of exponentials or does it involve intrinsic
broadening? How long (in quantitative terms) does the selection persist? And
most importantly: is dynamic heterogeneity also associated with the existence
of spatial non-uniformities and, if so, what is their characteristic length? All
these questions could be resolved by multidimensional NMR as we will review
in the following. Furthermore, it is an issue whether the answers to these ques-
tions depend on the temperature at which the dynamics is probed. Here, it will
be helpful to compare the NMR results with those from dielectric spectroscopy.

In Fig. 17.29 we show the rotational correlation functions, measured for 13C
enriched PVAc, with and without previous low pass filtering [95]. These func-
tions were previously denoted as G4(tm3) and F2(tm), respectively, and, on the one
hand,nicely confirm the evidence for dynamic heterogeneity directly in the time
domain. On the other hand, they allow one to map out the degree of intrinsic
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Fig. 17.28. Contour plots 
of multidimensional 13C
spectra of PVAc recorded at
320 K (upper row) and cor-
responding simulations
(lower row): a reference 2D
spectrum with tm = 10 ms;
b,c reduced 4D spectra with
the re-equilibration times
set to tm2 = 10 ms and 1 s,
respectively. Reproduced
from [77] with permission



stretching. As we have emphasized in Sect. 17.2.3.2 the time constants, τ4, char-
acterizing the G4(tm3) functions, should get larger the more the efficiency of the
low-pass filter is increased. If the loss of orientational correlation of PVAc can be
decomposed into a distribution of exponentials, then this increase should follow
the prediction of Eq. (17.11). In Fig. 17.30 we demonstrate that the experimental
data excellently agree with what is expected from this equation. This demon-
strates that exponential relaxation modes are responsible for the nonexponen-
tial loss of orientational correlation in PVAc. It should be noted that a similar be-
havior was also reported for a low-molecular weight liquid [84]. However, for the
glassy crystal ortho-carborane indications for an intrinsic nonexponentiality
were found [147].

The heterogeneity lifetime of PVAc was measured using the F4(tm2) experi-
ment, cf. Fig. 17.31a and was found to be on the same scale as the loss of orien-
tational correlation. This is occasionally expressed via the so-called rate mem-
ory parameter as Q ≈ 1 [81]. Comparable results were reported for several other
glass-formers; for recent reviews see [83, 91]. In order to resolve the length scale
issue, the 13C-NMR F4(tm2) experiment was enhanced by a module which renders
it sensitive to proton spin-diffusion experiment as sketched in Sect. 17.2.3.2 [87].
In Fig. 17.31b we show the results of the corresponding so-called “one-filter”
and “two-filter” experiments performed at Tg + 10 K.

The length scale information is contained in the “two-filter” experiment.
Before being able to extract this information from these data it has to be taken
into account that there is an inevitable loss of echo intensity in the course of
these experiments even if there would be no finite heterogeneity length scale.
This is due to the fact that at the end of the mixing time, even in the absence of
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Fig. 17.29. Loss of orientational correlation in selected slow subensembles for PVAc at 315 K.
The sample was 40% 13C enriched at the carbonyl site. It is seen that the larger the filter effi-
ciency is (hence the longer tm1 is), the slower does G4(tm3) decay. The behavior of F2(tm) is ap-
proached for tm1 → 0. Adapted from [95] with permission



a dynamic selection, not all proton magnetization can be re-transferred to the
carbon sites, since cross-polarization is efficient only in the vicinity of the 13C
nuclei (in a sphere of diameter d, say). Under the conditions of isotopic dilution,
employed for the experiments we describe here, the average distance between
the 13C probes is larger than d. Thus from the so-called “one-filter” experiment
(cf. Fig. 17.31b) the microscopic spin diffusion coefficient can be obtained, i.e.,
the ruler of this experiment is calibrated. With an additional dynamic filtering
now being performed, cf. the “two-filter” curves, an additional decay arises if the
dynamically selected spins are “clustered” on a spatial scale of ξhet. This decay is
faster the smaller the length scale ξhet of the immobile regions is. From fits to the
experimental data ξhet was estimated to be 3 ± 1nm [87]; see Fig. 17.31b.
Reassuringly, this value is compatible with several previous, much more indi-
rect, experimental estimates. It is important to keep in mind that these 4D-CP re-
sults, and those performed recently on the small molecule liquid glycerol (cf.
Sect. 17.3.1), demonstrate that the aspects of dynamic and spatial heterogeneity
are intimately linked to one another.

It may now be asked whether the heterogeneity length scale and/or the het-
erogeneity lifetime will increase upon approaching the calorimetric glass tran-
sition temperature more closely. A tremendous increase of the lifetime, with re-
spect to that characterizing the structural relaxation, was indeed concluded
from an optical deep-bleach experiment performed on a dye probe embedded
in polystyrene [148]. However, it was pointed out that these findings are not nec-
essarily incompatible with corresponding results from NMR [148]: the optical
measurements were conducted closer to Tg than the NMR experiments. A simi-
lar situation is encountered for the supercooled liquid ortho-terphenyl [78, 149].

Several dielectric techniques were developed in the past few years to address
the heterogeneity issue in a range of temperatures close to Tg. Among them are
nonresonant dielectric hole burning [64] and a local dielectric approach based
on solvation spectroscopy [79]. Both of these methods yielded evidence for dy-
namic heterogeneities in low molecular weight liquids. Recently, another pow-
erful approach was devised. It is based on detecting local electrostatic forces us-
ing an atomic force microscope (AFM) operating in non-contact mode [150].
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Fig. 17.30. Ratio of correla-
tion times, τ4/τ2, as reported
for PVAc at 315 K [95] (and
partly reproduced in
Fig. 17.29). The solid line is
calculated from Eq. (17.29)
using τ2 = 17.5 ms and 
β2 = 0.46 [95]. These param-
eters characterize F2(tm) as
recorded for tp = 120 μs.
The dashed line would be
expected in the completely
homogeneous limit



Extended time series of the electric polarization in (mesoscopic) probe volumes
of about 50 nm3 could be detected using this method.

This latter feature can be exploited to implement an interesting idea: if the
temporal resolution of the experiment is much faster than the structural re-
sponse time, then one should be sensitive to polarization contributions giving
rise to the high-frequency wing in the dielectric loss, ε′′(ω). In view of the low
dielectric loss encountered in this regime (as compared to the loss at its maxi-
mum), it is suggestive to suppose that only relatively few relaxation modes con-
tribute to the polarization as measured on these short time scales. This trick of
going to the ‘edge’ of a loss (or absorption) curve, known from conventional hole
burning and from single molecule spectroscopy [151], provides spectral selec-
tivity in addition to the mesoscopic spatial selectivity inherent to the AFM 
approach.

In Fig. 17.32 we reproduce polarization time series, recorded for PVAc just
above the glass transition [150]. We point out that not only two-time but also
multiple-time correlation functions could be evaluated from such time series
which would render the comparison with the NMR experiments even more di-
rect. It was reported that these traces frequently show switching among a finite
number of levels [150]. By evaluating the mesoscopic spectral density, j(ω), from
experimental time series recorded in one-hour periods, the results shown in
Fig. 17.33 were obtained. It was emphasized that the dynamics in these experi-
ments is probed at sample depths (of about 40 nm) below which surface-related
effects dominate [150]. In all cases shown in Fig. 17.33 j(ω) deviates from the
Lorentzian shape which would correspond to single exponential behavior. More
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Fig. 17.31. Four-time corre-
lation functions of PVAc
recorded at 315 K; a dynam-
ic heterogeneity is probed
by F4(tm2) with the solid 
line corresponding to mini-
mum rate memory, Q = 1;
b the 4D-CP experiment
yields F4

CP(tm2). The various
lines correspond to assump-
tions of various heterogene-
ity lengths. The solid lines
which are closest to the ex-
perimental data reflect
length scales of 2 and 4 nm.
Reproduced from [87] with
permission



importantly, the shape and intensity of these spectral densities was found to
change in time. It was reported that the shape of the macroscopic spectral den-
sity is reproduced only if the time series are averaged over periods of about one
day. These observations are clear evidence for dynamic heterogeneity. The het-
erogeneity lifetime of PVAc has also been estimated from these data and, as we
show in Fig. 17.34, turned out to be similar to the average primary relaxation
time [150].

The evidence from the dielectric and the NMR measurements referred to in
this section can be summarized as follows. (i) There is evidence for heterogene-
ity which is short-lived in a temperature range of more than 20 K, near and
above Tg. (ii) Heterogeneity length scales of about 3 nm were inferred from both

666 17 Dielectric Spectroscopy and Multidimensional NMR – a Comparison

Fig. 17.32. The AFM technique sketched in a has been used to monitor the time series of po-
larization “noise” for PVAc at: b T = 299 K; c T = 300 K in a mesoscopic probe volume.
Switching among a discrete set of levels is observed.Adapted from [150] and reproduced with
permission



experimental approaches. (iii) The intrinsic relaxation process is compatible
with a simple exponential (as also implied by the AFM experiments [150]).

The latter statement (iii) also holds for a low molecular weight liquid ([84], cf.
Sect. 17.3.1), so that a questions immediately arises: does the absence of signifi-
cant intrinsic non-exponentiality [152] now imply that each spatially selected
region relaxes exponentially, i.e., that the local stretching parameter, βin, is close
to unity? The answer to this question cannot be affirmative if the dynamic het-
erogeneity is sufficiently short-lived [153] since then, on the average, a dynami-
cal exchange takes place before rotational decorrelation is fully complete. Under
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Fig. 17.33. Temporary mesoscopic spectral densities of PVAc as measured at 299 K using the
AFM technique sketched in Fig. 17.32a. Adapted from [150] and reproduced with permission

Fig. 17.34. Arrhenius plot showing that the heterogeneity lifetime agrees well with the struc-
tural relaxation time of PVAc as deduced from dielectric measurements. The time constants
are given in seconds. Digitized from the data shown in [150]. The solid line is drawn as a guide
to the eye



these circumstances one has to conclude that the auto-correlation function of
the ‘molecules’ (or, more likely, nanoscale clusters) is non-exponential when
viewed on the time scale of the primary relaxation. This implies that βin should
not be taken as a measure of the local stretching (or non-exponentiality) and
merely suggests that a ‘normal-mode’ picture is more appropriate [76]. These
spectrally distinguishable ‘normal-modes’ obviously exhibit an exponential (or
close to exponential) response.

17.3.5
2Ca(NO3)2 · 3MNO3 as an Example for an Ion Conductor

There are intense scientific activities in the field of ionic conductors and conse-
quently there are several NMR reviews on this subject [154–156]. In the spirit of
the current presentation we will focus on just one particular example, namely
the molten and glassy nitrates of the type 2Ca(NO3)2 · 3MNO3 with M = {K, Rb}.
These binary mixtures were intensively studied in the past using numerous ex-
perimental techniques including impedance spectroscopy [157–162] and NMR
[163–165]. Furthermore, the nitrate systems were among the first for which the
mode coupling theory [166] of the glass transition was tested [167] and also the
first for which the predicted high-frequency susceptibility minimum could be
demonstrated [160].

In Fig. 17.35 we compare the spectral density of 2Ca(NO3)2 · 3RbNO3 as mea-
sured using NMR and impedance spectroscopy at similar frequencies. The
calorimetric glass transition temperature of 333 K is marked by an arrow. The
NMR experiments were carried at a Larmor frequency of ωL = 86 MHz with 87Rb
as the spin probe. This quadrupolar nucleus is most sensitive to the fluctuations
of the electrical field gradient at the probe site, i.e., to the motions of the electric
charges in its vicinity. Above Tg the ionic motions give rise to a large spin-lattice
relaxation rate 1/T1 (~ χ′′, with χ′′ denoting the imaginary part of a generalized
susceptibility). Then, for T ≤ Tg the spectral density near ωL changes little in a
wide temperature range, except for a slight maximum near 145 K. This maxi-
mum can be ascribed to the slow-down of the rotational motion of the planar ni-
trate group. Obviously this highly anisotropic motion modulates the electrical
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Fig. 17.35. Comparison of
the 87Rb spin-lattice relax-
ation rate, 1/T1 [165], and
the imaginary part of the
electrical modulus, M ′′ [98],
of 2Ca(NO3)2 · 3RbNO3 as
measured near 90 MHz. The
solid line indicates that 1/T1
obeys a power law at low
temperatures



field gradient at the nuclear probe only relatively weakly and hence the local 1/T1
maximum is much smaller than the global one. For comparison, in Fig. 17.35 we
also show the imaginary part of the electrical modulus, M ′′(T), measured at a
comparable frequency [98]. The overall shape of M ′′ is very similar to that of
1/T1. This indicates that the same dynamical process is probed by the two meth-
ods [168]. Even the localized NO3 motion seems to show up in the modulus data.
It has to be noted that at lower temperatures a dielectric loss peak of unknown
origin was detected for 2Ca(NO3)2 · 3KNO3 (near 50 K in the audio frequency
range [158, 160]). Corresponding effects are not visible in the NMR data of
2Ca(NO3)2 · 3RbNO3. Rather a power law behavior is found. In this context it
should be noted that power laws are often observed for glasses at low tempera-
tures. This behavior may be rationalized if the spin-lattice relaxation is domi-
nated by excitations taking place in broad distributions of asymmetric double
well potentials [169].

In Fig. 17.36 we have compiled the time scales as emerging from conductivity
measurements, NMR, and several other techniques. It is seen that the conduc-
tivity relaxation times (from the d.c. conductivity and from the maxima in M ′′)
exhibit a pronounced temperature dependence. However, near Tg they decouple
from the structural response times and turn over to a thermally activated be-
havior. In 2Ca(NO3)2 · 3MNO3 there exist a number of additional decoupled mo-
tions such as the Johari-Goldstein process [170] and the NO3 reorientation [171,
172]. Figure 17.36 demonstrates that this seemingly simple molten and glassy
salt, involving spherical and planar ions, only, exhibits a relatively complex acti-
vation map.

The question of dynamic heterogeneity has also been addressed for
2Ca(NO3)2 · 3RbNO3 using NMR as well as dielectric methods. Direct evidence
for dynamic heterogeneity in the molten state of this inorganic material was ob-
tained by nitrogen NMR [163]. Here the planar NO3

– group (with 15N enrich-
ment) was used as a probe. On increasing the temperature from 340 K (≈ Tg +
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Fig. 17.36. Relaxation map of molten and glassy 2Ca(NO3)2 · 3KNO3 and 2Ca(NO3)2 · 3RbNO3.
The T1 minima are marked by the crosses. The data for the conductivity, σ, are from [157, 160].
Primary relaxation times, τα, are from [198]. Data for some decoupled processes [secondary
process (β) [170], nitrate rotation (NO3) [171], and local ion exchange (η) [199] are also in-
cluded. The dashed and dash-dotted lines represent Arrhenius laws. Reproduced from [165]
with permission



7 K) to above 370 K the static 15N line shape evolves from a broadened pattern to
a motionally narrowed one. At intermediate temperatures the spectra contain
both broad (slower) and narrow (faster) contributions [173]. Rather than using
a stimulated echo as a filter (cf. Sect. 17.2.3.1) the non-exponential 15N T1 relax-
ation was employed to select slow and fast components. Corresponding experi-
mental spectra recorded 500 s and 10 s after saturation are shown in Fig. 17.37.
It is seen that with the shorter waiting time the spectral contributions corre-
sponding to slower motions (hence broader spectrum) are at least partially sup-
pressed. The ability to perform a dynamic filtering demonstrates the existence
of dynamic heterogeneity in molten 2Ca(NO3)2 · 3KNO3.

In order to probe the heterogeneity in the glassy state which is directly asso-
ciated with the translational ionic motion a dielectric technique, non-resonant
spectral hole burning, was applied [174]. The results obtained there at 300 K (see
also Chap. 14) show that the dynamic heterogeneity established by NMR in the
supercooled liquid, freezes in upon cooling through Tg, thus giving rise to a het-
erogeneous ionic relaxation. These findings are in accord with previous theoret-
ical predictions [175].

It has to be pointed out that the generally relatively long 15N relaxation times
will make it difficult to apply multidimensional NMR techniques (cf. Sect.
17.3.4) to this system.As an alternative one could also investigate suitably doped
hydrate glasses (e.g., 2H or 15N enriched Ca(NO3) · nH2O). This would not only
facilitate the study of dynamic heterogeneities but also of spatial heterogeneities
via the F4

CP experiment (cf. Sect. 17.3.4) which in its current form requires a rare
as well as an abundant spin 1/2 nucleus (here: 15N and 1H, respectively).
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Fig. 17.37. Experimental 15N NMR spectra of 2Ca(NO3)2 · 3KNO3 obtained at T = 361 K for
waiting times, tw, of 500 s (upper spectrum) and 10 s (lower spectrum) after saturation of the
magnetization. After a short waiting time only those components which relax fast (and which
show a relatively narrow spectrum) have recovered. After sufficiently long tw the slowly relax-
ing components, which exhibit a broader spectrum, are more pronounced. These results show
that slow and fast motions coexist. Reproduced from [163] with permission



17.3.6
Self-Diffusion in Polymeric Systems

Magnetic field gradient NMR has been widely used to study self-diffusion in
oligomeric and entangled polymer melts and diblock copolymers [176–180]. In
Sect. 17.2.2.1 we already pointed out the far reaching analogy of spin echo attenu-
ation, S2(q,tm) ~ exp(– q2DTtm), cf. Eq. (17.5) and the incoherent intermediate scat-
tering function,Sinc(q,t),known from scattering experiments such as neutron scat-
tering [32]. This analogy in fact allows one to identify S2(q,t) with Sinc(q,t).

In Fig. 17.38 we show Sinc(q,t) vs q2t for an asymmetric poly(ethylene propyl-
ene)-poly(dimethyl siloxane) diblock copolymer. In a semi-logarithmic represen-
tation Sinc(q,t) should yield a straight line according to Eq.(17.5).The observed de-
viations are caused by the anisotropy of the diffusion processes, cf. Eq. (17.6).

For polymers exhibiting a dipole component locally parallel to the main
chain these components generally add up to an end-to-end dipole vector (type
A polymers [181, 182]; see also Chap. 7). Then the global chain dynamics can
conveniently be studied by dielectric spectroscopy. For the dielectric relaxation
of the end-to-end vector (“normal mode”) the usual Fourier relationship

(17.13)

holds. Here ΔεChain denotes the dispersion step associated with the chain motion,
〈r2

ee〉 is the mean squared (ensemble averaged) end-to-end vector, and
〈ree(0)ree(t)〉 the corresponding dipole correlation function which may be mea-
sured as the dielectric step response. It should be noted that at least two reasons
for variations of the end-to-end vector of a given polymer chain exist which are
relevant in the context of dielectric measurements. (i) If the end-to-end vector
changes its direction with respect to the external electrical field, then this alters
the orientational polarization in the usual way. (ii) Additionally the end-to-end
vector can change its length. The consequent change in the electric dipole mo-
ment then gives rise to dielectric relaxation as well. In any case for dense poly-
meric systems 〈ree(0)ree(t)〉 can be expressed by [182, 183]

(17.14)

with τp being the relaxation time of the mode p. For undiluted oligomeric melts
of flexible chains, τp can be calculated. Below the critical molecular weight for
the formation of entanglements, MC (typically MC ≈ 104 g mol–1), one finds in the
framework of the Rouse theory [184, 185]

(17.15)

Here ζ is the segmental friction coefficient, b the segment length, and N the
number of segments in the chain. From the p–2 dependence in Eq. (17.14) it fol-
lows that mainly the modes with p = 1 and 3 contribute to the dielectric loss
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[186]. Hence an effective normal mode relaxation time τN = 1/(2πfpN) can be de-
fined with fpN denoting the frequency of the corresponding dielectric loss max-
imum. For M > MC the polymeric chains are entangled. In that case the func-
tional shape of Eq. (17.14) is maintained but the expression for the relaxation
times has to be calculated in the framework of the reptation model [184]. If a de-
notes the diameter of a tube built up by the neighbors of a test chain then the 

relaxation time of mode p is . The inset of Fig. 17.39 showsτ ζ
p

N b
k T a p,Rept

B
=

3 4

2 2 2π
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Fig. 17.38. Echo attenuation S2(q,t) vs q2t in a semi-logarithmic representation at the temper-
atures indicated. The lines are fits of a log-normal distribution of self diffusion coefficients.
The sample is an asymmetric poly(ethylene propylene)-poly(dimethyl siloxane) diblock
copolymer. Reproduced from [178] with permission



the dielectric loss for poly(propylene glycol) which is a typical type A polymer.
The relaxation process at higher frequencies is the segmental relaxation (α-relax-
ation) and the process at lower frequencies corresponds to the fluctuations of the
end-to-end vector. From the maximum position of the dielectric loss of the latter
the normal mode relaxation frequency, fpN, can be deduced. It has been shown for
many polymers that the experimental results are in good agreement with the the-
oretical predictions implied by Eq. (17.15), at least for M < MC [187, 188].

In the framework of the Rouse theory the self-diffusion coefficient, D0, corre-
sponding to the center of mass motion of the polymer chains (sometimes re-
ferred to as the zero-th Rouse mode with the relaxation time τN) is given by 
D0 = kBT/(Nζ ). With Eq. (17.15) and 〈r2

ee〉 = b2N one finds for p = 1

(17.16)

If 〈r2
ee〉 is known, D0 can be calculated from dielectric data and then compared

with results obtained by field gradient NMR. A relationship similar to that in
Eq. (17.16) can also be obtained for the entangled state.

Figure 17.39 gives Sinc(q,t) vs q2t in a semi-logarithmic plot for poly(propy-
lene glycol) with a molecular weight of Mw = 2000 g mol–1 which enables one to
evaluate the translational self-diffusion coefficient, DT, via Eq. (17.5). In
Fig. 17.40 self-diffusion coefficients from pulsed and from static field gradient
NMR studies are compared with those calculated from dielectric experiments
via Eq. (17.16). Good agreement of the absolute values as well as of the temper-
ature dependences is noted (Fig. 17.40). This agreement is particularly nice since
there is no adjustable parameter in Eq. (17.16). The small difference in the tem-

τ N eeD r0
2 3= 〈 〉 π/( )
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Fig. 17.39. Sinc(q,t) vs q2t in a semi-logarithmic plot for poly(propylene glycol) with a molec-
ular weight of 2000 g mol–1: (open diamonds) 333.15 K, (open down triangles) 323.15 K, (open
up triangles) 313.15 K, (open circles) 305.15 K, (stars) 296.15 K. The inset shows the dielectric
loss vs frequency at the indicated temperatures



perature dependence of the dielectric and of the NMR results can be explained
by the temperature dependence of 〈r2

ee〉. Furthermore, the influence of chain in-
teractions will vary with temperature. Similar results were also found for cis-1,4-
polyisoprene [189] (see Chap. 7).

The chain dynamics of poly(propylene glycol) when immersed in nanopo-
rous host matrices was recently addressed by a comparative field gradient NMR
and dielectric study ([190], see also Chap. 6). One of the main results of that
work was that the product of the dielectrically determined normal mode relax-
ation time τN and the translational diffusion coefficient DT obtained with pulsed
field gradient NMR was almost constant, as expected from Eq. (17.16) if 〈r2

ee〉 is
not strongly temperature dependent.

17.4
Concluding Remarks

Dielectric and NMR spectroscopy are experimental tools which are often consid-
ered to start from rather different physical foundations. Dielectric spectroscopy
can be understood in terms of classical physics. It essentially relies on measuring
the fluctuations (of the orientation) of polar molecular moieties, on their interac-
tions with one another and with external electrical fields.NMR,on the other hand,
involves quantum mechanical transitions: it requires that one considers interac-
tions of spins with one another and with external magnetic fields.Nevertheless the
different strengths of both experimental methods combine favorably. Broadband
dielectric spectroscopy is extraordinary in covering an enormous spectral range.
Time and/or frequency ranges of ten decades and more can nowadays be covered
with only a few experimental set-ups at a very good sensitivity and dynamic res-
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Fig. 17.40. Activation plot of the self-diffusion coefficients as measured with pulsed (�) and
static (�) field gradient NMR (DT) and  and as calculated from dielectric relaxation measure-
ments (D0, �). Sample: poly(propylene glycol) PPG Mw = 4000 g mol–1. Reproduced from [200]
with permission



olution.The relative ease of sample preparation,of performing the measurements,
and of analyzing the dielectric data renders this method an ideal tool to gain a
quick overall view on the dynamics of the material under study. The familiar data
evaluation in terms of relaxation strengths, mean relaxation times, spectral
widths, etc. is straightforward. However, in many cases this analysis can profitably
be enhanced by additional input from molecular models or other experimental
techniques, e.g., in order to strengthen the microscopic assignment of relaxation
processes.As compared to NMR only relatively few variations to the conventional
dielectric technique, such as electrical quadrupole relaxation, noise spectroscopy,
or nonresonant hole burning, are in use to probe the fluctuations of (multi-)polar
groups in condensed matter.

In NMR spectroscopy, on the other hand, the nuclear spin interactions which
dominate the experimental observables are often highly specific thus facilitating
efforts to obtain detailed information on local symmetries and dynamical prop-
erties, although sometimes at the expense of isotopic labeling. Furthermore, the
effective spin interactions (or better the corresponding Hamilton operators) can
be manipulated in so many different ways by the experimental conditions. This
flexibility forms the basis for the tremendous number of different, and some-
time quite sophisticated and time consuming, NMR techniques. Therefore
knowledge from dielectric spectroscopy is often quite helpful when adjusting
the experimental parameters, e.g., for a multidimensional NMR investigation. In
this respect BDS and NMR are of course complementary. Although these tech-
niques monitor the molecular and the segmental dynamics from different an-
gles it is reassuring that the two methods combine often so excellently as we have
exemplified in this chapter for several disordered and partially ordered materi-
als including one-component small-molecule and polymeric liquids, liquid
crystals, but also mixed ionic systems and diblock copolymers.
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Appendix 17.1

Dynamic low-pass filters are based on the angular jump function, F2
AJ(tm), and can

be used to select slow subensembles. However, for their proper applications it
should be ascertained that several conditions are met or closely approximated. (i)
The most important one is that molecules which have jumped should not return
to their original (or another frequency equivalent) orientation. Otherwise some
‘fast’molecules survive the low-pass filter. In more technical terms this implies the
assumption of so-called random-jump motions among an infinite number of ori-
entations. It is clear that jumps among a discrete set of orientations, particularly
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acute for the reorientations in crystals, requires special consideration [147]. (ii) In
a real experiment the limit of very large tp may not be attainable. This problem is
particularly evident if the mechanism of rotational diffusion is active,since it is as-
sociated with infinitesimally small angular displacements [191]. In order to esti-
mate how long tp should be for small (but finite) angle jumps let us consider the
following variant of Eq. (17.8) which has been employed in several NMR studies:

. For this function to decay
significantly at least the condition |ω1 – ω2|tp > π/2 has to be obeyed. If θ0 de-
notes the initial angle, then for axially symmetric tensors this means that

should be fulfilled. Here it should be observed that the change in polar angle is
Δθ ≤ ϕ. However  jumps inevitably occur, albeit with a small weight, which only
change the azimuthal but not the polar angle, i.e., the NMR frequency.

Appendix 17.2

In Sect. 17.2.3.2 we defined the tm2 dependent four-time CF L4(tm2) ~
〈P2(cosθ1)P2(cosθ2)P2(cosθ3)P2(cosθ4)〉. Apart from its applicability to the issue
of transient heterogeneity (cf. Sect. 17.3.1) it can be used to measure the rank 
l = 4 rotational correlation function g4(tm2), cf. Eq. (17.1), in the following way.
Consider the case tm1 = 0 and tm3 = 0 (cf. Fig. 17.7) so that the molecular orien-
tation, specified by θ, cannot change during these mixing times. Then θ1 = θ2 ≡
θa and θ3 = θ4 ≡ θb and the 2t-CF 〈[P2(cosθa)]2 [P2(cosθb)]2〉 results.

Like in the main text expressions such as

(17.17)

can be derived in a straightforward way from the elementary definition of the
Legendre polynomials. More elegantly one can apply the Clebsch-Gordan
series [192], in conjunc-

tion with Pl(cosθ) = D00
(l). Here the dependence of the Wigner rotation

matrices, D(l)
m1m2

, on the Euler angles, {α,β,γ }, has not been written 
out, for brevity. For the same reason in the Clebsch-Gordan coefficients,
C(l1l2l;m1m2) ≡ C(l1l2l;m1m2m), the third argument, m = m1 + m2, has been
dropped. In the present application the Clebsch-Gordan series thus reduces to

(17.18)

with C(l′ l′ l; 0 0) vanishing for odd l. Since these coefficients are well tabulated,
or even implemented in symbolic computer algebra programs, it is a simple mat-
ter to evaluate them numerically.

From the decomposition of, e.g., [P2(cosθ)]2 one recognizes how (even for 
tp → 0) higher l CFs can become accessible. Carrying out the powder average
for tm3 → ∞ shows that
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cf. Eq. (17.17. In Eq. (17.19) we  have used P0 = 1 to make the expression look 
more systematic and exploited the fact that due to the orthogonality of the
Legendre polynomials terms with mixed l vanish. Using 

the relative weights of the terms stemmin  from l = 0, 2, and 4 are

49, , and respectively. In order to ensure that L4(tm2) is normal-
ized to unity for tm3 = 0 (here is even θa = θb) one has to divide the above ex-
pressions by This shows that in the expression 〈[P2(cosθ)]2〉2/
〈[P2(cosθ)]4〉 the CFs gl(t) of rank l = 0, 2, and 4 appear with fractions of

respectively. In the present case
with (tm1 = tm3 → 0) g0 is just a constant. Thus, if g2(t) is known from indepen-
dent measurements (cf. Sect. 17.2.2.2), then g4(t) can be determined from the
time dependent part of L4(tm2). Obviously by properly decomposing
〈[P2(cosθ)]k〉2/ 〈[P2(cosθ)]2k〉 (for even k > 2) this scheme can be extended to de-
termine g2k(t), i.e., 2t-CFs with successively higher l.

More general 4t-CFs, denoted as L4
(l)(tm2), can be defined [85] by correlat-

ing four Legendre polynomials via 〈Pl(cosθ1)Pl(cosθ2)Pl(cosθ3)Pl(cosθ4)〉.Again
the normalization should be chosen such that L4

(l)(tm2 → 0) = 1. Above we have
thus discussed L4

(2)(tm2). The evaluation of the corresponding expressions 
becomes particularly straightforward in the absence of dynamic exchange 
(and/or tm1 = tm3 → 0). Then one has L4

(l)(tm2) = 〈Pl(cosθ1) Pl(cosθ2) Pl(cosθ3)
Pl(cosθ4)〉/〈[Pl(cosθ)]4〉. As an example consider the rank l = 1 correlation
function 〈[P1(cosθ)]2〉2/〈[P1(cosθ)]4〉. With and 

and 〈[P1(cosθ)]k〉 = (k + 1)–1 for k = 4 one 

obtains for the terms with l = 2 and 0, respectiv-
ely [193]. This means that in the absence of dynamic exchange (and/or tm1 =
tm3 → 0) one has .

List of Abbreviations and Symbols

a Hopping distance
A(q) Coupling coefficient
Bloc Local magnetic field
B0 Static magnetic field
Cλ Coupling constant
d Characteristic pore dimension
D Diffusion coefficient
fpN Normal mode relaxation rate
FT Fourier transformation
F2 Two-time stimulated echo
F4 Four-time stimulated echo
g Magnetic field gradient
gl Rotational CF of rank l, Eq. (17.1)
g(τ) Relaxation time distribution function 
G4 Low-pass filtered CF
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HR Haven ratio
J(ω) Spectral density
j(ω) Mesoscopic spectral density
L4 Four-time rotational CF
n Charge carrier density
Pl Legendre polynomial of rank l
q (Generalized) scattering vector
Q Nuclear quadrupole
Q Rate memory parameter
r Space vector
ree End-to-end vector
rH Hydrodynamic radius
S(q,ω) Dynamic structure factor
Sinc(q,t) Intermediate incoherent scattering function
S2 Translational two-time CF
t (Probe) time
tp Preparation or evolution time
tm Mixing time
T1 Spin-lattice relaxation time
Tg Glass transition temperature
αCC Cole-Cole parameter
βCD Cole-Davidson parameter
β Kohlrausch stretching exponent
β2 Stretching of F2(tm)
γ Gyromagnetic ratio
δ Anisotropy parameter
ε Dielectric function
Δε Dispersion step
η Viscosity
ηλ Asymmetric parameter
θ Polar angle
ζ Segmental friction coefficient
λ ∈ {CSA, DD, Q}
Λ Obstruction factor
μ Mobility
ν0 Attempt frequency
σ Direct current (d.c.) conductivity
τ Relaxation time
τhop Hopping time
τC,l Rotational correlation time (from gl)
τ2 Decay time of F2(tm)
τ4 Decay time of G4(tm3)
τAJ Angle jump correlation time
τN Normal mode relaxation time
φ Phase in the rotating frame
ϕ Jump angle
Φ Azimuthal angle
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χ Susceptibility
ω Angular frequency
ωαα Frequency associated with principal axis α
ωL Larmor frequency

AFM Atomic force microscope
BDS Broadband dielectric spectroscopy
BPP Bloembergen, Purcell, and Pound
CF Correlation function
CP Cross polarization
CSA Chemical shift anisotropy
DD Nuclear dipole-dipole
EFG Electric field gradient
FE Filter efficiency
FID Free induction decay
NMR Nuclear magnetic resonance
NHB Nonresonant spectral hole burning
PFG-NMR Pulsed field gradient NMR
PMMA Poly(methyl methacrylate)
PVAc Poly(vinyl acetate)
RF Radio frequency
RMTD Reorientation mediated by translational displacement
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18 Polymer Dynamics by Dielectric Spectroscopy 
and Neutron Scattering – a Comparison

A. Arbe · J. Colmenero · D. Richter

18.1
Introduction

Polymeric systems show a very rich variety of dynamical processes which man-
ifest themselves in different frequency ranges at a given temperature. Between
vibrations taking place at time scales faster than the picosecond range and rep-
tation at very long times, a number of dynamical processes can been detected in
such systems. Some of them can be specific for the particular microstructure of
the polymer, like, for instance, rotations of methyl groups. However, it is well es-
tablished that two relaxation processes are present in all glass-forming polymers
(see, e.g., [1, 2]): the primary or structural α-relaxation and the secondary or β-
relaxation, also known as the Johari-Goldstein process [3]. The two relaxations
coalesce in what we will call αβ-process in a temperature range 10%–20% above
the glass transition temperature Tg.The α-relaxation is commonly believed to be
related to segmental relaxations of the main chain. The temperature dependence
of its relaxation time shows a dramatic increase around Tg, leading to the glassy
state at lower temperatures. The β-relaxation is active above as well as below Tg,
and occurs independently of the existence of side groups in the polymer.This re-
laxation has traditionally been attributed to local relaxation of flexible parts,
e.g., side groups, and, in main chain polymers, to twisting or crankshaft motion
in the main chain [1]. On the other hand, the α-relaxation relates to the struc-
tural relaxation of the material and is necessarily of intermolecular nature [4].
However, the molecular nature of the secondary relaxation and its relationship
with the primary relaxation are still poorly understood.

The dynamics of glass-forming systems have mainly been investigated by
means of relaxation techniques like dynamical mechanical measurements or
broadband dielectric spectroscopy (BDS).With these techniques it has also been
well established that, apart from the characteristics mentioned above, these two
processes show another universal feature: their relaxation functions cannot be
described by simple Debye processes. A stretched exponential or Kohlrausch-
Williams-Watts (KWW) [5] functional form characterizes the α-process relax-
ation function in the time domain
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and a broad and usually symmetric relaxation function is found in the case of
the β-process [1]. These broad features can, at least from a purely mathematical
point of view, be related to distributions of elemental exponential (Debye) re-
laxation processes. However, though phenomenological descriptions of the re-
sults by the relaxation techniques are possible, a deeper understanding of the
nature of these relaxations and the way they coalesce requires a microscopic in-
sight.

In order to access the relaxational processes on a molecular level, it is neces-
sary to get spatial information of the relaxations. This information can be pro-
vided by quasielastic neutron scattering (QENS) techniques through the mo-
mentum transfer (Q) dependence of the dynamic structure factor S(Q,t).A com-
bination of QENS and broadband dielectric techniques is thus a powerful tool
for this task.While the last facilitates precise information about the temperature
dependence of the characteristic times and the spectral shape of the relaxations,
QENS provides space-time information about the processes involved in the
mesoscopic dynamics of the system. However, compared to BDS, the dynamic
range of QENS is rather limited. Therefore, the combined use of both methods
is necessary to achieve further progress in the understanding of the mechanisms
behind the dynamics of the α-, β-, and αβ-relaxations in glass-forming systems.

The combination of different techniques is usually not straightforward and
requires unified analysis methods. In the case of BDS and QENS, first of all, the
correlators observed are rather different. QENS techniques allow one access to
either to the density-density correlation function when coherent scattering is
measured, or the selfcorrelation function of the atoms in the incoherent case.
These observables provide direct space-time information about the actual mi-
croscopic relaxation processes. On the other hand, BDS observes the frequency
dependent complex dielectric permittivity ε *(ω), which reflects the orienta-
tional dynamics of the molecular dipoles in the sample. Therefore, we should, in
principle, expect different results when a given relaxation process is observed ei-
ther directly by QENS or indirectly by BDS. However, finally both sets of mea-
surements should mirror, perhaps in a different way, the same physics.

In this work we first introduce the main concepts related to neutron scatter-
ing (NS) techniques, and the way they can be connected to the BDS. Thereafter
we present some theoretical results about incoherent and coherent structure
factors for different types of motions, localized and diffusive, and for the merg-
ing of two processes. Finally experimental examples on 1,4-polybutadiene as a
showcase are presented.

18.2
Quasielastic Neutron Scattering

18.2.1
Neutron Cross Sections and Correlation Functions

An inelastic scattering event of a neutron is characterized by the transfer of
momentum; hQ = h(kf – ki) and energy hω = h2(kf2 – ki2)/2m during scattering.
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Thereby,h is the Planck constant h/2π; kf and ki are the final and initial wave vec-
tors of the neutron, and m is the neutron mass. For a quasielastic scattering
process |kf | ≅ |ki| = 2π/λo (λo: wavelength of the incoming neutrons) is valid.
Accordingly, the magnitude of the scattering vector Q is given by

(18.2)

where 2θ is the scattering angle.
The intensity of the scattered neutrons is described by the double differential

cross section ∂2σ/∂Ω ∂hω being the probability that neutrons are scattered into
a solid angle ∂Ω with an energy change ∂hω.

For a system containing N atoms the double differential cross section in clas-
sical approximation is given by [6]

(18.3)

where rj(t) and rk(0) are position vectors of the atoms j and k at time t and time
zero, respectively; bj and bk are the respective scattering lengths, and 〈…〉 de-
notes the thermal average. Since neutron scattering occurs at the nuclei, the scat-
tering lengths may depend both on the particular isotope and on the relative
spin orientations of neutron and nuclei. This mechanism has two consequences:

1. In general the spin orientations of the atoms and neutrons are not correlated
giving rise to ‘disorder’ or incoherent scattering. This also holds for isotope
distributions. Hydrogen in particular possesses very different scattering
length for different spin orientations. This leads to very strong incoherent
scattering which in hydrogen-containing materials often dominates the total
scattering.

2. The fact that different isotopes of the same nucleus may have different scat-
tering length can be used to label on an atomic level. In particular, the scat-
tering lengths of hydrogen and deuterium are significantly different (bH =
– 0.374 × 10–12 cm; bD = 0.667 × 10–12 cm) allowing an easy labeling of hydro-
gen-containing organic matter. For instance, the conformation of a polymer
in a melt can only be experimentally accessed by such a labeling technique us-
ing small angle neutron scattering.

Thus, the scattering cross section (Eq. 18.3) generally contains a coherent and an
incoherent part. For simplicity considering only one type of atoms the double
differential cross section can be written as

(18.4)

with

(18.5)S
N

t i t i i t

j

N

inc d e e e( , ) ( ) ( )Q Qr Qrj jω ω=
−∞

+∞
−∫ ∑1

2
0

π
〈 〉

∂
∂ ∂

= − +
2

2 2 2σ
ω

ω ω
Ω h h

k

k
N b b S b Sf

i
{[ ] ( , ) ( , )}〈 〉 〈 〉 〈 〉inc Q Q

∂
∂ ∂

= − −∑∫
∞

+∞2 1
2

0σ
ω

ω
Ω h hπ

k

k
t i t b b i tf

i
j k j k

j k

N
d exp ( ) exp { [ ( ) ( )]}

,–

Q r r

Q
o

= =Q 4π
λ

θsin

18.2 Quasielastic Neutron Scattering 687



and

(18.6)

Thereby, S(Q,ω) and Sinc(Q,ω) are the coherent and incoherent dynamic struc-
ture factors, respectively. S(Q,t) and Sinc(Q,t) denote the same quantities in
Fourier t-domain. The dynamic structure factors are the space-time Fourier
transform of the pair and self correlation functions of the moving atoms (van
Hove correlation functions). Classically, the pair correlation function can be
understood as the conditional probability of finding an atom j at location r and
time t, if another atom k was at location r = 0 at time t = 0. For k = j the self-cor-
relation function is obtained. In Gaussian approximation, i.e., assuming
Gaussian distribution for the position vectors rj(t) and rk(0), the intermediate
dynamic structure factors can be written as

(18.7)

(18.8)

Note that in this approximation the incoherent scattering measures the time de-
pendent thermally averaged mean square displacement 〈[rj(t) – rj(0)]2〉.

18.2.2
Neutron Instrumentation

It is the task of inelastic neutron scattering to measure simultaneously the en-
ergy transfer hω and the momentum transfer hQ of the scattered neutrons. In
the following we will discuss three different techniques important for the inves-
tigation of the glass transition; namely, time of flight neutron spectroscopy,
backscattering, and neutron spin echo (see [7, 8] as general references).

18.2.2.1
Time of Flight Spectrometer

Figure 18.1 displays schematically the setup of a neutron time of flight instru-
ment. The role of the monochromator, thereby, is taken by a number of choppers
preparing short neutron pulses from the incoming beam. A short pulse getting
through chopper 1 contains the spectrum of all wavelengths present in the
beam. Chopper 2 turns in a fixed phase relation to chopper 1. Since neutrons
with different velocities arrive at different times at this second chopper it selects
corresponding to the phase shift a certain neutron velocity vi. These neutrons
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are scattered at the sample and at a distance L after the sample the neutrons are
recorded according to their arrival time. Neutrons which have gained energy at
the sample will arrive earlier, those which have lost energy will arrive later. Thus,
in determining the time of flight of the different neutrons, the final neutron ve-
locity vf can be obtained and by calculating the velocity difference Δv = vi – vf
the energy difference – and considering the scattering angle, also the momen-
tum change – can be computed. Typically the precision of such velocity deter-
minations is in the order of 1%.

18.2.2.2
Backscattering Instrument

In order to achieve higher energy resolution, one has to consider carefully the
very weak neutron flux of a neutron source. While a typical laser provides 1022

monochromatic photons per second in a well collimated beam, the total neutron
flux of the most powerful research reactor at the Institute Laue-Langevin (ILL)
in Grenoble is in the order of 1015 neutrons s–1 cm–2. Thus, a finer energy selec-
tion immediately reduces the available neutron flux to a point, where experi-
ments are not possible any more. Therefore, high resolution techniques try to
decouple intensity and resolution determining elements. Neutron backscatter-
ing exploits the fact that at a scattering angle of 2θ = 180° the selected wave-
length in a reflection from a crystal depends only to second order on the diver-
gence of the incoming beam. Choosing backreflection from a perfect crystal in
combination with relaxed collimation of the neutron beam leads to acceptable
intensities and energy resolutions in the order of 10–4.

Figure 18.2 displays the general layout of the backscattering spectrometer
IN10 at the ILL in Grenoble. The neutrons are monochromatized by a perfect sil-
icon crystal mounted on a Doppler drive which, as in Moessbauer experiments,
varies the incident energy of the neutron by Doppler shifting. These monochro-
matized neutrons are deflected by a graphite crystal and directed towards the
sample. The analyzer crystals are mounted on spherical hollowed plates with a
radius of curvature such that they focus the reflected neutrons into detectors
which are set up behind the sample. In this way a large solid angle is covered on
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Fig. 18.1. Schematic sketch of a time of flight instrument; the choppers 1 and 2 prepare a
monochromatic pulse of velocity vi; the scattered neutrons are analyzed with respect to arrival
time revealing the final velocity vf. The differently shaded pulses symbolize different neutron
velocities



the analyzer side. The typical resolution achieved with this instrument is in the
order of 1 μeV.

18.2.2.3
Spin Echo Spectrometer

While in the two methods above the energy transfer at the sample is determined
by first measuring the energy of the incident neutron and thereafter that of the
scattered neutron taking the difference, the unique feature of neutron spin echo
(NSE) is its ability to determine energy changes of neutrons during scattering in
a direct way. Unlike the conventional time of flight technique NSE measures the
neutron velocities of the incoming and scattered neutrons utilizing the Larmor
precession of the neutron spin in an external guide field. Since the neutron spin
vector acts like the hand of an internal clock attached to each neutron which
stores the result of the velocity measurement on the neutron itself, this mea-
surement is performed for each neutron individually. Therefore, the incoming
and outgoing velocities of one and the same neutron can be compared directly
and a velocity difference measurement becomes possible. Thus, energy resolu-
tion and monochromatization of the primary beam or the proportional neutron
intensity are decoupled and an energy resolution of the order of 10–5 can be
achieved with an incident neutron spectrum of 20% band width.

The basic experimental setup of a neutron spin echo spectrometer is shown
in Fig. 18.3. A velocity selector in the primary neutron beam selects a wave
length interval of about Δλ/λ = 20%. The spectrometer offers primary and sec-
ondary neutron flight paths, where guide fields H and H′ can be applied. At the
beginning of the first flight path a super mirror polarizes the neutrons in the di-
rection of propagation. A first π/2-coil turns the neutron polarization into a di-
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rection perpendicular to the neutron momentum. From this well defined initial
condition the neutrons commence to precess in the applied guide field. Without
the action of the π-coil which turns the neutron spin by 180° around a perpen-
dicular axis, each neutron performs a phase angle φ ∝ λ ∫Hds. Since the wave-
lengths are distributed over a wide range, in front of the second π/2-coil the
phase angle will be different for each neutron and the beam will be depolarized.
A π-coil positioned at half the value of the total field integral avoids this effect.
On its way to the π-coil the neutron may pass an angle φ1 = 2πN + Δφ1. The ac-
tion of the π-coil transforms the angle Δφ1 to –Δφ1. In a symmetric setup where
both field integrals before and after the π-coil are identical, the neutron spin
turns by another phase angle φ2 = φ1 = 2πN + Δφ1. The spin transformation at
the π-coil compensates the residual angles Δφ1 and in front of the second π/2-
coil the neutron spin points again into its original perpendicular direction, in-
dependent of its velocity. The second π/2-coil projects this perpendicular com-
ponent of the polarization into the forward direction and at the supermirror an-
alyzer the total polarization is recovered. The experimental setup is spin focus-
ing. As with NMR spin echo methods, the phase is focused to its initial value in
front of the second π/2-coil for each spin separately.

In a spin echo spectrometer the sample is positioned close to the π-coil. If the
neutron energy is changed due to inelastic scattering at the sample, the neutron
wavelength is modified from λ to λ = λ + δλ. Then the phase angles φ1 and φ2 do
not compensate each other and the second π/2-coil projects only the component
of the polarization pointing in the original perpendicular direction into the 
forward direction which passes afterwards through the analyzer. Apart from 
resolution corrections, the final polarization Pf is related to the initial polariza-
tion Pi by

(18.9)

The scattering function S(Q,ω) thereby is the probability that during scattering
at a certain momentum transfer hQ an energy change hω occurs. We have intro-
duced the time variable t ~ λ3H. From Eq. (18.9) it is realized that NSE is a
Fourier method and essentially measures the real part of the intermediate scat-
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Fig. 18.3. Schematic setup of a spin echo spectrometer



tering function S(Q,t). The time variation in a spin echo scan is performed by
changing the magnetic field H. Additionally, changing the wavelength increases
via t ~ λ3H the dynamic range of the instrument. At present times up to 200 ns
and a dynamic range of about 105 may be reached.

18.2.3
Relation to Dielectric Spectroscopy

The theoretical basis of the broadband dielectric spectroscopy, as well as the ex-
perimental details of these techniques, are widely described in other chapters of
this book. Here we would only like to summarize briefly the dynamic variables
obtained by means of these methods and how they are usually related to the
quantities measured by neutron scattering.

Dielectric relaxation measurements of the orientational depolarization
processes in glass forming systems are usually carried out in the frequency do-
main, though in some cases time domain techniques are also employed [9, 10].
The magnitude measured is the frequency-dependent complex dielectric per-
mittivity ε*(ω) = ε′(ω) – iε′′(ω), which can also be expressed as Laplace trans-
formation of a time domain relaxation function ϕ(t) as

(18.10)

where ε∞ is the high frequency limit value of the permittivity,Δε is the relaxation
strength (Δε = εS – ε∞, where εs is the static value of the permittivity) and,
thereby, Φ*(ω) a normalized relaxation function. In this expression, ϕ(t) repre-
sents the decay of the polarization of a fully polarized sample after removing the
electric poling field, i.e., the response to a step-like excitation, which would cor-
respond to the autocorrelation function of the total dielectric polarization.

Taking into account the well known property of the Laplace transformation:
[iωLiω { f(t)} = Liω { ḟ (t)} + f (0)] the expression at Eq. (18.10) can also be written
in terms of ϕ(t) itself as

(18.11)

Under certain conditions �e.g., Δε � ε∞ � the step response function

ϕ(t) can also represent to a good approximation a microscopic like correlation
function (see [11], vol II, p 159). In these cases ϕ(t) can be written as

(18.12)

The moment M1(t) represents the sum of the permanent moments of the mole-
cules in a sphere of macroscopic dimensions around molecule i but small with
respect to the total dielectric, and g is the Kirkwood correlation factor which
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measures the strength of molecular interactions between the i-th molecule and
its neighbors [11]. However, an actual molecular interpretation in terms of the
molecular dipole moments is extremely difficult in condensed systems as poly-
mers, where cross-correlation terms 〈�i(0)�j(t)〉 contained in 〈�i(0)M1(t)〉 in
Eq. (18.12) cannot be neglected or easily evaluated. Only for those systems,
where g ≈ 1 due to the absence of specific interactions between molecules, ϕ(t)
could be interpreted as the autocorrelation function for the permanent dipole
moment of a single molecule. In these cases ϕ(t) = 〈�(0)�(t)〉/μ 2, which is
called the dipole correlation function, is thereby equal to the step-response
function of the orientational polarization.

Taking into account the above raised arguments and those described in the
previous section of this chapter, we can conclude that the correlators observed
by NS techniques and BDS techniques are rather different. Moreover, while a mi-
croscopic interpretation of neutron scattering results can be straightforwardly
achieved through the van Hove correlation functions, this is not the usual case
for BDS results. Therefore, one could expect different results when a given re-
laxation process is monitored either directly by NS or indirectly by BDS.

However, in some cases both methods can reflect – perhaps in a different way
– the same physics. This is particularly relevant in the case of the so-called α-re-
laxation of glasses where some universal properties are expected. The generally
accepted idea is that the α-relaxation is a structural relaxation which can di-
rectly be observed in the density-density correlation function, i.e., the dynamic
structure factor directly measured, for instance, by neutron spin echo (NSE) [2,
4]. The observation of this process by means of other techniques, as for example
dielectric relaxation, depends on how the structural relaxation is coupled to the
magnitude measured by these techniques. In the case of the dielectric relaxation
the important – and difficult – question is how the dynamics of molecular
dipoles is driven by the structural relaxation.

In spite of these difficulties, there are several investigations of the α-relax-
ation in different glass-forming polymers by QENS and BDS which show com-
patible results within the experimental uncertainties [12–16]. The quantities
which are usually compared are the dielectric relaxation function ϕ(t) and the
normalized intermediate scattering function S(Q,t) either incoherent or coher-
ent. In some cases, the comparison was also directly carried out in the frequency
domain by constructing an incoherent neutron dynamic structure factor S(Q,ω)
as S(Q,ω)~–Im[Φ *(ω)]/ω where Φ *(ω) is the dielectric relaxation function in-
troduced above [12]. It is worth emphasizing once again that while ϕ(t) or Φ *(ω)
only contain information about time or frequency dependence, S(Q,t) or S(Q,ω)
give, in addition, spatial information through the momentum transfer Q-depen-
dence. Therefore, in order to compare NS and BDS results we have to take into
account this Q-dependence in some way. This means that we have to compare for
instance ϕ(t) with S(Q,t) at different values of Q. NS results of many different
systems show that the α-relaxation – as it is measured by NS – is a non-localized
process (“diffusive-like”). As a consequence, the Q-dependence of S(Q,t) or
S(Q,ω) mainly enters via the characteristic relaxation times, τ, which now are
not only temperature dependent, but also Q-dependent. Taking into account the
reported cases where the α-relaxation has been investigated by NS and BDS, it
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seems that the dielectric relaxation function and the scattering function 
measured by QENS show a similar non-exponential (non-Debye) (Eq. 18.1)
shape, at least in the high frequency/temperature range where both techniques
overlap. A careful investigation of dielectric results [9] shows that, in fact, the
shape of the relaxation function (the β-value of Eq. 18.1 for instance) measured
by dielectric techniques is changing from Tg until about 1.2 Tg from where the
shape remains more or less constant and similar to what is estimated by NS.
Moreover, the temperature dependence of the characteristic times of the relax-
ation function is also compatible in the high temperature/frequency range with
the temperature dependence of the time scale of S(Q,t) or S(Q,ω). Concerning
the absolute values of these relaxation times, we have to take into account the 
Q-dependence of the time scale of the α-process measured by neutron scatter-
ing. Therefore, in principle, it is always possible to find a Q-value at which the
time scale of the α-process measured by NS and BDS become similar. In partic-
ular when NS incoherent results and dielectric results of different polymers are
compared, the value of this particular Q is always in the region of 1 Å–1 [15].
Whether or not this Q-value has a particular physical meaning is still an un-
solved question.

Concerning dynamic processes other than the α-relaxation, which take place
in glassy polymers such as, for instance, the so-called β-relaxation, the current
situation is less clear. These processes have been investigated by relaxation spec-
troscopies including dielectric techniques from the early times of polymer sci-
ence (see, e.g., [1]). Nowadays it seems to be well accepted that such relaxations
are related to local molecular motions. However, almost nothing is known about
the molecular mechanisms involved in the different cases. It is clear that exper-
imental methods, such as NS, giving spatial information are needed to progress
in this field. However, there are not many investigations of the β-relaxation by
NS apart from those reported in this chapter [16–20]. Thereby, a comparison be-
tween NS and BDS results of the β-relaxation has only been carried out in a few
cases. The generally accepted idea is that the β-relaxation is the consequence of
spatially localized molecular motions, which are thermally activated. Due to the
structural disorder which is inherent to the glassy state, a distribution of poten-
tial energy barriers is usually invoked to give account for the broad relaxation
functions commonly observed by dielectric spectroscopy. The comparison be-
tween NS and BDS results is based on the idea that the relaxation times involved
in the β-process do not depend on Q because the molecular motions involved
are localized. Only the elastic part of the scattering functions S(Q,t) or S(Q,ω)
will depend on Q according to the geometry of the motions (see below).
Moreover, it is also assumed that the distribution of potential barriers for mole-
cular motions is just the same as the distribution obtained from BDS measure-
ments. This in fact implies that the energy landscape explored by the molecular
dipoles is the same as that explored by any molecule or molecular group con-
tributing to the neutron scattering.Although this approach seems to work in the
cases investigated, it is evident that in the low temperature range below the glass
transition it can be in some cases a very rough approximation.
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18.3
Dynamic Structure Factors for the �- and �-Process

18.3.1
Local Processes

The dielectric β-relaxation is considered to be a result of a partial reorientation
of the molecular dipoles in the substance. It is interpreted as a local activated
process, where the dipole fluctuates between two positions separated by an acti-
vation energy E. The relaxation time follows an Arrhenius behaviour

(18.13)

and due to the disorder in the material the activation energies E are distributed
around an average value Eo. For the distribution function in general a Gaussian
is usually assumed

(18.14)

Empirically it is found that the width σ (T) decreases with increasing tempera-
ture.Although such processes have been investigated for a long time by spectro-
scopic techniques, their molecular origin is still unclear, as it has already been
mentioned. Here QENS with its ability to provide space time resolution on the
proper scales contributes to a further exploration of the molecular mechanisms
behind these relaxations.

We now derive the dynamic structure factor for the β-process which we will
consider as a hopping process between two adjacent sites. For such a process the
self correlation function is given by a sum of two contributions

(18.15)

Here d is the distance between the two sites and τ (E) is the jump time corre-
sponding to an activation energy E. The complete scattering function is obtained
in averaging Eq. (18.15) with the barrier distribution function g(E) obtained,e.g.,
by dielectric spectroscopy [17,18].The Q-dependence of the two contributions to
Eq. (18.15) is displayed in Fig. 18.4 as a function of Q(d = 1.5 Å). From the oscil-
lation of both contributions with Q the jump distance is obtained. The associated
time scale is found from the time decay of the quasielastic part.

The corresponding pair correlation function is more difficult to obtain, since
it is determined by a change of configurations of atoms rather than by single
atom jumps. The conceptual difference between the pair and the self correlation
function for jump processes may be visualized most easily considering rota-
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tional jumps. Let us regard, e.g., the 120° rotational jumps of a methyl group
around its symmetric axis. An incoherent study would reveal the atomic jumps
of the associated hydrogens. The pair correlation function reflects the change of
atomic configurations before and after the jump. Since a 120° jump does not
change the configuration, a coherent scattering experiment would not reveal
anything.

Back to the pair correlation function for the β-process, where we will introduce
a simple approximation [17, 18]. We know that for t = 0 the pair correlation func-
tion is reflected by the static structure factor S(Q). Therefore for t = 0 the corre-
sponding pair correlation function for the β-process must reveal S(Q).We now as-
sume that the inelastic scattering is related to uncorrelated jumps of the different
atoms. Then all interferences for the inelastic process are destructive and the in-
elastic form factor should be identical to that of the self correlation function. For
the normalized dynamic structure factor for the β-process we arrive at

(18.16)

This incoherent approximation does not reveal, e.g., symmetry related cancella-
tions, but displays a major feature of the corresponding dynamic structure fac-
tor, namely the relative suppression of the inelastic contributions from local
jump processes at the maximum of the structure factor. Figure 18.5 displays the
situation for polybutadiene (PB). There a β-process corresponding to a jump
length of d = 1.5 Å has been found [17]. The corresponding inelastic dynamic
structure factor is strongly reduced at the position of the first peak, while it con-
tributes strongly at higher Q. This figure suggests a Q selectivity for the different
relaxation processes: at the maximum of the structure factor local jump
processes should not contribute and the relaxation due to structural relaxations
should dominate. On the other hand at larger Q, in particular in the minimum
of the structure factor, the secondary relaxation should reveal itself.
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Fig. 18.4. Q-dependence of
the inelastic (solid line) and
elastic (dashed line) contri-
butions to the incoherent
scattering function for a
jump over a distance of 1.5 Å
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18.3.2
Diffusive (Q Dispersive) Processes

Regular diffusion like, e.g., that observed in a Brownian liquid, is characterized
by the diffusion constant D and an exponential decay of the incoherent scatter-
ing function (see, e.g., [21])

(18.17)

The characteristic time is then Q-dependent and given by

(18.18)

In this simple case, the Gaussian approximation

(18.19)

is fulfilled and the mean squared displacement 〈r2(t)〉 follows a linear time de-
pendence, 〈r2(t)〉/6 = Dt. This holds at large scales – small Q values – and long
times, where the details of the mechanism (elemental jump) involved in the dif-
fusion cannot be distinguished. On the other hand, the coherent scattering func-
tion in simple monoatomic liquids can be expressed as
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Fig. 18.5. Q-dependence of
the amplitude of the relative
quasielastic contribution of
the β-process to the coher-
ent scattering function ob-
tained in the incoherent ap-
proximation for the inelas-
tic part (dashed line). The
static structure factor S(Q)
of PB at 160 K is shown for
comparison (solid line)



where the characteristic time is given by τD
coh = S(Q)τD

inc = S(Q)D–1Q–2, show-
ing the so-called de Gennes narrowing [22]. In this way Eq. (18.20) can be re-
written as

(18.21)

This relationship has been experimentally verified in the very simple case of liq-
uid argon [21]. For more complicated systems containing more than one atomic
species it is not possible to formulate a similarly simple relation between coher-
ent and incoherent functions. Other approximations have been proposed like,
e.g., that by Vineyard [23]

(18.22)

or by Sköld [24],

Let us assume now anomalous diffusion characterized by a sublinear increase of
the mean squared displacement, 〈r2(t)〉/6 = Atβ. If the Gaussian approximation
holds, Eq. (18.19) leads to

(18.23)

which evidently has a KWW-like form (Eq. 18.1) with a KWW time τw given 
by [25]

(18.24)

This implies stronger Q-dependencies than in the regular diffusion (β < 1). In
the coherent case the equivalent expression to Eq. (18.21) would be

(18.25)

leading to a S(Q)1/βQ–2/β dependence of the characteristic time that produces a
sharper modulation with S(Q) than that expected in the Debye case. As pointed
out before, however, this is an oversimplification of the problem for systems con-
taining more than one kind of atom.

In the same way as the relaxation function, the coherent and incoherent in-
termediate scattering functions corresponding to the main (α-)relaxation in
glass forming systems in general, and in polymers in particular, do not follow a
single exponential decay, but can be well characterized by a KWW function.
Thus the spatial information offered by neutron scattering is accessible through
the Q-dependent characteristic times τw(Q,T). If the underlying mechanism of
the α-relaxation consists of a sublinear diffusion of the scattering centers and
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the Gaussian approximation is fulfilled, strong Q-dependences should be ob-
served for the characteristic time of the main relaxation as studied by QENS
[25–27].

18.3.3
Merging of the �- and �-Processes

The simplest way to approach the combination of two processes as the α and β
processes is to assume that they are statistically independent. The van Hove self
correlation function corresponding to an atom undergoing two different statis-
tically independent processes, α and β, can be written as a convolution product
of the corresponding self correlation functions

(18.26)

This implies that the self (incoherent) structure factor, which is given by the
Fourier transformation of GS

αβ (r, t), reads as the direct product of the structure
factors corresponding to the two processes

(18.27)

However, in the coherent case the derivation of a similar expression is not
straightforward, because the correlations between all the pairs of scatters (j, i)
have to be taken into account. One possibility is to follow the procedure de-
scribed in [18] which is based on a generalization of the Vineyard approxima-
tion [23] mentioned above. In this framework, the dynamic structure factor of
the combined process can be written as

(18.28)

where Sβ(Q,t) is the coherent structure factor of the β-process. In this scenario
we obtain an expression for Sαβ(Q,t) connecting the coherent structure factor of
the β-relaxation with the relaxation function of the α-process, where in the lan-
guage of the Vineyard approximation Sβ(Q,t) takes the role of S(Q).

18.4
Experimental Examples

18.4.1
Polybutadiene as a Showcase

1,4-Polybutadiene (PB) is a main chain polymer built by a random sequence of
mainly trans- and cis-groups (see Fig. 18.6). The main features described in the
introduction are clearly found for the relaxations of this polymer when ob-
served by means of broadband BDS.At temperatures below Tg (Tg = 178 K) only
one relaxation process, the β-relaxation, is active in the dielectric frequency

S t S t S tαβ β α( , ) ( , ) ( , )Q Q Q= inc

S t S t S tinc inc inc
αβ β α( , ) ( , ) ( , )Q Q Q=

G t G t G ts s s
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window, whereas above Tg the contribution of the α-relaxation is also measured.
Figure 18.7 shows how the two loss processes approach each other with increas-
ing temperature in a narrow temperature range above Tg. These correspond to
the α-relaxation, that takes place at lower frequencies, and the β-relaxation. At
high temperatures (≈Tg + 30 K) the α- and β-relaxations merge and only one
peak can be resolved in the experimental dielectric window.

As was mentioned and can be directly shown in Fig. 18.7, these processes are
very broad. Therefore, the concept of a characteristic time is somehow ill de-
fined for these relaxations. Phenomenologically a possible definition could be
the inverse of the frequency at which the dielectric loss presents a maximum.
Figure 18.8 shows the temperature dependence of the so determined character-
istic times of the α- and β-relaxations in PB. In the region well below the merg-
ing these time scales can be univocally determined, but further away from Tg
only a change in the slope of the high frequency tail of the dielectric loss indi-
cates the presence of the β-relaxation (see Fig. 18.7). Therefore, in this tempera-
ture range only the evolution of one maximum, which would be in principle as-
signed to the main (α-)relaxation, can be followed. It is apparent in Fig. 18.8, that
the time scale of the β-relaxation shows an Arrhenius-like temperature depen-
dence, like many other glass-forming polymeric systems [1]. For the main
process a temperature dependence of the characteristic time scale clearly differ-
ent from an Arrhenius law is found, a feature which is also universal for poly-
mers (see, e.g., [2]). It is noteworthy that the temperature behavior of this time
is also different from that observed for the time scale associated to the viscosity
(see Fig. 18.8). The temperature at which the time scales of the α- and β-relax-
ation coincide, around 210 K, will be referred to as the merging temperature TM.

Let us now concentrate on the QENS results related to the α- and β-relax-
ations of this polymer, which in essence are displayed by Fig. 18.9. In the upper
part this figure shows the static structure factor S(Q) at different temperatures.
The first peak shifts strongly with temperature, qualifying it as due to interchain
correlations, while the second peak hardly changes with temperature. Here co-
valently connected intrachain correlations dominate. Figure 18.9b presents the
coherent intermediate scattering functions measured by spin echo at Qmax, the
Q-value of the first structure factor peak. They are scaled according to the tem-
perature dependence τη(T) set by the viscosity relaxation. Applying this scaling
relation all data collapse to a common master curve. Obviously the interchain
correlations between adjacent chains decay with the same temperature law as
the macroscopic flow. Trying the same scaling with data taken at the second, the 

700 18 Polymer Dynamics by Dielectric Spectroscopy and Neutron Scattering 

Fig. 18.6. Schematic re-
presentation of the main
constituent units of
1,4-polybutadiene



intrachain peak, a strikingly different result (Fig. 18.9c) is found. At that high 
Q-value the spectra do not assemble to a master curve but keep their identity.
Obviously at the first two peaks of S(Q) different dynamics are observed.

Now we consider the temperature dependencies of the characteristic relax-
ation times found with these experiments. Again we concentrate on the results
corresponding to the first and second peak (Fig. 18.10). At the first peak, the
characteristic times follow the dashed-dotted line representing the temperature
law of the viscosity relaxation – this could already be inferred from the scaling
with τη (T) – while at the second peak we observe an Arrhenius-like behavior co-
inciding exactly with that of the dielectric β-relaxation shown in Fig. 18.8.

Qualitatively the experimental results follow the expectation from our con-
siderations on the dynamic structure factor. As a consequence of the 1/S(Q)
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Fig. 18.7. Dielectric loss
curves obtained for PB at
175 K (�), 180 K (�), 190 K
(+), 200 K (�), 220 K (×)
and 240 K (	). Solid lines
through the points are the
corresponding fitting
curves (see text). An esti-
mated error bar for the high
frequency measurements is
included in the figure. For
frequencies < 106 Hz the es-
timated error bars are
within the size of the points.
From [18]. Copyright (1996)
by the American Physical
Society)

Fig. 18.8. Temperature de-
pendence of the characteris-
tic time scales defined as
the inverse of the frequen-
cies of the dielectric loss
maxima for the main relax-
ation process (open circles)
and the β-relaxation (open
squares). The solid line
shows the temperature be-
havior of the viscosity and
the dashed line the
Arrhenius-like dependence
of the β-relaxation. From
[18]. Copyright (1996) by
the American Physical
Society)
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Fig. 18.9. a Static structure
factor for deuterated PB at
different temperatures.
b Scaling representation of
the NSE data at 1.48 Å–1 (�,
280 K; �, 260 K; �, 240 K; 
,
230 K; �, 220 K). (c) The
same kind of representation
for 2.71 Å–1 (�, 300 K; �,
260 K; �, 220 K; 
, 205 K; �,
190 K; 	, 180 K; �, 170 K).
Solid lines correspond to
KWW functions (see text).
Error bars are shown for all
temperatures in b, and only
at 170 K and 300 K in c for
clarity. From [18].
Copyright (1996) by the
American Physical Society)



renormalization following Eq. (18.16) the contributions of the secondary pro-
cess are strongly suppressed at the position of the first structure factor peak
Qmax. Therefore at Qmax the dynamic structure factor is selective for the diffu-
sive α-relaxation.At higher Q’s, (i) Sinel becomes stronger ({1–[sin (Qd)]/Qd} in-
creases!) and (ii) the effect of the renormalization becomes weaker. Here
S(Q,t)/S(Q) becomes increasingly sensitive to local jump processes.

18.4.2
Combined Dielectric and Neutron Investigations of the �-Process

The wide frequency range accessible by BDS allows one to characterize the tem-
perature dependence of both the time scale and the spectral shape of the β-re-
laxation in a very wide temperature interval below Tg, where this relaxation con-
tributes to the dielectric signal well separated from other processes. The dielec-
tric β-relaxation spectra of PB can be well described by assuming a Gaussian
distribution of energy barriers g(E) (Eq. 18.14) that translates in the following
expressions for the relaxation function in the time domain ϕβ (t) and the re-
sponse function in the frequency domain Φβ

*(ω):
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Fig. 18.10. Temperature dependence of the characteristic times τw obtained from the fits of
S(Q,t) to stretched exponentials with β = 0.41 at Q = 1.48 Å–1 (�) and 2.71 Å–1 (	). Dashed
dotted line corresponds to the Vogel Fulcher-like temperature dependence of the viscosity for 
Q = 1.48 Å–1 and the solid line to the Arrhenius-like temperature dependence of the dielectric
β-relaxation for Q = 2.71 Å–1. From [18]. Copyright (1996) by the American Physical Society)



(18.30)

For PB we find that the width σ decreases linearly with temperature (σ[eV] =
0.145 – 2.55 × 10–4 T [K]). The values of τβ

o and Eo are determined from the tem-
perature dependence of the position of the maximum of the relaxation, τmax = τβ

o
exp(Eo/kBT) (see Fig. 18.8) and they are τβ

o = 3.5 × 10–17 s and Eo = 0.41 eV.
These results can be used as an input for interpreting the NSE data on PB and

to extract further information on the microscopic mechanism beyond the β-
process. Below TM (≈ 210 K) the α-relaxation slows down very rapidly with de-
creasing temperature and cannot be observed anymore within the window of
NSE. Therefore, the analysis of the structure factor in this temperature range ap-
plies only to the contribution of the β-process.

The NSE data were fitted to the expression given by Eq. (18.16). The best fit
was obtained for a most probable distance d = 1.5 Å, giving rise to the relative
quasielastic contribution depicted in Fig. 18.5, and τo

NSE = τ β
o/205. With this ap-

proach a very good description of all the NSE data at all the temperatures be-
low TM and at all Q-values investigated is obtained. Figure 18.11 shows an ex-
ample. The astonishing result that the time scale observed for the relaxation of
density fluctuations by NSE is shifted by approximately two orders of magni-
tude to shorter times with respect to the time scale observed for dipole relax-
ation is not yet understood. At this point it is worth referring to studies on the
pair [16] and self [19] correlation functions of the β-relaxation carried out on
polyisobutylene (PIB), also combining QENS and BDS. In that polymer a simi-
lar time scale was found for the secondary relaxation as observed by both tech-
niques.

A more realistic modeling of the microscopic mechanism involved in the β-re-
laxation can be performed by considering the coherent scattering functions cor-
responding to rotations of the cis- and trans-units [18]. The conclusions are that
the NSE data are compatible with rotational processes of the rigid building blocks
of PB around an axis passing through their center of mass. However, the experi-
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Fig. 18.11. NSE spectra at
205 K for the Q-values indi-
cated. Solid lines are the fit-
ting curves obtained in the
incoherent approximation
for the inelastic part of the
β-process. From [18].
Copyright (1996) by the
American Physical Society)



mentally observed Q-dependences lead to more pronounced sharper structures
around Q ≈ 3 Å–1 indicating that the scattering in this Q-region may contain inter-
ference terms from several building blocks along the chain. Thus reorientational
motions involving cooperatively more than one building block are likely.

In summary, the results of this NSE and dielectric study of the β-relaxation
suggest that its origin would be the rotational motion of the chain building
blocks like cis- and trans-units within one chain, stressing the intramolecular
nature of this process. It is worth noting that in order to facilitate the analysis it
was of crucial importance to use the distribution function of the elementary re-
laxation processes provided by the dielectric results.

18.4.3
�-Process on Polybutadiene

18.4.3.1
Temperature Dependence

The characterization of the β-relaxation contribution to the spectra allows one
to find the optimal experimental conditions for isolating the α-process contri-
bution. As already seen, for coherent scattering the β-contribution is almost
suppressed in the first maximum of S(Q), and there information on such im-
portant features as the shape of the relaxation function or the temperature de-
pendence of the characteristic time scale can be obtained for the pure α-
process. The usual procedure for determining the shape of the dynamic struc-
ture factor consists of constructing a master curve like that shown in Fig. 18.9b.
In this case the shift factors used were fixed by the temperature dependence set
by the viscosity relaxation (monomeric friction coefficient), and a nice super-
position of the curves corresponding to the different temperatures was ob-
tained. As can be appreciated in Fig. 18.9b, the resulting master curve can be
reasonably described by a KWW function with β = 0.41, which is the value de-
duced from the fit of the dielectric spectra at temperatures close to Tg, where it
can be well determined.A free fit of the NSE data would give a somewhat higher
β-value (≈ 0.45) [29]. Thus, it may follow that (i) the shape parameters obtained
from both techniques are very close, and (ii) the time-temperature superposi-
tion principle holds to a good approximation for PB in a very wide temperature
range. However, we note that the temperature dependence of the α-relaxation
NSE data coincides with that obtained from viscosity measurements
(Figs. 18.9b and 18.10), which differs from the observed behavior for the di-
electric loss maxima in the same temperature range, as pointed out before (see
Fig. 18.8). This could imply that the dielectric response would be very much in-
fluenced by the presence of the secondary relaxation – BDS observes the so
called αβ-process.
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18.4.3.2
Q-Dependence

The incoherent scattering function, on the other hand, is expected to correspond
to a large amount to the α-relaxation at low enough Q-values where the inelas-
tic contribution of the β-relaxation is negligible, i.e., approximately for Q < 1 Å–1

(see Fig. 18.4). Figure 18.12 shows incoherent spectra corresponding to a proto-
nated PB sample at 280 K. A broadening with respect to the instrumental reso-
lution is visible that increases with increasing Q. This kind of behavior is ex-
pected for diffusive processes, because the broadening of the quasielastic peak
is directly related to the time scale of the dynamics taking place: the faster the
dynamics the broader the spectrum becomes. Taking advantage of previous
knowledge about the functional form of the α-relaxation, the spectra were fitted
to the Fourier transforms of KWW functions with β = 0.41 and free time scale.
The resulting fitting curves are shown in Fig. 18.12 as solid lines. The Q-depen-
dence of the relaxation times obtained is much stronger than that expected for
regular diffusion, as evidenced in Fig. 18.13, and can be well described by the law
predicted in the case of anomalous diffusion in the Gaussian approximation
(Eq. 18.24). This behavior has been found in a large series of polymers [25–27].
It seems then that, at least in the mesoscopic time scale covered by neutron scat-
tering techniques, the apparent stretching of the α-relaxation function in glass
forming polymers relates dominantly to sublinear diffusion and is not a result of
a superposition of single exponential processes – this scenario would lead to a
dependence on Q–2 of the time scale [27] which is not observed at least in the Q-
range covered by the experiments carried out up to now.
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Fig. 18.12. Incoherent scat-
tering function measured 
for PB at 280 K and the 
Q-values indicated by the 
BSS in Jülich. Dotted lines
show the instrumental reso-
lution function and solid lines
are fitting curves (see text)



18.4.3.3
Merging of �- and �-Processes

At temperatures close to the merging temperature TM, the characteristic relax-
ation times of the primary α-relaxation reach similar orders of magnitude as
that of the local β-relaxation.Therefore the description of the dynamic structure
factor at any Q has to be generalized including both processes. The β-process has
been successfully described as a local intrachain relaxation process that takes
place within the fixed environment set by the other chains. When the segmental
diffusion reaches the time scale of the local relaxation, given atoms and molec-
ular groups will noticeably participate simultaneously in both motional mecha-
nisms. Under the hypothesis that to first order both mechanisms are statistically
independent from each other, the coherent dynamic structure factor Sαβ(Q, t)
can be expressed by Eq. (18.28). In this equation, Sβ(Q, t) is known from the study
performed on the NSE data below TM, and the values of the parameters involved
can be extrapolated to higher temperatures. For the other function, Sα

inc(Q, t),
also the spectral shape (KWW with β = 0.41) and the temperature dependence
of the characteristic times (≈ τη(T)) are known. The Q-dependence of this time
scale would in principle be given by that shown by the incoherent times, but tak-
ing into account that the scenario used involves a number of assumptions, this
dependence was obtained from the fitting of the NSE curves to the theoretical
function. It is worth noting that the only free parameters in the fitting procedure
are this Q-dependence and amplitude factors which give account for faster
processes like phonons, which are not visible in the NSE window but contribute
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Fig. 18.13. Q-dependence of the KWW characteristic time of the α-relaxation obtained from
the incoherent scattering function measured at 280 K by the BSS in Jülich. The solid line rep-
resents the Q-dependence expected in the Gaussian approximation (Eq. 18.24). Dashed line
shows a Q–2 law. The arrow indicates the Q-value at which the characteristic time observed for
the α-relaxation by dielectric spectroscopy matches the time scale obtained by QENS



to the total amplitude. Figure 18.14 shows resulting fit curves for several tem-
peratures at the first maximum, minimum, and second maximum of S(Q). The
excellent agreement between the model scattering function and the experiment
strongly supports the hypothesis that the α- and β-relaxations behave indepen-
dently of each other. The small deviations of the curves at 280 K for 1.48 Å–1 and
1.88 Å–1 could be related to a possible small increase of the shape parameter β of
the α-relaxation at high temperatures.

The Q-dependence of τw is shown in Fig. 18.15.As commented before, a mod-
ulation of the characteristic time with S(Q) could be expected in the coherent
case. This modulation is not found in the obtained time scale, but it follows a
power law in Q, as in the incoherent case. This result supports in some way the
consistency of the used Vineyard approximation for the α-process which is
based on the incoherent dynamic structure factor. As compared to the incoher-
ent times – or to their extrapolation to the Q-range where the NSE have been ob-
tained, however, a slightly weaker Q-dependence and lower absolute values are
found. It is also worth pointing out that the absence of modulation could be due
to the poor Q-resolution of these NSE measurements. Recent investigations car-
ried out on PIB, which exhibits a sharper structure factor, with better Q-resolu-
tion [30] show a clear feature on the characteristic times that reminds S(Q).

Within the experimental accuracy the coherent Q-dependent dynamic struc-
ture factor in the αβ-relaxation regime of PB can be consistently described un-
der the assumption that both processes are statistically independent. This ob-
servation based on the Q- and temperature dependence of Sαβ(Q, t) opens also a
new approach for a better understanding of results from BDS on polymers.

18.4.3.3.1
Application to Dielectric Results

Dielectric data on glass-forming polymers are usually analyzed under the as-
sumption that the total dielectric response can be obtained from the addition of
the contributions of α- and β-relaxations. This seems to give a good description
of the experimental data when both processes are well separated, i.e., well below
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Fig. 18.14. NSE spectra for
the Q-values indicated at
220 K (�), 240 K (�), 260 K
(	), and 280 K (�). Solid
lines are fitting curves (see
text). From [18]. Copyright
(1996) by the American
Physical Society)



the merging. However, close or above this range it is not possible to describe
consistently the total process as the addition of the two relaxations as extrapo-
lated from the low temperature region, but some change in the mechanisms has
to be invoked [31–33]. On the other hand, if a neutron experiment addressing
the dynamics on a molecular level in space and time is very well compatible with
a statistical independence of these processes, then this observation must imply
that such an independence must be at the basis of an interpretation of results
from other experimental techniques as well. This kind of approach was in fact
proposed by G.Williams a long time ago [34] for the dielectric response and only
recently has been quantitatively tested [18, 31–33, 35]. As for the density fluctu-
ations which are seen by the neutrons, it is assumed that the polarization is par-
tially relaxed via local motions, which conform the β-relaxation. While the
dipoles are participating in these motions, they are surrounded by temporary
local environments. The brake of these local environments is what we call α-
process, and causes the subsequently total relaxation of the polarization. Note
that as the atoms in the density fluctuations all dipoles participate at the same
time in both relaxation processes. Similar to the dynamic structure factor
Sαβ(Q, t) (Eq. 18.28) the relaxation function ϕ(t) corresponding to these two in-
dependent processes α, β, can be expressed as

(18.31)

where fα is the relative strength factor for the α-process,and ϕα(t),ϕβ(t) are the re-
laxation functions corresponding to the α- and β-processes.These are normalized
functions, i.e.,ϕα(β)(t = 0) = 1,ϕα(β)(t = ∞) = 0.It is noteworthy that Eq.(18.31) has
the same form as Sαβ(Q, t). However, while the neutron experiment occurs on the
length scale of the α-relaxation leading to a dispersive Q-dependent characteris-
tic time, BDS observes the effect of the different relaxation modes on a local probe
– the dipole. Therefore the prefactors in Eq. (18.31), which in the case of neutrons
relate to particular Fourier transformed density-density correlations observed on

ϕ ϕ ϕ ϕα α α α β( ) ( ) ( – ) ( ) ( )t f t f t t= + 1

18.4 Experimental Examples 709

Fig. 18.15. Q-dependence of
the characteristic times of
the α-relaxation, τw, at
280 K, as deduced from the
analysis of the coherent dy-
namic structure factor in
the αβ-regime



their natural scale, also have a different meaning, fα being the relative fraction of
the polarization relaxed only by the α-relaxation.

In order to apply the approach described above to the experimental data, first
the functional forms of ϕα(t) and ϕβ(t) have to be determined. Note that, if the
time scales of the relaxation processes are well separated, ϕα(t) does not begin
to decay until ϕβ(t) has completely vanished; ϕ(t) decays in two stages and
Eq. (18.31) can be approximated by

(18.32)

(18.33)

i.e., under this condition we recover the usual description in terms of the ad-
dition of both contributions. Therefore, the functional forms of ϕα (t) and 
ϕβ (t) can be obtained from the usual analysis of the low temperature region
spectra, where the time scale of the α-process is much slower than that of the
β-process.

The characterization of the relaxation function of the β-relaxation has al-
ready been described in Sect. 18.4.2 (Eqs. 18.29 and 18.30). For the α-process we
have mentioned in advance that ϕα (t) corresponds to a KWW function with β ≈
0.41 in this temperature range. As the KWW function does not have an analyti-
cal Laplace transform, in practice, the procedure followed was based on the re-
sults presented in [36, 37]. In those works it was shown that the Laplace trans-
form of KWW functions can be well described by Havriliak-Negami (HN) [38]
functions

(18.34)

if their shape parameters α and γ fulfill certain relationships. In this expression
τHN is the characteristic time. One should then restrict oneself to the HN-family
functions which describe well the Laplace transform of KWW functions. In
these cases, the relationships between HN- and KWW-shape parameters and
their characteristic times are [36]

(18.35)

(18.36)

The PB spectra were thus analyzed using Eq. (18.33) with the above described
functions in the temperature range between Tg and Tg + 22 K, where it can be
considered that the time scales of α- and β-relaxations are sufficiently separated
(see Fig. 18.7). The values of the shape parameter β obtained lie around a mean
value of β = 0.41 (corresponding HN shape parameters: α = 0.72, γ = 0.50). If
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the data were analyzed at higher temperatures also with this „addition ansatz“
(Eq. 18.33), the following behavior would have been observed for the response
function of the “secondary relaxation”: (i) a strong asymmetrization of the spec-
tral shape and (ii) a shift of the characteristic time scale towards faster times
with respect to the values extrapolated from the low temperature range. This
shift would increase with increasing temperature.

In order to analyze the experimental data at higher temperatures in the frame
of the “Williams ansatz”, it is useful to rewrite Eq. (18.31) as

(18.37)

Here, we are introducing the concept of the relaxation function of the “effective
β-relaxation”, ϕβ eff(t), given by the product ϕα(t)ϕβ(t). The approach shown in
Eq. (18.37) has the advantage that the total relaxation function is still given by
the addition of two contributions, one corresponding to the α-relaxation, and
the other by this “effective β-relaxation”. The latter includes the modifications of
the β-relaxation by the presence of the α-relaxation. In the following we will
show how the response function corresponding to this relaxation can be con-
structed. The starting point is to know the distribution of relaxation times
gα(lnτ) and gβ(lnτ) in terms of which the α- and β-processes can – at least for-
mally – be decomposed:

(18.38)

It is straightforward to deduce gβ(lnτ) from the distribution of energy barrier
heights g(E) given in Eq. (18.14):

(18.39)

In the case of the α-relaxation, the distribution function can be obtained in dif-
ferent ways, such as using the algorithm proposed by Imanishi, Adachi and
Kotaka [39], or the distribution function reproducing the corresponding HN-
function [40], or an approximated expression like that used in [33].

Once gα(lnτ)  and gβ (lnτ) are determined, the relaxation function ϕβ eff(t) can
be calculated as
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(18.40)



and, taking into account the properties of the Laplace transformation, Φ*
β eff (ω)

is given by

(18.41)

Then, the function Φ *
β eff (ω) can be calculated by integration, avoiding any kind

of Laplace transformation. PB data were fitted within this framework. Note that
except for the values of the characteristic time of the α-relaxation, τw, and the re-
laxed fraction in the α-relaxation, fα, which were left as free parameters in the
fitting procedure, all the parameters were extrapolated from the low to the high
temperature regime. We found a very good description of the data by this pro-
cedure, as can be seen in Fig. 18.7, for the whole range of temperatures investi-
gated. Moreover, a very interesting result concerning the time scale of the α-re-
laxation, τw, arises from this analysis: its temperature behavior at high tempera-
tures follows very nicely the temperature behavior of the time scale associated
to the viscosity (see the behavior of τHN, which is proportional to τw (β is a con-
stant) in Fig. 18.16). This is a non-trivial result which emerges naturally from the
description made and supports the consistency of the analysis of the data, if we
take into account that the same temperature dependence has been found for the
characteristic time scale of the α-relaxation as observed by NSE.

The meaning of the effective β-relaxation introduced can be understood if we
follow its development with temperature. Close to Tg, Φ *

β eff and Φ *
β are almost

indistinguishable. However, as the temperature increases and the time scales of
the primary and secondary relaxations become closer, significant differences
appear concerning both the shape and the frequency of the maximum of these
functions. Φ ″β eff becomes asymmetric and its characteristic time scale shifts to-
wards higher frequencies with the proximity of the α-relaxation. Thus the β-like
processes with characteristic times slower than the average relaxation time of
the α-relaxation do not contribute any more to the relaxation of the polariza-
tion. This means that the dipoles whose local environment relaxes before the lo-
cal dynamics takes place, relax through the α-relaxation. The higher the tem-
perature, the more similar becomes the shape of the relaxation function of the
effective β-relaxation to that of the α-relaxation, though it is shifted towards
higher frequencies. The behavior found in this framework proposed by Williams
for Φ″β eff coincides with that observed for the contribution that is added to the α-
relaxation in the frame of the addition ansatz. Therefore, the deviations ob-
served with the addition ansatz for the behavior of the secondary relaxation
with respect to that extrapolated from low temperatures find a natural explana-
tion in the scenario here proposed.

Concerning the relative contributions of the α- and effective β-relaxations,
the insert in Fig. 18.16 shows the results obtained for the relative fraction relaxed
only by the α-relaxation, fα.Close to Tg, the α-relaxation alone plays the most im-
portant role. fα decreases then with increasing temperature, being small at tem-
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peratures close to the merging, and in the merging region almost all the relax-
ation of the polarization is due to the other mechanism (local processes together
with the α-relaxation). Therefore, in this range the temperature dependence of
the total process follows the temperature dependence of the effective β-relax-
ation, as is shown in Fig. 18.16. There we have plotted the inverse of the fre-
quencies of the maxima of Φ″β eff for several temperatures. It is evident that when
fα reaches small values, the maxima of the total process coincide with that of
Φ″β eff. In this way, we have found a simple explanation for the apparently differ-
ent temperature dependencies observed for the relaxation of the dipoles and the
viscosity (see Fig. 18.8).

It is finally noteworthy that the description found for the elementary process
beyond the secondary relaxation from the NSE evaluation is compatible with the
dielectric results. Rotations of the cis-unit of about 60–120°, as deduced from
those results, would allow the polarization to relax to a large extent, leaving a
small fraction to be relaxed only via the pure α-(segmental) process. In connec-
tion with this result, we would like to mention that from a theoretical point of
view, the convolution ansatz proposed is supported by the results obtained in the
framework of a free-energy landscape model for the dynamics of glass-forming
systems, when a slow secondary relaxation is considered [41]. In this model the
β-relaxation is attributed to restricted angular fluctuations, modeled by a su-
perposition of simple two-site angular jumps within a cone, whereas the α-re-
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Fig. 18.16. Temperature dependence of the dielectric characteristic times obtained by the fit-
ting procedure explained in the text: τHN (�), tb

max (�), and τ β eff
max (	). The Arrhenius law

shows the extrapolation of the temperature behavior of the β-relaxation. The solid line
through τHN points shows the temperature behavior of the time scale associated to the viscos-
ity. The dotted line corresponds to the temperature dependence of the characteristic time
scales for the main relaxation process. Insert: Temperature dependence of the dipole compo-
nent relaxed by the α-relaxation (A. Arbe, D. Richter, J. Colmenero and B. Farago, Phys. Rev. E
54 (1996) 3853–3869. Copyright (1996) by the American Physical Society)



laxation occurs via isotropic tumbling of the jump axis. Hence Eq. (18.31) allows
a rather good description of the relaxation behavior in the merging region in the
general case, and gives the exact solution for the particular case in which the two
mechanisms are totally uncorrelated. The results obtained on PB would thus
support this free-energy landscape approach.

In this example of PB we have shown the potential of the combination of BDS
and QENS techniques in order to investigate the dynamical processes in glass-
forming polymers. PB is perhaps one of the polymers better investigated in this
way. However, cases like poly(vinyl methylether) PVME [12], polyisoprene PI
[13, 20], poly(vinyl chloride) PVC [15], polyisobutylene PIB [16, 19], and
poly(vinyl ethylene) PVE [20] can also be referred to as subjects of combined in-
vestigations of these two techniques (or even more, like PVME in [12], where
also NMR, light scattering, and mechanical data are brought together). It is im-
portant to point out however that the study on PB here summarized opened a
new way for understanding dielectric results on polymer systems at high tem-
peratures because it provided a microscopic interpretation of the merging
process of the α- and β-relaxations as statistically independent processes.
Dielectric results of a series of polymers and glass forming systems have been
successfully interpreted over the last years in the framework of this scenario.
Moreover, the combination of QENS and BDS methods is currently being ex-
tended to investigate dynamics in polymer blends [20, 42, 43].

18.5
Conclusions

The complexity richness of the dynamical behavior of glass-forming polymers
demands the combination of several experimental techniques in order to
achieve a full characterization of the different dynamical processes and their
possible interconnections. Broadband dielectric spectroscopy and quasielastic
neutron scattering turn out to be very useful complementary techniques for
such an investigation. While BDS can cover a huge dynamic range over more
than 15 decades in time or frequency, QENS is the only technique giving spa-
tial/time resolution, though in a rather narrow dynamic range. An unavoidable
consequence of combining techniques assessing different correlators is that dif-
ficulties may arise when both kinds of results are analyzed and interpreted.
While BDS observes the dielectric permittivity, which reflects the orientational
dynamics of the molecular dipoles in the sample, QENS techniques have access
either to the density-density correlation function (coherent scattering) or to the
self correlation of the atoms (incoherent scattering), providing spatial informa-
tion on the dynamical processes under study. Therefore, in principle, different
results should be expected when a given relaxation process is observed either in-
directly by BDS of directly by QENS.However,both sets of measurements should
mirror the same physics. Using the combination of these techniques a huge fre-
quency-temperature range can be covered, allowing one to study, e.g., the main
dynamical processes in polymer systems – the primary and secondary relax-
ations – in the macro- and mesoscopic time scales. Precise information on the
temperature dependence of the characteristic times and the spectral shape of
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the relaxations can be obtained from BDS. This knowledge may allow one to per-
form an accurate analysis of the QENS results, which contain valuable spatial in-
formation necessary for a molecular understanding of the dynamical processes
taking place in the system. The potential of the combination of these techniques
has been exemplified in this chapter with the study of 1,4-polybutadiene dy-
namics.

List of Abbreviations and Symbols

A T-dependent contribution to the relaxation time
bj Scattering length of the isotope j
d Jump distance
D Diffusion constant
E Activation energy
Eo Average value of the activation energy
fα Relative strength factor for the α-process
g Kirkwood correlation factor
g(E) Energy barriers distribution function
g(lnτ) Relaxation time distribution function
Gs(r,t) Self part of the van Hove correlation function
H,H′ Guide magnetic fields
kB Boltzmann constant
ki(kf) Initial (final) wave vectors of the neutron
L Distance between the sample and the detector
m Neutron mass
M1(t) Sum of the permanent moments of the molecules 

in a sphere of macroscopic dimensions around 
a molecule

N Number of atoms in the system
Pi(Pf ) Initial (final) polarization of the neutron beam
Qmax Position of the first static structure factor peak
rj(t) Position vector of the atom j at time t
S(Q) Static structure factor
S(Q,t) Dynamic structure factor
Sinc(Q,t) Incoherent dynamic structure factor
S(Q,ω) Coherent dynamic structure factor
Sinc(Q,ω) Incoherent scattering function
S inel Inelastic contribution to the dynamic structure factor
t Time
T Temperature
Tg Glass transition temperature
TM Merging temperature
vi (vf) Initial (final) neutron velocity
〈[rj(t)-rj(0)]2〉 Thermally averaged mean square displacement 

of atom i with respect to atom j
〈r2(t)〉 Average mean squared displacement of a single atom
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h Planck constant h/2π
hQ Momentum transfer
hω Energy change
α,β, or αβ Corresponding to the α-, β-, αβ-process
(subscripts/
superscripts)
α,γ HN shape parameters
β KWW stretching exponent
∂2σ/∂Ω ∂hω Double differential cross section
ε*(ω) = ε′(ω) – iε′′(ω) Complex dielectric permittivity
εs Static value of the permittivity
ε∞ High frequency limit value of the permittivity
Δε = εs – ε∞ Relaxation strength
φ Phase angle
ϕ(t) Relaxation function
λ(λo) Wavelength of the (incoming) neutrons
�i(t) Dipole moment of the molecule i
2θ Scattering angle
σ (T) Width of a distribution function
τ (E) Jump time corresponding to an activation energy E
τη(T) Characteristic time for viscosity relaxation
τβ

o Prefactor in the Arrhenius law for the characteristic
time

τ D
inc (τ D

coh) Characteristic time for incoherent (coherent) 
scattering in a diffusive process

τmax Inverse of the frequency corresponding to the 
maximum of the relaxation

τw
inc Characteristic time for incoherent scattering in an

anomalous diffusive process
τw KWW relaxation time
Φ *(ω) = Φ′(ω) – iΦ′′(ω) Response function

BDS Broadband dielectric spectroscopy
HN Havriliak-Negami
ILL Institute Laue-Langevin
KWW Kohlrausch-Williams-Watts
NS Neutron scattering
NSE Neutron spin echo
PB Polybutadiene
PI Polyisoprene
PIB Polyisobutylene
PVE Poly(vinyl ethylene)
PVC Poly(vinyl chloride)
PVME Poly(vinyl methylether)
QENS Quasielastic neutron scattering
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